organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(E)-3-(2,4-Di­chloro­phen­yl)prop-2-en­oyl]-4-hy­dr­oxy-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 October 2010; accepted 27 October 2010; online 31 October 2010)

In the title compound, C18H10Cl2O4, the chromen-2-one ring system is almost planar [maximum deviation = 0.028 (1) Å] and is inclined at an angle of 16.35 (4)° with respect to the benzene ring. The C=C bond has an E configuration. The mol­ecular conformation is stabilized by an almost symmetric intra­molecular O⋯H⋯O hydrogen bond and a C—H⋯O inter­action, both of which form S(6) ring motifs. In the crystal structure, mol­ecules are linked into sheets lying parallel to (100) via inter­molecular C—H⋯O hydrogen bonds. The crystal packing is further consolidated by ππ stacking inter­actions [centroid-to-centroid separation = 3.6615 (6) Å].

Related literature

For general background to and the biological activity of chalcones, see: Claisen et al. (1881[Claisen, L., Claparede, A. & Schmidt, J. G. (1881). Berichte, 14, 2460, 1459.]); Siddiqui et al. (2008[Siddiqui, Z. N., Asad, M. & Praveen, S. (2008). Med. Chem. Res. 17, 318-325.]); Harborne & Mabry (1982[Harborne, J. B. & Mabry, T. J. (1982). The Flavonoids: Advances in Research, pp. 313-416. London: Chapman and Hall.]); Bandgar et al. (2010[Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364-1370.]). For related structures, see: Arshad et al. (2010[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446-o1447.]); Asad et al. (2010[Asad, M., Oo, C.-W., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2491-o2492.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H10Cl2O4

  • Mr = 361.16

  • Monoclinic, P 21 /c

  • a = 4.5233 (2) Å

  • b = 21.2099 (9) Å

  • c = 15.6304 (7) Å

  • β = 91.607 (1)°

  • V = 1498.97 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.09 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.857, Tmax = 0.959

  • 25117 measured reflections

  • 6698 independent reflections

  • 5270 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.05

  • 6698 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O⋯O4 1.27 (2) 1.17 (2) 2.3947 (11) 156 (2)
C11—H11A⋯O2 0.93 2.29 2.8704 (12) 120
C4—H4A⋯O4i 0.93 2.45 3.2514 (13) 144
C17—H17A⋯O1ii 0.93 2.54 3.3966 (13) 154
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are generally prepared from aldehydes and methyl ketones under basic conditions by applying the Claisen–Schmidt condensation (Claisen et al., 1881; Siddiqui et al., 2008). A large number of chalcones and their derivatives are found in natural and synthetic products and are also biogenetically precursors of known flavonoids, isoflavonoids (Harborne & Mabry, 1982) which exhibited a potential variety of biological activities (Bandgar et al., 2010).

In the title molecule, (I), (Fig. 1), the chromen-2-one (O1/C1–C9) ring system is nearly planar (maximum deviation = 0.028 (1) Å for atom C1) and is inclined at an angle of 16.35 (4) ° with the phenyl ring (C13–C18). The C11C12 bond has an E configuration. The molecule is stabilized by intramolecular O3—H1O···O4 and C11—H11A···O2 hydrogen bonds, which form S(6) ring motifs (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with the related structures (Arshad et al., 2010; Asad et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into two-dimensional sheets parallel to (100) via intermolecular C4—H4A···O4 and C17—H17A···O1 hydrogen bonds (Table 1). Short intermolecular distances [3.6615 (6) Å] between symmetry-related O1/C1/C2/C7–C9 (centroid Cg1) and C2–C7 (centroid Cg2) rings [symmetry code: -1+x, y, z] indicate the existence of ππ stacking interactions.

Related literature top

For general background to and the biological activity of chalcones, see: Claisen et al. (1881); Siddiqui et al. (2008); Harborne & Mabry (1982); Bandgar et al. (2010). For related structures, see: Arshad et al. (2010); Asad et al. (2010). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

To a stirred solution of 3-acetyl-4-hydroxycoumarin (0.98 mmol, 200 mg) in ethyl alcohol (10 ml), 2,4-dichlorobenzaldehyde (0.98 mmol, 171 mg) was added in the presence of one drop of piperidine. The mixture was refluxed on water bath for 14 h. After cooling at room temperature, a yellow solid was obtained, filtered, washed with ethanol–water, dried and recrystallized from chloroform as shining yellow needles of (I) in 70% yield.

Refinement top

H1O was located in a difference Fourier map and allowed to refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density peak is located at 0.64 Å from C12 and the deepest hole is located at 1.13 Å from Cl2.

Structure description top

Chalcones are generally prepared from aldehydes and methyl ketones under basic conditions by applying the Claisen–Schmidt condensation (Claisen et al., 1881; Siddiqui et al., 2008). A large number of chalcones and their derivatives are found in natural and synthetic products and are also biogenetically precursors of known flavonoids, isoflavonoids (Harborne & Mabry, 1982) which exhibited a potential variety of biological activities (Bandgar et al., 2010).

In the title molecule, (I), (Fig. 1), the chromen-2-one (O1/C1–C9) ring system is nearly planar (maximum deviation = 0.028 (1) Å for atom C1) and is inclined at an angle of 16.35 (4) ° with the phenyl ring (C13–C18). The C11C12 bond has an E configuration. The molecule is stabilized by intramolecular O3—H1O···O4 and C11—H11A···O2 hydrogen bonds, which form S(6) ring motifs (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with the related structures (Arshad et al., 2010; Asad et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked into two-dimensional sheets parallel to (100) via intermolecular C4—H4A···O4 and C17—H17A···O1 hydrogen bonds (Table 1). Short intermolecular distances [3.6615 (6) Å] between symmetry-related O1/C1/C2/C7–C9 (centroid Cg1) and C2–C7 (centroid Cg2) rings [symmetry code: -1+x, y, z] indicate the existence of ππ stacking interactions.

For general background to and the biological activity of chalcones, see: Claisen et al. (1881); Siddiqui et al. (2008); Harborne & Mabry (1982); Bandgar et al. (2010). For related structures, see: Arshad et al. (2010); Asad et al. (2010). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular interactions are shown in dashed lines.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3-[(E)-3-(2,4-Dichlorophenyl)prop-2-enoyl]-4-hydroxy- 2H-chromen-2-one top
Crystal data top
C18H10Cl2O4F(000) = 736
Mr = 361.16Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9100 reflections
a = 4.5233 (2) Åθ = 2.3–35.1°
b = 21.2099 (9) ŵ = 0.45 mm1
c = 15.6304 (7) ÅT = 100 K
β = 91.607 (1)°Needle, yellow
V = 1498.97 (11) Å30.35 × 0.15 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6698 independent reflections
Radiation source: fine-focus sealed tube5270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 35.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.857, Tmax = 0.959k = 2734
25117 measured reflectionsl = 2522
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.2749P]
where P = (Fo2 + 2Fc2)/3
6698 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C18H10Cl2O4V = 1498.97 (11) Å3
Mr = 361.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5233 (2) ŵ = 0.45 mm1
b = 21.2099 (9) ÅT = 100 K
c = 15.6304 (7) Å0.35 × 0.15 × 0.09 mm
β = 91.607 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
6698 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5270 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.959Rint = 0.033
25117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
6698 reflectionsΔρmin = 0.34 e Å3
222 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.68600 (6)0.640460 (12)0.153533 (17)0.02236 (7)
Cl20.07973 (6)0.434153 (13)0.069793 (16)0.02180 (7)
O10.69790 (16)0.35450 (4)0.57063 (5)0.01808 (14)
O20.37593 (19)0.41872 (4)0.51001 (5)0.02516 (17)
O30.96509 (16)0.28446 (4)0.34161 (5)0.01797 (14)
O40.63677 (16)0.35486 (4)0.26596 (5)0.01701 (14)
C10.5646 (2)0.37989 (5)0.49758 (6)0.01664 (17)
C20.9014 (2)0.30666 (5)0.56843 (6)0.01535 (17)
C31.0072 (2)0.28411 (5)0.64694 (7)0.01883 (18)
H3A0.94020.30090.69780.023*
C41.2149 (2)0.23600 (5)0.64775 (7)0.02067 (19)
H4A1.28890.22070.69980.025*
C51.3149 (2)0.21011 (5)0.57151 (7)0.02046 (19)
H5A1.45440.17790.57310.025*
C61.2059 (2)0.23256 (5)0.49397 (7)0.01786 (18)
H6A1.27080.21530.44310.021*
C70.9967 (2)0.28162 (5)0.49195 (6)0.01467 (16)
C80.87645 (19)0.30746 (4)0.41294 (6)0.01417 (16)
C90.6643 (2)0.35648 (4)0.41544 (6)0.01407 (16)
C100.54393 (19)0.37953 (5)0.33533 (6)0.01447 (16)
C110.3233 (2)0.42963 (5)0.32717 (6)0.01642 (17)
H11A0.27500.45410.37420.020*
C120.1915 (2)0.43961 (5)0.25011 (6)0.01545 (17)
H12A0.24760.41330.20580.019*
C130.0299 (2)0.48736 (5)0.22909 (6)0.01444 (16)
C140.1625 (2)0.49008 (5)0.14673 (6)0.01522 (16)
C150.3651 (2)0.53657 (5)0.12291 (6)0.01714 (17)
H15A0.44750.53790.06770.021*
C160.4410 (2)0.58096 (5)0.18364 (7)0.01636 (17)
C170.3254 (2)0.57894 (5)0.26670 (7)0.01765 (17)
H17A0.38430.60820.30720.021*
C180.1210 (2)0.53266 (5)0.28840 (6)0.01714 (17)
H18A0.04150.53150.34390.021*
H1O0.812 (5)0.3171 (11)0.2882 (15)0.077 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02114 (11)0.01919 (12)0.02702 (13)0.00611 (8)0.00565 (9)0.00516 (9)
Cl20.02795 (12)0.02120 (13)0.01605 (11)0.00727 (9)0.00287 (8)0.00406 (9)
O10.0216 (3)0.0197 (4)0.0130 (3)0.0062 (3)0.0009 (2)0.0002 (3)
O20.0307 (4)0.0272 (4)0.0177 (4)0.0140 (3)0.0026 (3)0.0002 (3)
O30.0201 (3)0.0190 (3)0.0149 (3)0.0025 (3)0.0016 (2)0.0027 (3)
O40.0179 (3)0.0202 (4)0.0130 (3)0.0002 (2)0.0004 (2)0.0016 (3)
C10.0194 (4)0.0166 (4)0.0139 (4)0.0014 (3)0.0001 (3)0.0004 (3)
C20.0154 (4)0.0149 (4)0.0157 (4)0.0007 (3)0.0009 (3)0.0016 (3)
C30.0196 (4)0.0212 (5)0.0157 (4)0.0006 (3)0.0005 (3)0.0030 (4)
C40.0194 (4)0.0220 (5)0.0204 (5)0.0004 (4)0.0016 (3)0.0068 (4)
C50.0181 (4)0.0179 (5)0.0254 (5)0.0025 (3)0.0000 (3)0.0038 (4)
C60.0169 (4)0.0161 (4)0.0206 (4)0.0007 (3)0.0016 (3)0.0001 (4)
C70.0150 (4)0.0137 (4)0.0154 (4)0.0010 (3)0.0009 (3)0.0007 (3)
C80.0140 (4)0.0140 (4)0.0146 (4)0.0021 (3)0.0009 (3)0.0007 (3)
C90.0147 (4)0.0150 (4)0.0125 (4)0.0001 (3)0.0004 (3)0.0002 (3)
C100.0135 (4)0.0147 (4)0.0152 (4)0.0027 (3)0.0004 (3)0.0000 (3)
C110.0164 (4)0.0167 (4)0.0161 (4)0.0000 (3)0.0008 (3)0.0006 (3)
C120.0148 (4)0.0158 (4)0.0156 (4)0.0012 (3)0.0005 (3)0.0006 (3)
C130.0146 (4)0.0150 (4)0.0138 (4)0.0014 (3)0.0004 (3)0.0010 (3)
C140.0165 (4)0.0156 (4)0.0135 (4)0.0001 (3)0.0008 (3)0.0009 (3)
C150.0173 (4)0.0181 (5)0.0160 (4)0.0013 (3)0.0001 (3)0.0008 (3)
C160.0148 (4)0.0145 (4)0.0200 (4)0.0007 (3)0.0037 (3)0.0021 (3)
C170.0187 (4)0.0164 (4)0.0179 (4)0.0005 (3)0.0035 (3)0.0017 (3)
C180.0179 (4)0.0181 (4)0.0154 (4)0.0013 (3)0.0004 (3)0.0012 (3)
Geometric parameters (Å, º) top
Cl1—C161.7358 (10)C6—H6A0.9300
Cl2—C141.7376 (10)C7—C81.4436 (13)
O1—C21.3711 (12)C8—C91.4162 (13)
O1—C11.3851 (12)C9—C101.4371 (13)
O2—C11.2059 (12)C10—C111.4610 (13)
O3—C81.2910 (11)C11—C121.3457 (13)
O3—H1O1.27 (2)C11—H11A0.9300
O4—C101.2851 (12)C12—C131.4554 (13)
O4—H1O1.17 (2)C12—H12A0.9300
C1—C91.4595 (13)C13—C181.4050 (14)
C2—C71.3877 (14)C13—C141.4061 (13)
C2—C31.3895 (14)C14—C151.3896 (13)
C3—C41.3869 (15)C15—C161.3870 (14)
C3—H3A0.9300C15—H15A0.9300
C4—C51.3988 (16)C16—C171.3867 (14)
C4—H4A0.9300C17—C181.3841 (14)
C5—C61.3804 (15)C17—H17A0.9300
C5—H5A0.9300C18—H18A0.9300
C6—C71.4062 (13)
C2—O1—C1122.95 (8)C10—C9—C1122.14 (8)
C8—O3—H1O100.6 (11)O4—C10—C9118.16 (9)
C10—O4—H1O105.2 (12)O4—C10—C11117.46 (8)
O2—C1—O1115.24 (9)C9—C10—C11124.38 (9)
O2—C1—C9127.70 (9)C12—C11—C10118.48 (9)
O1—C1—C9117.06 (8)C12—C11—H11A120.8
O1—C2—C7122.00 (8)C10—C11—H11A120.8
O1—C2—C3116.57 (9)C11—C12—C13126.60 (9)
C7—C2—C3121.43 (9)C11—C12—H12A116.7
C4—C3—C2118.53 (10)C13—C12—H12A116.7
C4—C3—H3A120.7C18—C13—C14116.78 (9)
C2—C3—H3A120.7C18—C13—C12122.66 (8)
C3—C4—C5121.09 (9)C14—C13—C12120.56 (9)
C3—C4—H4A119.5C15—C14—C13122.39 (9)
C5—C4—H4A119.5C15—C14—Cl2116.89 (7)
C6—C5—C4119.76 (9)C13—C14—Cl2120.72 (7)
C6—C5—H5A120.1C16—C15—C14118.18 (9)
C4—C5—H5A120.1C16—C15—H15A120.9
C5—C6—C7119.91 (9)C14—C15—H15A120.9
C5—C6—H6A120.0C17—C16—C15121.71 (9)
C7—C6—H6A120.0C17—C16—Cl1119.83 (8)
C2—C7—C6119.27 (9)C15—C16—Cl1118.46 (8)
C2—C7—C8118.22 (8)C18—C17—C16118.89 (9)
C6—C7—C8122.51 (9)C18—C17—H17A120.6
O3—C8—C9121.89 (9)C16—C17—H17A120.6
O3—C8—C7118.46 (8)C17—C18—C13121.97 (9)
C9—C8—C7119.64 (8)C17—C18—H18A119.0
C8—C9—C10117.78 (8)C13—C18—H18A119.0
