organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Oxo­thio­lan-3-yl)isoindoline-1,3-dione

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 24 October 2010; accepted 25 October 2010; online 30 October 2010)

In the title compound, C12H9NO3S, the isoindoline-1,3-dione group is almost planar, with an r.m.s. deviation of 0.020 Å, whereas the heterocyclic ring approximates to an envelope with the methyl­ene group not adjacent to the S atom in the flap position. A short intra­molecular C—H⋯O contact generates an S(6) ring motif. In the crystal structure, weak aromatic ππ stacking inter­actions occur between the centroids of the benzene rings at a distance of 3.558 (2) Å.

Related literature

For background to isocoumarins, see: Hussain et al. (2001[Hussain, M. T., Rama, N. H. & Malik, A. (2001). Indian J. Chem. Sect. B, 40, 372-376.]); Lee et al. (2001[Lee, J. H., Park, Y. J., Kim, H. S., Hong, Y. S., Kim, K.-W. & Lee, J. J. (2001). J. Antibiot. 54, 463-466.]); Nozawa et al. (1981[Nozawa, K., Yamada, M., Tsuda, Y., Kawai, K. & Nakajima, S. (1981). Chem. Pharm. Bull. 29, 2689-2691.]). For related crystal structures, see: Beck et al. (2007[Beck, B., Srivastava, S. & Dömling, A. (2007). Heterocycles, 73, 177-182.]); Freer & Kraut (1965[Freer, S. T. & Kraut, J. (1965). Acta Cryst. 19, 992-1002.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO3S

  • Mr = 247.26

  • Monoclinic, P 21 /c

  • a = 8.0601 (13) Å

  • b = 6.9860 (11) Å

  • c = 19.709 (3) Å

  • β = 99.296 (9)°

  • V = 1095.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.24 × 0.10 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.978

  • 14781 measured reflections

  • 1934 independent reflections

  • 1105 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.151

  • S = 1.02

  • 1934 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1 0.97 2.52 3.149 (5) 122

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Isocoumarins are important class of naturally occurring compounds. Their structure is similar to coumarin but with inverted lactone ring. They exhibit a wide range of biological activities such as antimicrobial (Hussain et al., 2001), anti-fungal (Nozawa et al., 1981), anti-angiogenic (Lee et al., 2001). The title compound (I, Fig. 1) was obtained as an interesting side-product during the synthesis of isocoumarin.

The crystal structure of D,L-homocysteine thiolactone hydrochloride (Freer & Kraut, 1965) and (R*)-2-(4-Chlorophenyl)-N-(hept-4-yl)-2-((S*)-2- oxotetrahydrothiophen-3-ylamino)acetamide (Beck et al., 2007) have been reported which contain the heterocyclic ring.

The title compound essentially consists of monomers. In (I), the 2-benzoazole-1,3-dione group (C1–C8/N1/O1/O2) is planar with r.m.s. deviation of 0.0196 Å. The heterocyclic ring (C9/C10/C11/S1/C12) is not planar as the r.m.s. deviation of the plane is 0.1511 Å. The dihedral angle between these two groups is 88.05 (10)°. There exist weak intramolecular H-bondings of C—H···O type (Table 1, Fig. 1) completing S(5) and S(6) ring motifs (Bernstein et al., 1995). There exist ππ interaction between the centroids of benzene rings at a distance of 3.558 (2) Å [symmetry: 1 - x, - y, - z].

Related literature top

For background to isocoumarins, see: Hussain et al. (2001); Lee et al. (2001); Nozawa et al. (1981). For related crystal structures, see: Beck et al. (2007); Freer & Kraut (1965). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Homophthallic acid (1.0 g, 5.5 mmol, 1 eq) was added to 4-(methylthio)-2-(1,3-dioxoisoindolin-2-yl)butanoyl chloride (6.5 g, 0.022 mol, 4 eq) and the mixture was heated at 473 K with continuous stirring for 6 h. The crude product was added to chilled water (20 ml), partitioned with EtOAc (3 × 25 ml), organic layer was dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The column chromatographic separation using EtOAc and n-hexane (3:7) as mobile phase afforded the title compound (I) as colourless needles.

Refinement top

The H atoms were positioned geometrically with C—H = 0.93–0.97 Å and were included in the refinement in the riding model approximation, with Uiso(H) = xUeq(C), where x = 1.2 for all H atoms.

Structure description top

Isocoumarins are important class of naturally occurring compounds. Their structure is similar to coumarin but with inverted lactone ring. They exhibit a wide range of biological activities such as antimicrobial (Hussain et al., 2001), anti-fungal (Nozawa et al., 1981), anti-angiogenic (Lee et al., 2001). The title compound (I, Fig. 1) was obtained as an interesting side-product during the synthesis of isocoumarin.

The crystal structure of D,L-homocysteine thiolactone hydrochloride (Freer & Kraut, 1965) and (R*)-2-(4-Chlorophenyl)-N-(hept-4-yl)-2-((S*)-2- oxotetrahydrothiophen-3-ylamino)acetamide (Beck et al., 2007) have been reported which contain the heterocyclic ring.

The title compound essentially consists of monomers. In (I), the 2-benzoazole-1,3-dione group (C1–C8/N1/O1/O2) is planar with r.m.s. deviation of 0.0196 Å. The heterocyclic ring (C9/C10/C11/S1/C12) is not planar as the r.m.s. deviation of the plane is 0.1511 Å. The dihedral angle between these two groups is 88.05 (10)°. There exist weak intramolecular H-bondings of C—H···O type (Table 1, Fig. 1) completing S(5) and S(6) ring motifs (Bernstein et al., 1995). There exist ππ interaction between the centroids of benzene rings at a distance of 3.558 (2) Å [symmetry: 1 - x, - y, - z].

For background to isocoumarins, see: Hussain et al. (2001); Lee et al. (2001); Nozawa et al. (1981). For related crystal structures, see: Beck et al. (2007); Freer & Kraut (1965). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
2-(2-Oxothiolan-3-yl)isoindoline-1,3-dione top
Crystal data top
C12H9NO3SF(000) = 512
Mr = 247.26Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1105 reflections
a = 8.0601 (13) Åθ = 2.1–25.0°
b = 6.9860 (11) ŵ = 0.29 mm1
c = 19.709 (3) ÅT = 296 K
β = 99.296 (9)°Needle, colourless
V = 1095.2 (3) Å30.24 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1934 independent reflections
Radiation source: fine-focus sealed tube1105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 8.2 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.968, Tmax = 0.978l = 2323
14781 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.3208P]
where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H9NO3SV = 1095.2 (3) Å3
Mr = 247.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0601 (13) ŵ = 0.29 mm1
b = 6.9860 (11) ÅT = 296 K
c = 19.709 (3) Å0.24 × 0.10 × 0.08 mm
β = 99.296 (9)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1934 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1105 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.978Rint = 0.093
14781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
1934 reflectionsΔρmin = 0.31 e Å3
154 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.27260 (14)0.17317 (15)0.21281 (6)0.0666 (4)
O11.0043 (4)0.2417 (4)0.01824 (15)0.0690 (11)
O20.6135 (4)0.3134 (4)0.15927 (16)0.0694 (11)
O31.0050 (3)0.0304 (4)0.16664 (14)0.0619 (11)
N10.8391 (4)0.2932 (4)0.10189 (16)0.0463 (11)
C10.8677 (5)0.2558 (5)0.0348 (2)0.0496 (14)
C20.6994 (5)0.2417 (5)0.0077 (2)0.0445 (14)
C30.6538 (6)0.2073 (5)0.0763 (2)0.0600 (16)
C40.4821 (7)0.1996 (6)0.1015 (2)0.0724 (19)
C50.3638 (6)0.2223 (6)0.0585 (3)0.073 (2)
C60.4108 (5)0.2546 (5)0.0105 (3)0.0580 (16)
C70.5801 (4)0.2646 (5)0.0350 (2)0.0469 (14)
C80.6676 (5)0.2926 (5)0.1061 (2)0.0486 (14)
C90.9686 (4)0.3132 (5)0.1613 (2)0.0492 (12)
C101.0927 (5)0.4715 (5)0.1568 (2)0.0537 (16)
C111.2487 (5)0.4309 (5)0.2093 (2)0.0553 (16)
C121.0662 (5)0.1259 (5)0.17663 (18)0.0444 (12)
H30.733620.189770.104910.0718*
H40.446400.178790.148210.0870*
H50.250060.215590.076770.0880*
H60.331500.269150.039560.0696*
H90.912660.340700.200850.0591*
H10A1.044370.593740.166490.0646*
H10B1.121570.476520.110920.0646*
H11A1.235210.480810.254020.0667*
H11B1.346700.490280.195380.0667*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0529 (7)0.0572 (7)0.0828 (9)0.0032 (5)0.0094 (6)0.0022 (6)
O10.0456 (18)0.086 (2)0.078 (2)0.0061 (15)0.0178 (16)0.0142 (16)
O20.0619 (19)0.075 (2)0.076 (2)0.0060 (16)0.0255 (17)0.0102 (16)
O30.0674 (19)0.0400 (16)0.078 (2)0.0076 (14)0.0106 (16)0.0004 (14)
N10.0420 (19)0.0466 (18)0.049 (2)0.0011 (14)0.0038 (16)0.0021 (15)
C10.040 (2)0.042 (2)0.067 (3)0.0027 (18)0.009 (2)0.0031 (18)
C20.043 (2)0.037 (2)0.052 (3)0.0082 (16)0.003 (2)0.0049 (17)
C30.069 (3)0.051 (2)0.058 (3)0.013 (2)0.004 (2)0.009 (2)
C40.091 (4)0.056 (3)0.059 (3)0.017 (3)0.022 (3)0.010 (2)
C50.054 (3)0.044 (3)0.111 (5)0.006 (2)0.019 (3)0.018 (3)
C60.041 (2)0.037 (2)0.092 (4)0.0023 (18)0.001 (2)0.004 (2)
C70.039 (2)0.029 (2)0.069 (3)0.0025 (16)0.002 (2)0.0051 (17)
C80.042 (2)0.038 (2)0.068 (3)0.0018 (17)0.016 (2)0.0010 (19)
C90.046 (2)0.048 (2)0.053 (2)0.0043 (18)0.006 (2)0.0034 (19)
C100.061 (3)0.041 (2)0.058 (3)0.005 (2)0.006 (2)0.0018 (18)
C110.056 (3)0.053 (2)0.056 (3)0.007 (2)0.006 (2)0.009 (2)
C120.048 (2)0.042 (2)0.044 (2)0.0006 (18)0.0098 (19)0.0016 (17)
Geometric parameters (Å, º) top
S1—C111.811 (4)C6—C71.374 (6)
S1—C121.733 (4)C7—C81.477 (5)
O1—C11.202 (5)C9—C101.503 (5)
O2—C81.207 (5)C9—C121.532 (5)
O3—C121.201 (5)C10—C111.521 (6)
N1—C11.403 (5)C3—H30.9300
N1—C81.398 (5)C4—H40.9300
N1—C91.444 (5)C5—H50.9300
C1—C21.478 (6)C6—H60.9300
C2—C31.364 (5)C9—H90.9800
C2—C71.386 (5)C10—H10A0.9700
C3—C41.394 (7)C10—H10B0.9700
C4—C51.383 (7)C11—H11A0.9700
C5—C61.370 (8)C11—H11B0.9700
C11—S1—C1294.86 (18)S1—C12—O3125.6 (3)
C1—N1—C8111.7 (3)S1—C12—C9110.3 (2)
C1—N1—C9125.1 (3)O3—C12—C9124.1 (3)
C8—N1—C9123.0 (3)C2—C3—H3121.00
O1—C1—N1124.6 (4)C4—C3—H3122.00
O1—C1—C2129.6 (4)C3—C4—H4119.00
N1—C1—C2105.7 (3)C5—C4—H4119.00
C1—C2—C3130.5 (4)C4—C5—H5119.00
C1—C2—C7108.2 (3)C6—C5—H5119.00
C3—C2—C7121.3 (4)C5—C6—H6121.00
C2—C3—C4116.9 (4)C7—C6—H6121.00
C3—C4—C5121.4 (4)N1—C9—H9107.00
C4—C5—C6121.3 (5)C10—C9—H9107.00
C5—C6—C7117.2 (4)C12—C9—H9107.00
C2—C7—C6121.9 (4)C9—C10—H10A110.00
C2—C7—C8108.7 (3)C9—C10—H10B110.00
C6—C7—C8129.5 (4)C11—C10—H10A110.00
O2—C8—N1123.4 (4)C11—C10—H10B110.00
O2—C8—C7131.0 (4)H10A—C10—H10B108.00
N1—C8—C7105.6 (3)S1—C11—H11A110.00
N1—C9—C10115.1 (3)S1—C11—H11B110.00
N1—C9—C12111.0 (3)C10—C11—H11A110.00
C10—C9—C12108.3 (3)C10—C11—H11B110.00
C9—C10—C11107.9 (3)H11A—C11—H11B109.00
S1—C11—C10106.4 (2)
C12—S1—C11—C1019.3 (3)C1—C2—C7—C6178.6 (3)
C11—S1—C12—O3178.8 (4)C1—C2—C7—C80.4 (4)
C11—S1—C12—C90.9 (3)C3—C2—C7—C60.3 (6)
C8—N1—C1—O1177.2 (3)C3—C2—C7—C8178.0 (3)
C8—N1—C1—C23.5 (4)C2—C3—C4—C51.2 (6)
C9—N1—C1—O12.4 (6)C3—C4—C5—C60.5 (6)
C9—N1—C1—C2178.3 (3)C4—C5—C6—C70.4 (6)
C1—N1—C8—O2176.8 (3)C5—C6—C7—C20.5 (5)
C1—N1—C8—C73.8 (4)C5—C6—C7—C8178.3 (4)
C9—N1—C8—O21.9 (5)C2—C7—C8—O2178.1 (4)
C9—N1—C8—C7178.7 (3)C2—C7—C8—N12.5 (4)
C1—N1—C9—C1059.6 (4)C6—C7—C8—O20.1 (7)
C1—N1—C9—C1263.9 (4)C6—C7—C8—N1179.5 (4)
C8—N1—C9—C10126.2 (3)N1—C9—C10—C11160.7 (3)
C8—N1—C9—C12110.3 (4)C12—C9—C10—C1135.8 (4)
O1—C1—C2—C30.8 (7)N1—C9—C12—S1148.7 (2)
O1—C1—C2—C7178.9 (4)N1—C9—C12—O333.4 (5)
N1—C1—C2—C3180.0 (4)C10—C9—C12—S121.4 (4)
N1—C1—C2—C71.8 (4)C10—C9—C12—O3160.7 (4)
C1—C2—C3—C4179.0 (4)C9—C10—C11—S134.4 (4)
C7—C2—C3—C41.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O10.972.523.149 (5)122

Experimental details

Crystal data
Chemical formulaC12H9NO3S
Mr247.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.0601 (13), 6.9860 (11), 19.709 (3)
β (°) 99.296 (9)
V3)1095.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.24 × 0.10 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.968, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14781, 1934, 1105
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.151, 1.02
No. of reflections1934
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O10.972.523.149 (5)122
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBeck, B., Srivastava, S. & Dömling, A. (2007). Heterocycles, 73, 177–182.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreer, S. T. & Kraut, J. (1965). Acta Cryst. 19, 992–1002.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHussain, M. T., Rama, N. H. & Malik, A. (2001). Indian J. Chem. Sect. B, 40, 372–376.  Google Scholar
First citationLee, J. H., Park, Y. J., Kim, H. S., Hong, Y. S., Kim, K.-W. & Lee, J. J. (2001). J. Antibiot. 54, 463–466.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNozawa, K., Yamada, M., Tsuda, Y., Kawai, K. & Nakajima, S. (1981). Chem. Pharm. Bull. 29, 2689–2691.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds