organic compounds
6,8-Dibromoquinoline
aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60240 Tokat, Turkey, and dDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr
The title molecule, C9H5Br2N, is almost planar, with an r.m.s. deviation of 0.027 Å. The dihedral angle between the aromatic rings is 1.5 (3)°. In the crystal, π–π stacking interactions are present between the pyridine and benzene rings of adjacent molecules [centroid–centroid distances = 3.634 (4) Å], and short Br⋯Br contacts [3.4443 (13) Å] occur.
Related literature
For the biological and pharmacological activities of quinolines and their derivatives, see: Abadi et al. (2005); Blackie et al. (2007); Chen et al. (2006); Gómez et al. (2008); Gómez-Barrio et al. (2006); Kouznetsov et al. (2005, 2007); Lindley (1984); Metwally et al. (2006); Muscia et al. (2006); Musiol et al. (2007); Sissi & Palumbo (2003); Vangapandu et al. (2004); Vinsova et al. (2008); Vladímir et al. (2005); Zhao et al. (2005); Zhu et al. (2007); Şahin et al. (2008). For the synthesis, see: Ökten et al. (2010).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810043242/hb5698sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810043242/hb5698Isup2.hkl
6,8-DiBromo-1,2,3,4-tetrahydroquinoline was synthesized in proper literature (Ökten et al., 2010). Then, DDQ (2 g, 6.88 mmol) was dissolved in freshly distilled and dried bezene (10 ml) under an argon atmosphere. To a solution of 6,8-diBrTHQ (1 g, 3.44 mmol) in benzene (30 ml) was added the solution of DDQ. The mixture was refluxed at 353 K for 36 h. Upon cooling, the dark green solidified mixture was filtered and the solvent was removed in vacuo. The residue was filtered from a short silica column (1/9, EtOAc/hexane, Rf= 0.4). Recrystallization of the product from hexane–chloroform gave 6,8-diBrQ in a yield of 88% (868 mg) as colourless plates, m.p. 372–373 K. 1H NMR (CDCl3, 400 MHz) d 9.04 (dd, J23= 4.2 Hz, J24= 1.6 Hz, 1H, H2), 8.16 (d, J57= 2.4 Hz, 1H, H7), 8.09 (dd, J43= 8.3 Hz, J24= 1.6 Hz, 1H, H4), 7.96 (d, J57= 2.4 Hz, 1H, H5), 7.49 (dd, J32= 4.2 Hz, J34= 8.3 Hz, 1H, H3); 13C NMR (100 MHz, CDCl3) d 151.5, 144.1135.9, 135.7, 130.1, 129.7, 125.9, 122.7, 119.9; IR (KBr, cm-1) vmax 3026, 1638, 1617, 1587, 1545, 1467, 1443, 1347, 1306, 1183, 1084, 1030, 962, 857, 809, 779, 677, 593, 543, 501. GC–MS m/z 289 (5, M+), 288 (50), 287 (10), 286 (98), 285 (10), 284 (42), 207 (30), 205 (31), 129 (5), 127 (10), 126 (100), 125 (14), 103 (15), 102 (14), 99 (37), 98 (33), 97 (20), 75 (19), 74 (22), 73 (42), 50 (18), 49 (52), 48 (14), 37 (7), 36 (7). Anal. Calcd for C9H5NBr2 (286.95): C 37.67, H 1.76%. Found: C 37.78, H 1.82%.
H atoms were included in geometric positions with C—H = 0.93 Å and refined by using a riding model [Uiso(H) = 1.2Ueq(C)].
The quinoline skeleton is often used for designing of many synthetic compounds with diverse pharmacological and medicinal properties. Quinolines and their derivatives have shown to display a wide spectrum of biological activities such as antibacterial (Metwally et al., 2006), antimycobacterial (Vinsova et al., 2008; Vangapandu et al., 2004), antineoplastic (Zhao et al., 2005; Sissi & Palumbo, 2003; Musiol et al., 2007; Zhu et al., 2007), antiparasitical (Muscia et al., 2006; Blackie et al., 2007; Gómez et al., 2008; Gómez-Barrio et al., 2006; Kouznetsov et al., 2005, 2007), and anti-inflammatory behavior (Chen et al., 2006; Abadi et al., 2005; Ökten et al., 2010). Quinoline also constitutes a key structural component of numerous compounds with pharmacological activity, dyestuffs, materials with metal-halogen exchange, and agrochemical (Lindley, 1984) and couplings (Vladímir et al., 2005). Bromoquinolines have been of interest for chemists as precursors for
due to important scaffolds in medicinal chemistry. It was developed a convenient synthetic methodology for 6,8-disubstituted quinoline derivatives and the values of 6,8-dibromoquinoline as precursors to the corresponding disubstituted quinolines were presented. New disubstituted quinoline derivatives were synthesized via substition reaction by using 6,8-DiBrQ, converted to further substituted quinoline. That may serve for the synthesis of natural bioactive quinolines derivatives because there are many biological active 6 and 8- functionalized quinolines such as quinine, pentaquine, and plasmoquine (Şahin et al., 2008).The molecular structure of the title compound (I) is shown in Fig. 1 with their respective labels. Bond lengths and angles in (I) are within normal ranges. In this structure, the quinoline motif (N1/C1–C9) is essentially planar with maxium deviations of 0.029 (7) Å for C3 and 0.031 (9) Å for C8. The Br1—C2—C3—C4 and Br2—C4—C5—C6 torsion angles are -179.0 (5) and 178.7 (5)°, respectively.
The π–π stacking interactions, along the a axis, between N1/C1/C6–C9 (centroid Cg1) and C1–C6 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.634 (4) Å, (Fig. 2).
of (I) is stabilized byFor the biological and pharmacological activities of quinolines and their derivatives, see: Abadi et al. (2005); Blackie et al. (2007); Chen et al. (2006); Gómez et al. (2008); Gómez-Barrio et al. (2006); Kouznetsov et al. (2005, 2007); Lindley (1984); Metwally et al. (2006); Muscia et al. (2006); Musiol et al. (2007); Sissi & Palumbo (2003); Vangapandu et al. (2004); Vinsova et al. (2008); Vladímir et al. (2005); Zhao et al. (2005); Zhu et al. (2007); Şahin et al. (2008). For the synthesis, see: Ökten et al. (2010).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).Fig. 1. The title molecule with displacement ellipsoids for non-H atoms drawn at the 50% probability level. | |
Fig. 2. View of the packing of (I) down the a axis. |
C9H5Br2N | F(000) = 544 |
Mr = 286.94 | Dx = 2.140 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 1247 reflections |
a = 7.3436 (12) Å | θ = 3.6–70.3° |
b = 9.8961 (15) Å | µ = 11.04 mm−1 |
c = 13.0108 (18) Å | T = 297 K |
β = 109.589 (17)° | Plate, colourless |
V = 890.8 (3) Å3 | 0.12 × 0.09 × 0.02 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector | 1598 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1075 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
ω scans | θmax = 70.5°, θmin = 5.8° |
Absorption correction: part of the [XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters] | model (ΔF) h = −8→8 |
Tmin = 0.052, Tmax = 0.080 | k = 0→11 |
1598 measured reflections | l = 0→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0642P)2] where P = (Fo2 + 2Fc2)/3 |
1598 reflections | (Δ/σ)max < 0.001 |
109 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
C9H5Br2N | V = 890.8 (3) Å3 |
Mr = 286.94 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 7.3436 (12) Å | µ = 11.04 mm−1 |
b = 9.8961 (15) Å | T = 297 K |
c = 13.0108 (18) Å | 0.12 × 0.09 × 0.02 mm |
β = 109.589 (17)° |
Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector | 1598 independent reflections |
Absorption correction: part of the [XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters] | model (ΔF) 1075 reflections with I > 2σ(I) |
Tmin = 0.052, Tmax = 0.080 | Rint = 0.000 |
1598 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.68 e Å−3 |
1598 reflections | Δρmin = −0.56 e Å−3 |
109 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.93324 (12) | 0.16374 (8) | 0.01474 (6) | 0.0736 (3) | |
Br2 | 0.54665 (13) | 0.49672 (10) | −0.34185 (6) | 0.0832 (4) | |
N1 | 0.8781 (8) | 0.4050 (6) | 0.1454 (4) | 0.0641 (19) | |
C1 | 0.8034 (8) | 0.4311 (7) | 0.0368 (5) | 0.055 (2) | |
C2 | 0.8120 (8) | 0.3287 (6) | −0.0384 (5) | 0.0528 (19) | |
C3 | 0.7418 (9) | 0.3499 (7) | −0.1488 (5) | 0.0595 (19) | |
C4 | 0.6545 (9) | 0.4739 (7) | −0.1875 (5) | 0.0550 (19) | |
C5 | 0.6420 (9) | 0.5744 (7) | −0.1208 (5) | 0.059 (2) | |
C6 | 0.7184 (9) | 0.5558 (7) | −0.0071 (5) | 0.058 (2) | |
C7 | 0.7125 (10) | 0.6584 (8) | 0.0673 (6) | 0.067 (3) | |
C8 | 0.7919 (11) | 0.6338 (9) | 0.1768 (6) | 0.075 (3) | |
C9 | 0.8687 (11) | 0.5055 (9) | 0.2115 (6) | 0.075 (3) | |
H3 | 0.75210 | 0.28330 | −0.19700 | 0.0710* | |
H5 | 0.58330 | 0.65570 | −0.14950 | 0.0710* | |
H7 | 0.65560 | 0.74140 | 0.04220 | 0.0800* | |
H8 | 0.79470 | 0.70100 | 0.22730 | 0.0900* | |
H9 | 0.91680 | 0.48940 | 0.28620 | 0.0900* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0902 (6) | 0.0440 (5) | 0.0739 (5) | 0.0092 (4) | 0.0106 (4) | 0.0044 (3) |
Br2 | 0.1024 (7) | 0.0722 (7) | 0.0649 (5) | 0.0056 (5) | 0.0146 (4) | 0.0115 (4) |
N1 | 0.065 (3) | 0.056 (4) | 0.068 (3) | −0.007 (3) | 0.018 (2) | −0.005 (3) |
C1 | 0.047 (3) | 0.040 (4) | 0.074 (4) | −0.003 (3) | 0.014 (3) | −0.004 (3) |
C2 | 0.052 (3) | 0.033 (4) | 0.070 (3) | 0.001 (3) | 0.016 (3) | 0.005 (3) |
C3 | 0.057 (3) | 0.049 (4) | 0.066 (3) | −0.001 (3) | 0.012 (3) | −0.001 (3) |
C4 | 0.056 (3) | 0.046 (4) | 0.061 (3) | −0.001 (3) | 0.017 (3) | 0.009 (3) |
C5 | 0.055 (3) | 0.043 (4) | 0.076 (4) | 0.004 (3) | 0.019 (3) | 0.002 (3) |
C6 | 0.050 (3) | 0.047 (4) | 0.078 (4) | 0.001 (3) | 0.024 (3) | −0.004 (3) |
C7 | 0.067 (4) | 0.052 (5) | 0.084 (4) | 0.005 (3) | 0.030 (3) | −0.007 (4) |
C8 | 0.079 (5) | 0.068 (6) | 0.084 (5) | −0.004 (4) | 0.036 (4) | −0.013 (4) |
C9 | 0.077 (5) | 0.078 (6) | 0.070 (4) | −0.016 (4) | 0.025 (3) | −0.015 (4) |
Br1—C2 | 1.877 (6) | C5—C6 | 1.407 (9) |
Br2—C4 | 1.909 (6) | C6—C7 | 1.414 (10) |
N1—C1 | 1.358 (8) | C7—C8 | 1.368 (10) |
N1—C9 | 1.332 (10) | C8—C9 | 1.401 (12) |
C1—C2 | 1.425 (9) | C3—H3 | 0.9300 |
C1—C6 | 1.414 (10) | C5—H5 | 0.9300 |
C2—C3 | 1.370 (9) | C7—H7 | 0.9300 |
C3—C4 | 1.398 (10) | C8—H8 | 0.9300 |
C4—C5 | 1.343 (9) | C9—H9 | 0.9300 |
Br1···Br1i | 3.4443 (13) | ||
C1—N1—C9 | 116.1 (6) | C5—C6—C7 | 122.2 (6) |
N1—C1—C2 | 118.9 (6) | C6—C7—C8 | 119.0 (7) |
N1—C1—C6 | 123.8 (6) | C7—C8—C9 | 118.8 (7) |
C2—C1—C6 | 117.3 (6) | N1—C9—C8 | 124.8 (7) |
Br1—C2—C1 | 119.4 (5) | C2—C3—H3 | 121.00 |
Br1—C2—C3 | 119.0 (5) | C4—C3—H3 | 121.00 |
C1—C2—C3 | 121.6 (6) | C4—C5—H5 | 120.00 |
C2—C3—C4 | 118.6 (6) | C6—C5—H5 | 120.00 |
Br2—C4—C3 | 117.5 (5) | C6—C7—H7 | 120.00 |
Br2—C4—C5 | 119.9 (5) | C8—C7—H7 | 120.00 |
C3—C4—C5 | 122.7 (6) | C7—C8—H8 | 121.00 |
C4—C5—C6 | 119.5 (6) | C9—C8—H8 | 121.00 |
C1—C6—C5 | 120.3 (6) | N1—C9—H9 | 118.00 |
C1—C6—C7 | 117.5 (6) | C8—C9—H9 | 118.00 |
C9—N1—C1—C2 | 178.9 (6) | C1—C2—C3—C4 | −2.1 (10) |
C9—N1—C1—C6 | −0.3 (10) | C2—C3—C4—C5 | 2.1 (11) |
C1—N1—C9—C8 | −1.3 (12) | C2—C3—C4—Br2 | −176.9 (5) |
N1—C1—C2—Br1 | −2.1 (8) | Br2—C4—C5—C6 | 178.7 (5) |
N1—C1—C2—C3 | −179.0 (6) | C3—C4—C5—C6 | −0.3 (11) |
C6—C1—C2—C3 | 0.3 (9) | C4—C5—C6—C7 | 179.0 (7) |
N1—C1—C6—C5 | −179.2 (6) | C4—C5—C6—C1 | −1.6 (10) |
C6—C1—C2—Br1 | 177.2 (5) | C1—C6—C7—C8 | 1.4 (11) |
C2—C1—C6—C5 | 1.6 (10) | C5—C6—C7—C8 | −179.2 (7) |
C2—C1—C6—C7 | −179.0 (6) | C6—C7—C8—C9 | −2.8 (12) |
N1—C1—C6—C7 | 0.2 (10) | C7—C8—C9—N1 | 2.9 (13) |
Br1—C2—C3—C4 | −179.0 (5) |
Symmetry code: (i) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C9H5Br2N |
Mr | 286.94 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 7.3436 (12), 9.8961 (15), 13.0108 (18) |
β (°) | 109.589 (17) |
V (Å3) | 890.8 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 11.04 |
Crystal size (mm) | 0.12 × 0.09 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini CCD detector |
Absorption correction | Part of the [XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters] | model (ΔF)
Tmin, Tmax | 0.052, 0.080 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1598, 1598, 1075 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.611 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.141, 1.02 |
No. of reflections | 1598 |
No. of parameters | 109 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.56 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1997) and PLATON (Spek, 2009).
Acknowledgements
The authors thank the Cumhuriyet University Research Foundation (CUBAP grant No. 2009/ F-266) for financial support.
References
Abadi, A., Hegazy, G. & El-Zaher, A. (2005). Bioorg. Med. Chem. 13, 5759–5765. Web of Science CrossRef PubMed CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blackie, M. A. L., Beagley, P., Croft, S. L., Kendrick, H., Moss, J. R. & Chibale, K. (2007). Bioorg. Med. Chem. 15, 6510–6516. Web of Science CrossRef PubMed CAS Google Scholar
Chen, Y., Zhao, Y., Lu, C., Tzeng, C. & Wang, J. (2006). Bioorg. Med. Chem. 14, 4373–4378. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gómez, C. M. M., Kouznetsov, V. V., Sortino, M. A., Álvarez, S. L. & Zacchino, S. A. (2008). Bioorg. Med. Chem. 16, 7908–7920. PubMed Google Scholar
Gómez-Barrio, A., Montero-Pereira, D., Nogal-Ruiz, J. J., Escario, J. A., Muelas-Serrano, S., Kouznetsov, V. V., Vargas Mendez, L. Y., Urbina González, J. M. & Ochoa, C. (2006). Acta Parasitol. 51, 73–78. Google Scholar
Kouznetsov, V. V., Mendez, L. Y. V. & Gomez, C. M. M. (2005). Curr. Org. Chem. 9, 141–146. Web of Science CrossRef CAS Google Scholar
Kouznetsov, V. V., Méndez, L. Y. V., Leal, S. M., Cruz, U. M., Coronado, C. A., Gómez, C. M. M., Bohórquez, A. R. R. & Rivero, P. E. (2007). Lett. Drug. Des. Discov. 4, 293–296. Web of Science CrossRef CAS Google Scholar
Lindley, J. (1984). Tetrahedron, 40, 1433–1456. CrossRef CAS Web of Science Google Scholar
Metwally, K. A., Abdel-Aziz, L. M., Lashine, E. M., Husseiny, M. I. & Badawy, R. H. (2006). Bioorg. Med. Chem. 4, 8675–8682. Web of Science CrossRef Google Scholar
Muscia, G. C., Bollini, M., Carnevale, J. P., Bruno, A. M. & Asís, S. E. (2006). Tetrahedron Lett. 47, 8811–8815. Web of Science CrossRef CAS Google Scholar
Musiol, R., Jampilek, J., Kralova, K., Richardson, D. R., Kalinowski, D., Podeszwa, B., Finster, J., Niedbala, H., Palka, A. & Polanski, J. (2007). Bioorg. Med. Chem. 15, 1280–1288. Web of Science CrossRef PubMed CAS Google Scholar
Ökten, S., Çakmak, O. & Erenler, R. (2010). Beilstein J. Chem. In the press. Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56. CrossRef CAS Web of Science IUCr Journals Google Scholar
Şahin, A., Çakmak, O., Demirtaş, İ., Ökten, S. & Tutar, A. (2008). Tetrahedron, 64, 10068–10074. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sissi, C. & Palumbo, M. (2003). Curr. Med. Chem. Anti-Canc. Agents, 3, 439–450. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vangapandu, S., Jain, M., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem. 12, 2501–2508. Web of Science CrossRef PubMed CAS Google Scholar
Vinsova, J., Imramovsky, A., Jampilek, J., Monreal-Ferriz, J. & Dolezal, M. (2008). Anti-Infective Agents Med. Chem. 7, 12–31. CrossRef CAS Google Scholar
Vladímir, V., Kouznetsov, V. V., Vargas Méndez, L. Y. & Gómez, C. M. (2005). Curr. Org. Chem. 9, 141–146. Google Scholar
Zhao, Y. L., Chen, Y. L., Chang, F. S. & Tzeng, C. T. (2005). Eur. J. Med. Chem. 40, 792–797. Web of Science CrossRef PubMed CAS Google Scholar
Zhu, X. Y., Mardenborough, L. G., Li, S., Khan, A., Zhang, W., Fan, P., Jacob, M., Khan, S., Walker, L. & Ablordeppey, S. Y. (2007). Bioorg. Med. Chem. 15, 686–695. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The quinoline skeleton is often used for designing of many synthetic compounds with diverse pharmacological and medicinal properties. Quinolines and their derivatives have shown to display a wide spectrum of biological activities such as antibacterial (Metwally et al., 2006), antimycobacterial (Vinsova et al., 2008; Vangapandu et al., 2004), antineoplastic (Zhao et al., 2005; Sissi & Palumbo, 2003; Musiol et al., 2007; Zhu et al., 2007), antiparasitical (Muscia et al., 2006; Blackie et al., 2007; Gómez et al., 2008; Gómez-Barrio et al., 2006; Kouznetsov et al., 2005, 2007), and anti-inflammatory behavior (Chen et al., 2006; Abadi et al., 2005; Ökten et al., 2010). Quinoline also constitutes a key structural component of numerous compounds with pharmacological activity, dyestuffs, materials with metal-halogen exchange, and agrochemical (Lindley, 1984) and couplings (Vladímir et al., 2005). Bromoquinolines have been of interest for chemists as precursors for heterocyclic compounds due to important scaffolds in medicinal chemistry. It was developed a convenient synthetic methodology for 6,8-disubstituted quinoline derivatives and the values of 6,8-dibromoquinoline as precursors to the corresponding disubstituted quinolines were presented. New disubstituted quinoline derivatives were synthesized via substition reaction by using 6,8-DiBrQ, converted to further substituted quinoline. That may serve for the synthesis of natural bioactive quinolines derivatives because there are many biological active 6 and 8- functionalized quinolines such as quinine, pentaquine, and plasmoquine (Şahin et al., 2008).
The molecular structure of the title compound (I) is shown in Fig. 1 with their respective labels. Bond lengths and angles in (I) are within normal ranges. In this structure, the quinoline motif (N1/C1–C9) is essentially planar with maxium deviations of 0.029 (7) Å for C3 and 0.031 (9) Å for C8. The Br1—C2—C3—C4 and Br2—C4—C5—C6 torsion angles are -179.0 (5) and 178.7 (5)°, respectively.
The crystal structure of (I) is stabilized by π–π stacking interactions, along the a axis, between N1/C1/C6–C9 (centroid Cg1) and C1–C6 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.634 (4) Å, (Fig. 2).