C8—C9—C1120.01 (8)
C2—O1—C1—O2175.23 (9)O2—C1—C9—C101.19 (16)
C2—O1—C1—C94.08 (14)O1—C1—C9—C10179.59 (8)
C1—O1—C2—C72.35 (14)C8—C9—C10—O40.56 (13)
C1—O1—C2—C3177.35 (9)C1—C9—C10—O4177.65 (9)
O1—C2—C3—C4179.58 (9)C8—C9—C10—C11179.82 (9)
C7—C2—C3—C40.72 (15)C1—C9—C10—C112.74 (14)
C2—C3—C4—C50.55 (16)O4—C10—C11—C1211.55 (13)
C3—C4—C5—C60.03 (16)C9—C10—C11—C12168.83 (9)
C4—C5—C6—C70.47 (15)C10—C11—C12—C13179.31 (9)
O1—C2—C7—C6179.98 (9)C11—C12—C13—C184.13 (15)
C3—C2—C7—C60.30 (15)C11—C12—C13—C14176.17 (9)
O1—C2—C7—C80.23 (14)C18—C13—C14—C152.61 (14)
C3—C2—C7—C8179.92 (9)C12—C13—C14—C15177.10 (9)
C5—C6—C7—C20.31 (14)C18—C13—C14—Cl2176.94 (7)
C5—C6—C7—C8179.47 (9)C12—C13—C14—Cl23.35 (13)
C2—C7—C8—O3179.79 (9)C13—C14—C15—C161.12 (14)
C6—C7—C8—O30.01 (14)Cl2—C14—C15—C16178.44 (7)
C2—C7—C8—C90.80 (13)C14—C15—C16—C171.44 (14)
C6—C7—C8—C9179.43 (9)C14—C15—C16—Cl1178.24 (7)
O3—C8—C9—C101.20 (13)C15—C16—C17—C182.35 (15)
C7—C8—C9—C10178.19 (8)Cl1—C16—C17—C18177.32 (8)
O3—C8—C9—C1178.35 (9)C16—C17—C18—C130.73 (15)
C7—C8—C9—C11.04 (13)C14—C13—C18—C171.66 (14)
O2—C1—C9—C8175.83 (10)C12—C13—C18—C17178.05 (9)
O1—C1—C9—C83.39 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O41.27 (2)1.17 (2)2.3947 (11)156 (2)
C11—H11A···O20.932.292.8704 (12)120
C4—H4A···O4i0.932.453.2514 (13)144
C17—H17A···O1ii0.932.543.3966 (13)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H10Cl2O4
Mr361.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.5233 (2), 21.2099 (9), 15.6304 (7)
β (°) 91.607 (1)
V3)1498.97 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.35 × 0.15 × 0.09
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.857, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
25117, 6698, 5270
Rint0.033
(sin θ/λ)max1)0.812
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.101, 1.05
No. of reflections6698
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O41.27 (2)1.17 (2)2.3947 (11)156 (2)
C11—H11A···O20.932.292.8704 (12)120
C4—H4A···O4i0.932.453.2514 (13)144
C17—H17A···O1ii0.932.543.3966 (13)154
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: oocw@usm.my.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are grateful to Universiti Sains Malaysia (USM) for providing the necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. HKF and CKQ thank USM for Research University Grant No. 1001/PFIZIK/811160. MA thanks USM for the award of a postdoctoral fellowship. CKQ thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1446–o1447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsad, M., Oo, C.-W., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2491–o2492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V. & Khobragade, C. N. (2010). Bioorg. Med. Chem. 18, 1364–1370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClaisen, L., Claparede, A. & Schmidt, J. G. (1881). Berichte, 14, 2460, 1459.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarborne, J. B. & Mabry, T. J. (1982). The Flavonoids: Advances in Research, pp. 313–416. London: Chapman and Hall.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, Z. N., Asad, M. & Praveen, S. (2008). Med. Chem. Res. 17, 318–325.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds