organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,8-Di­bromo­quinoline

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60240 Tokat, Turkey, and dDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 20 October 2010; accepted 23 October 2010; online 31 October 2010)

The title mol­ecule, C9H5Br2N, is almost planar, with an r.m.s. deviation of 0.027 Å. The dihedral angle between the aromatic rings is 1.5 (3)°. In the crystal, ππ stacking inter­actions are present between the pyridine and benzene rings of adjacent mol­ecules [centroid–centroid distances = 3.634 (4) Å], and short Br⋯Br contacts [3.4443 (13) Å] occur.

Related literature

For the biological and pharmacological activities of quinolines and their derivatives, see: Abadi et al. (2005[Abadi, A., Hegazy, G. & El-Zaher, A. (2005). Bioorg. Med. Chem. 13, 5759-5765.]); Blackie et al. (2007[Blackie, M. A. L., Beagley, P., Croft, S. L., Kendrick, H., Moss, J. R. & Chibale, K. (2007). Bioorg. Med. Chem. 15, 6510-6516.]); Chen et al. (2006[Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373-4378.]); Gómez et al. (2008[Gómez, C. M. M., Kouznetsov, V. V., Sortino, M. A., Álvarez, S. L. & Zacchino, S. A. (2008). Bioorg. Med. Chem. 16, 7908-7920.]); Gómez-Barrio et al. (2006[Gómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., Muelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol. 51, 73-78.]); Kouznetsov et al. (2005[Kouznetsov, V. V., Mendez, L. Y. V. & Gomez, C. M. M. (2005). Curr. Org. Chem. 9, 141-146.], 2007[Kouznetsov, V. V., Méndez, L. Y. V., Leal, S. M., Cruz, U. M., Coronado, C. A., Gómez, C. M. M., Bohórquez, A. R. R. & Rivero, P. E. (2007). Lett. Drug. Des. Discov. 4, 293-296.]); Lindley (1984[Lindley, J. (1984). Tetrahedron, 40, 1433-1456.]); Metwally et al. (2006[Metwally, K. A., Abdel-Aziz, L. M., Lashine, E. M., Husseiny, M. I. & Badawy, R. H. (2006). Bioorg. Med. Chem. 4, 8675-8682.]); Muscia et al. (2006[Muscia, G. C., Bollini, M., Carnevale, J. P., Bruno, A. M. & Asís, S. E. (2006). Tetrahedron Lett. 47, 8811-8815.]); Musiol et al. (2007[Musiol, R., Jampilek, J., Kralova, K., Richardson, D. R., Kalinowski, D., Podeszwa, B., Finster, J., Niedbala, H., Palka, A. & Polanski, J. (2007). Bioorg. Med. Chem. 15, 1280-1288.]); Sissi & Palumbo (2003[Sissi, C. & Palumbo, M. (2003). Curr. Med. Chem. Anti-Canc. Agents, 3, 439-450.]); Vangapandu et al. (2004[Vangapandu, S., Jain, M., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem. 12, 2501-2508.]); Vinsova et al. (2008[Vinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infective Agents Med. Chem. 7, 12-31.]); Vladímir et al. (2005[Vladímir, V., Kouznetsov, V. V., Vargas Méndez, L. Y. & Gómez, C. M. (2005). Curr. Org. Chem. 9, 141-146.]); Zhao et al. (2005[Zhao, Y. L., Chen, Y. L., Chang, F. S. & Tzeng, C. T. (2005). Eur. J. Med. Chem. 40, 792-797.]); Zhu et al. (2007[Zhu, X. Y., Mardenborough, L. G., Li, S., Khan, A., Zhang, W., Fan, P., Jacob, M., Khan, S., Walker, L. & Ablordeppey, S. Y. (2007). Bioorg. Med. Chem. 15, 686-695.]); Şahin et al. (2008[Şahin, A., Çakmak, O., Demirtaş, İ., Ökten, S. & Tutar, A. (2008). Tetrahedron, 64, 10068-10074.]). For the synthesis, see: Ökten et al. (2010[Ökten, S., Çakmak, O. & Erenler, R. (2010). Beilstein J. Chem. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C9H5Br2N

  • Mr = 286.94

  • Monoclinic, P 21 /c

  • a = 7.3436 (12) Å

  • b = 9.8961 (15) Å

  • c = 13.0108 (18) Å

  • β = 109.589 (17)°

  • V = 890.8 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 11.04 mm−1

  • T = 297 K

  • 0.12 × 0.09 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector

  • Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])Tmin = 0.052, Tmax = 0.080

  • 1598 measured reflections

  • 1598 independent reflections

  • 1075 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.141

  • S = 1.02

  • 1598 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The quinoline skeleton is often used for designing of many synthetic compounds with diverse pharmacological and medicinal properties. Quinolines and their derivatives have shown to display a wide spectrum of biological activities such as antibacterial (Metwally et al., 2006), antimycobacterial (Vinsova et al., 2008; Vangapandu et al., 2004), antineoplastic (Zhao et al., 2005; Sissi & Palumbo, 2003; Musiol et al., 2007; Zhu et al., 2007), antiparasitical (Muscia et al., 2006; Blackie et al., 2007; Gómez et al., 2008; Gómez-Barrio et al., 2006; Kouznetsov et al., 2005, 2007), and anti-inflammatory behavior (Chen et al., 2006; Abadi et al., 2005; Ökten et al., 2010). Quinoline also constitutes a key structural component of numerous compounds with pharmacological activity, dyestuffs, materials with metal-halogen exchange, and agrochemical (Lindley, 1984) and couplings (Vladímir et al., 2005). Bromoquinolines have been of interest for chemists as precursors for heterocyclic compounds due to important scaffolds in medicinal chemistry. It was developed a convenient synthetic methodology for 6,8-disubstituted quinoline derivatives and the values of 6,8-dibromoquinoline as precursors to the corresponding disubstituted quinolines were presented. New disubstituted quinoline derivatives were synthesized via substition reaction by using 6,8-DiBrQ, converted to further substituted quinoline. That may serve for the synthesis of natural bioactive quinolines derivatives because there are many biological active 6 and 8- functionalized quinolines such as quinine, pentaquine, and plasmoquine (Şahin et al., 2008).

The molecular structure of the title compound (I) is shown in Fig. 1 with their respective labels. Bond lengths and angles in (I) are within normal ranges. In this structure, the quinoline motif (N1/C1–C9) is essentially planar with maxium deviations of 0.029 (7) Å for C3 and 0.031 (9) Å for C8. The Br1—C2—C3—C4 and Br2—C4—C5—C6 torsion angles are -179.0 (5) and 178.7 (5)°, respectively.

The crystal structure of (I) is stabilized by ππ stacking interactions, along the a axis, between N1/C1/C6–C9 (centroid Cg1) and C1–C6 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.634 (4) Å, (Fig. 2).

Related literature top

For the biological and pharmacological activities of quinolines and their derivatives, see: Abadi et al. (2005); Blackie et al. (2007); Chen et al. (2006); Gómez et al. (2008); Gómez-Barrio et al. (2006); Kouznetsov et al. (2005, 2007); Lindley (1984); Metwally et al. (2006); Muscia et al. (2006); Musiol et al. (2007); Sissi & Palumbo (2003); Vangapandu et al. (2004); Vinsova et al. (2008); Vladímir et al. (2005); Zhao et al. (2005); Zhu et al. (2007); Şahin et al. (2008). For the synthesis, see: Ökten et al. (2010).

Experimental top

6,8-DiBromo-1,2,3,4-tetrahydroquinoline was synthesized in proper literature (Ökten et al., 2010). Then, DDQ (2 g, 6.88 mmol) was dissolved in freshly distilled and dried bezene (10 ml) under an argon atmosphere. To a solution of 6,8-diBrTHQ (1 g, 3.44 mmol) in benzene (30 ml) was added the solution of DDQ. The mixture was refluxed at 353 K for 36 h. Upon cooling, the dark green solidified mixture was filtered and the solvent was removed in vacuo. The residue was filtered from a short silica column (1/9, EtOAc/hexane, Rf= 0.4). Recrystallization of the product from hexane–chloroform gave 6,8-diBrQ in a yield of 88% (868 mg) as colourless plates, m.p. 372–373 K. 1H NMR (CDCl3, 400 MHz) d 9.04 (dd, J23= 4.2 Hz, J24= 1.6 Hz, 1H, H2), 8.16 (d, J57= 2.4 Hz, 1H, H7), 8.09 (dd, J43= 8.3 Hz, J24= 1.6 Hz, 1H, H4), 7.96 (d, J57= 2.4 Hz, 1H, H5), 7.49 (dd, J32= 4.2 Hz, J34= 8.3 Hz, 1H, H3); 13C NMR (100 MHz, CDCl3) d 151.5, 144.1135.9, 135.7, 130.1, 129.7, 125.9, 122.7, 119.9; IR (KBr, cm-1) vmax 3026, 1638, 1617, 1587, 1545, 1467, 1443, 1347, 1306, 1183, 1084, 1030, 962, 857, 809, 779, 677, 593, 543, 501. GC–MS m/z 289 (5, M+), 288 (50), 287 (10), 286 (98), 285 (10), 284 (42), 207 (30), 205 (31), 129 (5), 127 (10), 126 (100), 125 (14), 103 (15), 102 (14), 99 (37), 98 (33), 97 (20), 75 (19), 74 (22), 73 (42), 50 (18), 49 (52), 48 (14), 37 (7), 36 (7). Anal. Calcd for C9H5NBr2 (286.95): C 37.67, H 1.76%. Found: C 37.78, H 1.82%.

Refinement top

H atoms were included in geometric positions with C—H = 0.93 Å and refined by using a riding model [Uiso(H) = 1.2Ueq(C)].

Structure description top

The quinoline skeleton is often used for designing of many synthetic compounds with diverse pharmacological and medicinal properties. Quinolines and their derivatives have shown to display a wide spectrum of biological activities such as antibacterial (Metwally et al., 2006), antimycobacterial (Vinsova et al., 2008; Vangapandu et al., 2004), antineoplastic (Zhao et al., 2005; Sissi & Palumbo, 2003; Musiol et al., 2007; Zhu et al., 2007), antiparasitical (Muscia et al., 2006; Blackie et al., 2007; Gómez et al., 2008; Gómez-Barrio et al., 2006; Kouznetsov et al., 2005, 2007), and anti-inflammatory behavior (Chen et al., 2006; Abadi et al., 2005; Ökten et al., 2010). Quinoline also constitutes a key structural component of numerous compounds with pharmacological activity, dyestuffs, materials with metal-halogen exchange, and agrochemical (Lindley, 1984) and couplings (Vladímir et al., 2005). Bromoquinolines have been of interest for chemists as precursors for heterocyclic compounds due to important scaffolds in medicinal chemistry. It was developed a convenient synthetic methodology for 6,8-disubstituted quinoline derivatives and the values of 6,8-dibromoquinoline as precursors to the corresponding disubstituted quinolines were presented. New disubstituted quinoline derivatives were synthesized via substition reaction by using 6,8-DiBrQ, converted to further substituted quinoline. That may serve for the synthesis of natural bioactive quinolines derivatives because there are many biological active 6 and 8- functionalized quinolines such as quinine, pentaquine, and plasmoquine (Şahin et al., 2008).

The molecular structure of the title compound (I) is shown in Fig. 1 with their respective labels. Bond lengths and angles in (I) are within normal ranges. In this structure, the quinoline motif (N1/C1–C9) is essentially planar with maxium deviations of 0.029 (7) Å for C3 and 0.031 (9) Å for C8. The Br1—C2—C3—C4 and Br2—C4—C5—C6 torsion angles are -179.0 (5) and 178.7 (5)°, respectively.

The crystal structure of (I) is stabilized by ππ stacking interactions, along the a axis, between N1/C1/C6–C9 (centroid Cg1) and C1–C6 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.634 (4) Å, (Fig. 2).

For the biological and pharmacological activities of quinolines and their derivatives, see: Abadi et al. (2005); Blackie et al. (2007); Chen et al. (2006); Gómez et al. (2008); Gómez-Barrio et al. (2006); Kouznetsov et al. (2005, 2007); Lindley (1984); Metwally et al. (2006); Muscia et al. (2006); Musiol et al. (2007); Sissi & Palumbo (2003); Vangapandu et al. (2004); Vinsova et al. (2008); Vladímir et al. (2005); Zhao et al. (2005); Zhu et al. (2007); Şahin et al. (2008). For the synthesis, see: Ökten et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing of (I) down the a axis.
6,8-Dibromoquinoline top
Crystal data top
C9H5Br2NF(000) = 544
Mr = 286.94Dx = 2.140 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 1247 reflections
a = 7.3436 (12) Åθ = 3.6–70.3°
b = 9.8961 (15) ŵ = 11.04 mm1
c = 13.0108 (18) ÅT = 297 K
β = 109.589 (17)°Plate, colourless
V = 890.8 (3) Å30.12 × 0.09 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini CCD detector
1598 independent reflections
Radiation source: Enhance (Cu) X-ray Source1075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 70.5°, θmin = 5.8°
Absorption correction: part of the refinement model (ΔF)
[XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters]
h = 88
Tmin = 0.052, Tmax = 0.080k = 011
1598 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0642P)2]
where P = (Fo2 + 2Fc2)/3
1598 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C9H5Br2NV = 890.8 (3) Å3
Mr = 286.94Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.3436 (12) ŵ = 11.04 mm1
b = 9.8961 (15) ÅT = 297 K
c = 13.0108 (18) Å0.12 × 0.09 × 0.02 mm
β = 109.589 (17)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini CCD detector
1598 independent reflections
Absorption correction: part of the refinement model (ΔF)
[XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters]
1075 reflections with I > 2σ(I)
Tmin = 0.052, Tmax = 0.080Rint = 0.000
1598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.02Δρmax = 0.68 e Å3
1598 reflectionsΔρmin = 0.56 e Å3
109 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.93324 (12)0.16374 (8)0.01474 (6)0.0736 (3)
Br20.54665 (13)0.49672 (10)0.34185 (6)0.0832 (4)
N10.8781 (8)0.4050 (6)0.1454 (4)0.0641 (19)
C10.8034 (8)0.4311 (7)0.0368 (5)0.055 (2)
C20.8120 (8)0.3287 (6)0.0384 (5)0.0528 (19)
C30.7418 (9)0.3499 (7)0.1488 (5)0.0595 (19)
C40.6545 (9)0.4739 (7)0.1875 (5)0.0550 (19)
C50.6420 (9)0.5744 (7)0.1208 (5)0.059 (2)
C60.7184 (9)0.5558 (7)0.0071 (5)0.058 (2)
C70.7125 (10)0.6584 (8)0.0673 (6)0.067 (3)
C80.7919 (11)0.6338 (9)0.1768 (6)0.075 (3)
C90.8687 (11)0.5055 (9)0.2115 (6)0.075 (3)
H30.752100.283300.197000.0710*
H50.583300.655700.149500.0710*
H70.655600.741400.042200.0800*
H80.794700.701000.227300.0900*
H90.916800.489400.286200.0900*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0902 (6)0.0440 (5)0.0739 (5)0.0092 (4)0.0106 (4)0.0044 (3)
Br20.1024 (7)0.0722 (7)0.0649 (5)0.0056 (5)0.0146 (4)0.0115 (4)
N10.065 (3)0.056 (4)0.068 (3)0.007 (3)0.018 (2)0.005 (3)
C10.047 (3)0.040 (4)0.074 (4)0.003 (3)0.014 (3)0.004 (3)
C20.052 (3)0.033 (4)0.070 (3)0.001 (3)0.016 (3)0.005 (3)
C30.057 (3)0.049 (4)0.066 (3)0.001 (3)0.012 (3)0.001 (3)
C40.056 (3)0.046 (4)0.061 (3)0.001 (3)0.017 (3)0.009 (3)
C50.055 (3)0.043 (4)0.076 (4)0.004 (3)0.019 (3)0.002 (3)
C60.050 (3)0.047 (4)0.078 (4)0.001 (3)0.024 (3)0.004 (3)
C70.067 (4)0.052 (5)0.084 (4)0.005 (3)0.030 (3)0.007 (4)
C80.079 (5)0.068 (6)0.084 (5)0.004 (4)0.036 (4)0.013 (4)
C90.077 (5)0.078 (6)0.070 (4)0.016 (4)0.025 (3)0.015 (4)
Geometric parameters (Å, º) top
Br1—C21.877 (6)C5—C61.407 (9)
Br2—C41.909 (6)C6—C71.414 (10)
N1—C11.358 (8)C7—C81.368 (10)
N1—C91.332 (10)C8—C91.401 (12)
C1—C21.425 (9)C3—H30.9300
C1—C61.414 (10)C5—H50.9300
C2—C31.370 (9)C7—H70.9300
C3—C41.398 (10)C8—H80.9300
C4—C51.343 (9)C9—H90.9300
Br1···Br1i3.4443 (13)
C1—N1—C9116.1 (6)C5—C6—C7122.2 (6)
N1—C1—C2118.9 (6)C6—C7—C8119.0 (7)
N1—C1—C6123.8 (6)C7—C8—C9118.8 (7)
C2—C1—C6117.3 (6)N1—C9—C8124.8 (7)
Br1—C2—C1119.4 (5)C2—C3—H3121.00
Br1—C2—C3119.0 (5)C4—C3—H3121.00
C1—C2—C3121.6 (6)C4—C5—H5120.00
C2—C3—C4118.6 (6)C6—C5—H5120.00
Br2—C4—C3117.5 (5)C6—C7—H7120.00
Br2—C4—C5119.9 (5)C8—C7—H7120.00
C3—C4—C5122.7 (6)C7—C8—H8121.00
C4—C5—C6119.5 (6)C9—C8—H8121.00
C1—C6—C5120.3 (6)N1—C9—H9118.00
C1—C6—C7117.5 (6)C8—C9—H9118.00
C9—N1—C1—C2178.9 (6)C1—C2—C3—C42.1 (10)
C9—N1—C1—C60.3 (10)C2—C3—C4—C52.1 (11)
C1—N1—C9—C81.3 (12)C2—C3—C4—Br2176.9 (5)
N1—C1—C2—Br12.1 (8)Br2—C4—C5—C6178.7 (5)
N1—C1—C2—C3179.0 (6)C3—C4—C5—C60.3 (11)
C6—C1—C2—C30.3 (9)C4—C5—C6—C7179.0 (7)
N1—C1—C6—C5179.2 (6)C4—C5—C6—C11.6 (10)
C6—C1—C2—Br1177.2 (5)C1—C6—C7—C81.4 (11)
C2—C1—C6—C51.6 (10)C5—C6—C7—C8179.2 (7)
C2—C1—C6—C7179.0 (6)C6—C7—C8—C92.8 (12)
N1—C1—C6—C70.2 (10)C7—C8—C9—N12.9 (13)
Br1—C2—C3—C4179.0 (5)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC9H5Br2N
Mr286.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)7.3436 (12), 9.8961 (15), 13.0108 (18)
β (°) 109.589 (17)
V3)890.8 (3)
Z4
Radiation typeCu Kα
µ (mm1)11.04
Crystal size (mm)0.12 × 0.09 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby Gemini CCD detector
Absorption correctionPart of the refinement model (ΔF)
[XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters]
Tmin, Tmax0.052, 0.080
No. of measured, independent and
observed [I > 2σ(I)] reflections
1598, 1598, 1075
Rint0.000
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.141, 1.02
No. of reflections1598
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.56

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Cumhuriyet University Research Foundation (CUBAP grant No. 2009/ F-266) for financial support.

References

First citationAbadi, A., Hegazy, G. & El-Zaher, A. (2005). Bioorg. Med. Chem. 13, 5759–5765.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlackie, M. A. L., Beagley, P., Croft, S. L., Kendrick, H., Moss, J. R. & Chibale, K. (2007). Bioorg. Med. Chem. 15, 6510–6516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373–4378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGómez, C. M. M., Kouznetsov, V. V., Sortino, M. A., Álvarez, S. L. & Zacchino, S. A. (2008). Bioorg. Med. Chem. 16, 7908–7920.  PubMed Google Scholar
First citationGómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., Muelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol. 51, 73–78.  Google Scholar
First citationKouznetsov, V. V., Mendez, L. Y. V. & Gomez, C. M. M. (2005). Curr. Org. Chem. 9, 141–146.  Web of Science CrossRef CAS Google Scholar
First citationKouznetsov, V. V., Méndez, L. Y. V., Leal, S. M., Cruz, U. M., Coronado, C. A., Gómez, C. M. M., Bohórquez, A. R. R. & Rivero, P. E. (2007). Lett. Drug. Des. Discov. 4, 293–296.  Web of Science CrossRef CAS Google Scholar
First citationLindley, J. (1984). Tetrahedron, 40, 1433–1456.  CrossRef CAS Web of Science Google Scholar
First citationMetwally, K. A., Abdel-Aziz, L. M., Lashine, E. M., Husseiny, M. I. & Badawy, R. H. (2006). Bioorg. Med. Chem. 4, 8675–8682.  Web of Science CrossRef Google Scholar
First citationMuscia, G. C., Bollini, M., Carnevale, J. P., Bruno, A. M. & Asís, S. E. (2006). Tetrahedron Lett. 47, 8811–8815.  Web of Science CrossRef CAS Google Scholar
First citationMusiol, R., Jampilek, J., Kralova, K., Richardson, D. R., Kalinowski, D., Podeszwa, B., Finster, J., Niedbala, H., Palka, A. & Polanski, J. (2007). Bioorg. Med. Chem. 15, 1280–1288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖkten, S., Çakmak, O. & Erenler, R. (2010). Beilstein J. Chem. In the press.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationŞahin, A., Çakmak, O., Demirtaş, İ., Ökten, S. & Tutar, A. (2008). Tetrahedron, 64, 10068–10074.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSissi, C. & Palumbo, M. (2003). Curr. Med. Chem. Anti-Canc. Agents, 3, 439–450.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVangapandu, S., Jain, M., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem. 12, 2501–2508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infective Agents Med. Chem. 7, 12–31.  CrossRef CAS Google Scholar
First citationVladímir, V., Kouznetsov, V. V., Vargas Méndez, L. Y. & Gómez, C. M. (2005). Curr. Org. Chem. 9, 141–146.  Google Scholar
First citationZhao, Y. L., Chen, Y. L., Chang, F. S. & Tzeng, C. T. (2005). Eur. J. Med. Chem. 40, 792–797.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhu, X. Y., Mardenborough, L. G., Li, S., Khan, A., Zhang, W., Fan, P., Jacob, M., Khan, S., Walker, L. & Ablordeppey, S. Y. (2007). Bioorg. Med. Chem. 15, 686–695.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds