organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3′-Benzoyl-1′-methyl-4′-phenyl­spiro[ace­naphthyl­ene-1(2H),2′-pyrrolidin]-2-one

aDepartment of Chemistry, D. G. Vaishnav College, Chennai 106, Tamil Nadu, India, bDepartment of Chemistry, Auxilium College, Vellore, Tamil Nadu, India, cEntomology Research Institute, Loyola College, Chennai 34, Tamil Nadu, India, and dDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 36, Tamil Nadu, India
*Correspondence e-mail: augustineap@gmail.com

(Received 25 October 2010; accepted 26 October 2010; online 31 October 2010)

In the title compound, C29H23NO2, the pyrrolidine ring adopts a twisted conformation about one of the C—N bonds. The acenaphthone ring (r.m.s. deviation = 0.025 Å) lies almost perpendicular to the pyrrolidine ring [dihedral angle = 88.08 (8)°]. The dihedral angle between the phenyl rings is 88.12 (11)°. In the crystal structure, weak C—H⋯π inter­actions connect the mol­ecules.

Related literature

For background on 1,3-dipolar cyclo­additions, see: Grigg (1987[Grigg, G. (1987). Chem. Soc. Rev. 16, 89-121.]); Huisgen (1988[Huisgen, R. (1988). Adv. Cycloaddition, 1, 1-31.]); Bridges et al. (1993[Bridges, R. J., Lovering, F. E., Humphrey, J. M., Stanley, M. S., Blakely, T. N., Cristofaro, M. F. & Chamberlin, A. R. (1993). Bioorg. Med. Chem. Lett. 3, 115-121.]); Padwa (1984[Padwa, A. (1984). 1,3-Dipolar Addition Chemistry. New York: John Wiley.]). For a related structure, see: Augustine et al. (2007[Augustine, T., Ramkumar, V., Arul Antony, S. & Kanakam, C. C. (2007). Acta Cryst. E63, o4412.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]).

[Scheme 1]

Experimental

Crystal data
  • C29H23NO2

  • Mr = 417.48

  • Monoclinic, P 21 /c

  • a = 8.6462 (4) Å

  • b = 15.8352 (8) Å

  • c = 16.7174 (8) Å

  • β = 99.827 (2)°

  • V = 2255.27 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.42 × 0.34 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.983

  • 16782 measured reflections

  • 5549 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.02

  • 5549 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg5i 0.93 2.85 3.638 (2) 144
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3-dipolar cycloadditions using azomethine ylides is conceptually the most simple and efficient method for the construction of saturated, nitrogen containing five-membered heterocycles (Padwa, 1984). Ylide generation, often performed in situ (Grigg, 1987), followed by cycloaddition with suitable dipolarophiles furnishes pyrrolidines and pyrroles in only one step from simple starting materials (Huisgen, 1988). 1,3-dipolar cycloadditions of azomethine ylides with olefinic and acetylenic dipolarophiles represent an important approach for the formation of pyrrolidines and pyrrolizines which are prevalent in a variety of biologically active compounds (Bridges et al., 1993). In view of this we have determined the structure of the title compound.

In the title compound C29H23NO2, the C—O bond distance (1.21 Å) of the carbonyl group in the benzoyl moiety indicates n-p overlap. The bond angles and dihedral angle of C9—C12—C1 (101.69 Å) of the acenapthone ring indicate it to be in a plane nearly perpendicular to the pyrrolidine ring. The sum of the angles around N-atom of the pyrrolidine ring accounts for 338.78°. This indicates that the structure approaches pyramidal shape. The study of torsion angle, asymmetry parameters and least-square plane calculation shows that the pyrrolidine ring adopts a envelope conformation and puckered, Q2 = 0.4030 (18) Å, φ = 333.0 (3)° (Cremer & Pople, 1975). The Pseudorotation parameter P and τ are 136.4 (1)° and 43.71 (1)° respectively (Rao et al., 1981) showing that C15 and N1 are twisted and puckered.

The crystal structure is stabilized by weak C—H···π interactions.

Related literature top

For background on 1,3-dipolar cycloadditions, see: Grigg (1987); Huisgen (1988); Bridges et al. (1993); Padwa (1984). For a related structure, see: Augustine et al. (2007). For ring conformation analysis, see: Cremer & Pople (1975); Rao et al. (1981).

Experimental top

A mixture of chalcone [1,3-diphenyl-2-propen-1-one] (0.40 g, 2 mmol), acenaphthenequinone (0.36 g, 2 mmol), sarcosine (0.17 g, 2 mmol) and methanol (25 ml) was heated for four hours using oil bath using a dimmerstat at a temperature of 40° C. The reaction mixture was cooled to room temperature and poured into ice-cold water. The solid mass obtained was filtered, washed with water, dried and colourless blocks of (I) were obtained by recrystallization using acetone as solvent by slow evaporation method.

Refinement top

H atoms were positioned geometrically and refined using riding model,with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Uiso(C) for CH3.

Structure description top

1,3-dipolar cycloadditions using azomethine ylides is conceptually the most simple and efficient method for the construction of saturated, nitrogen containing five-membered heterocycles (Padwa, 1984). Ylide generation, often performed in situ (Grigg, 1987), followed by cycloaddition with suitable dipolarophiles furnishes pyrrolidines and pyrroles in only one step from simple starting materials (Huisgen, 1988). 1,3-dipolar cycloadditions of azomethine ylides with olefinic and acetylenic dipolarophiles represent an important approach for the formation of pyrrolidines and pyrrolizines which are prevalent in a variety of biologically active compounds (Bridges et al., 1993). In view of this we have determined the structure of the title compound.

In the title compound C29H23NO2, the C—O bond distance (1.21 Å) of the carbonyl group in the benzoyl moiety indicates n-p overlap. The bond angles and dihedral angle of C9—C12—C1 (101.69 Å) of the acenapthone ring indicate it to be in a plane nearly perpendicular to the pyrrolidine ring. The sum of the angles around N-atom of the pyrrolidine ring accounts for 338.78°. This indicates that the structure approaches pyramidal shape. The study of torsion angle, asymmetry parameters and least-square plane calculation shows that the pyrrolidine ring adopts a envelope conformation and puckered, Q2 = 0.4030 (18) Å, φ = 333.0 (3)° (Cremer & Pople, 1975). The Pseudorotation parameter P and τ are 136.4 (1)° and 43.71 (1)° respectively (Rao et al., 1981) showing that C15 and N1 are twisted and puckered.

The crystal structure is stabilized by weak C—H···π interactions.

For background on 1,3-dipolar cycloadditions, see: Grigg (1987); Huisgen (1988); Bridges et al. (1993); Padwa (1984). For a related structure, see: Augustine et al. (2007). For ring conformation analysis, see: Cremer & Pople (1975); Rao et al. (1981).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram showing the C—H···π interactions.
3'-Benzoyl-1'-methyl-4'-phenylspiro[acenaphthylene-1(2H),2'- pyrrolidin]-2-one top
Crystal data top
C29H23NO2F(000) = 880
Mr = 417.48Dx = 1.230 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3350 reflections
a = 8.6462 (4) Åθ = 2.5–25.3°
b = 15.8352 (8) ŵ = 0.08 mm1
c = 16.7174 (8) ÅT = 298 K
β = 99.827 (2)°Block, colourless
V = 2255.27 (19) Å30.42 × 0.34 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5549 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
φ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 911
Tmin = 0.969, Tmax = 0.983k = 1820
16782 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.296P]
where P = (Fo2 + 2Fc2)/3
5549 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C29H23NO2V = 2255.27 (19) Å3
Mr = 417.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6462 (4) ŵ = 0.08 mm1
b = 15.8352 (8) ÅT = 298 K
c = 16.7174 (8) Å0.42 × 0.34 × 0.22 mm
β = 99.827 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5549 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2944 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.983Rint = 0.035
16782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
5549 reflectionsΔρmin = 0.19 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2530 (2)0.32056 (11)0.28710 (10)0.0505 (5)
C20.3044 (2)0.27558 (11)0.21910 (10)0.0523 (5)
C30.4124 (3)0.21283 (14)0.21511 (14)0.0848 (7)
H30.46810.18870.26210.102*
C40.4365 (4)0.18600 (16)0.13784 (16)0.1013 (9)
H40.51120.14450.13440.122*
C50.3546 (3)0.21865 (15)0.06826 (14)0.0845 (7)
H50.37330.19850.01850.101*
C60.1491 (3)0.32230 (14)0.00346 (11)0.0643 (6)
H60.15880.30720.04920.077*
C70.0454 (2)0.38280 (14)0.01609 (11)0.0631 (6)
H70.01570.40800.02880.076*
C80.0257 (2)0.40942 (12)0.09475 (11)0.0549 (5)
H80.04780.45060.10120.066*
C90.11632 (19)0.37362 (10)0.16061 (9)0.0413 (4)
C100.2211 (2)0.31009 (10)0.14725 (9)0.0430 (4)
C110.2423 (2)0.28227 (12)0.06998 (10)0.0555 (5)
C120.13015 (19)0.38914 (10)0.25123 (9)0.0414 (4)
C130.19337 (19)0.47786 (10)0.28373 (9)0.0402 (4)
H130.29610.46990.31810.048*
C140.0763 (2)0.50907 (11)0.33801 (10)0.0497 (5)
H140.00090.54580.30510.060*
C150.0067 (2)0.42866 (13)0.35599 (12)0.0637 (6)
H15A0.05520.39720.40000.076*
H15B0.10900.44070.36970.076*
C160.2127 (2)0.53926 (11)0.21632 (10)0.0447 (4)
C170.35855 (19)0.53647 (11)0.17984 (9)0.0437 (4)
C180.4852 (2)0.48560 (13)0.20867 (12)0.0612 (5)
H180.48120.44980.25240.073*
C190.6179 (3)0.48749 (17)0.17315 (16)0.0906 (8)
H190.70310.45310.19290.109*
C200.6240 (3)0.53984 (19)0.10893 (17)0.1026 (9)
H200.71400.54120.08540.123*
C210.5004 (3)0.58984 (18)0.07900 (14)0.0889 (8)
H210.50550.62480.03480.107*
C220.3676 (2)0.58877 (13)0.11399 (11)0.0625 (5)
H220.28310.62330.09340.075*
C230.1560 (2)0.55919 (11)0.41019 (11)0.0495 (5)
C240.1259 (3)0.64403 (13)0.41745 (13)0.0690 (6)
H240.05020.67000.37910.083*
C250.2064 (3)0.69126 (16)0.48084 (18)0.0879 (8)
H250.18390.74840.48450.105*
C260.3172 (3)0.65544 (18)0.53761 (16)0.0827 (7)
H260.37260.68780.57940.099*
C270.3463 (3)0.57130 (17)0.53253 (13)0.0767 (7)
H270.42040.54560.57190.092*
C280.2670 (2)0.52382 (14)0.46946 (12)0.0649 (6)
H280.28900.46650.46690.078*
C290.0869 (3)0.29814 (14)0.28011 (14)0.0825 (7)
H29A0.02200.26440.32020.124*
H29B0.09120.27280.22760.124*
H29C0.19080.30150.29280.124*
N10.02068 (18)0.38299 (10)0.27962 (9)0.0565 (4)
O20.29920 (19)0.30958 (9)0.35906 (7)0.0752 (4)
O30.10953 (17)0.58979 (9)0.19095 (8)0.0704 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0700 (12)0.0418 (10)0.0407 (10)0.0002 (9)0.0121 (8)0.0050 (8)
C20.0703 (12)0.0418 (10)0.0463 (10)0.0078 (10)0.0138 (9)0.0029 (8)
C30.1170 (19)0.0658 (15)0.0715 (14)0.0422 (14)0.0160 (13)0.0069 (12)
C40.135 (2)0.0850 (18)0.0903 (19)0.0531 (17)0.0388 (17)0.0077 (15)
C50.1157 (19)0.0786 (16)0.0668 (15)0.0179 (15)0.0375 (14)0.0189 (13)
C60.0806 (15)0.0741 (15)0.0382 (10)0.0217 (12)0.0106 (10)0.0067 (10)
C70.0625 (13)0.0805 (15)0.0414 (10)0.0169 (12)0.0050 (9)0.0092 (10)
C80.0464 (10)0.0618 (12)0.0555 (11)0.0014 (9)0.0062 (8)0.0051 (9)
C90.0441 (9)0.0410 (10)0.0398 (9)0.0050 (8)0.0098 (7)0.0027 (7)
C100.0528 (10)0.0395 (10)0.0386 (9)0.0040 (8)0.0129 (7)0.0022 (7)
C110.0707 (12)0.0539 (12)0.0455 (10)0.0071 (10)0.0198 (9)0.0088 (9)
C120.0501 (10)0.0378 (9)0.0396 (8)0.0014 (8)0.0175 (7)0.0017 (7)
C130.0441 (9)0.0386 (9)0.0415 (8)0.0031 (7)0.0172 (7)0.0002 (7)
C140.0521 (10)0.0487 (11)0.0541 (10)0.0063 (9)0.0252 (8)0.0007 (8)
C150.0715 (13)0.0652 (13)0.0648 (12)0.0122 (11)0.0412 (10)0.0122 (10)
C160.0509 (10)0.0371 (10)0.0484 (10)0.0014 (9)0.0153 (8)0.0006 (8)
C170.0460 (10)0.0441 (10)0.0435 (9)0.0115 (8)0.0149 (7)0.0033 (8)
C180.0554 (12)0.0624 (13)0.0707 (12)0.0027 (10)0.0244 (10)0.0129 (10)
C190.0621 (14)0.1001 (19)0.119 (2)0.0144 (13)0.0434 (14)0.0281 (16)
C200.0779 (17)0.128 (2)0.118 (2)0.0117 (18)0.0625 (16)0.0354 (19)
C210.0830 (17)0.117 (2)0.0747 (15)0.0113 (16)0.0368 (13)0.0311 (15)
C220.0587 (12)0.0762 (14)0.0537 (11)0.0109 (11)0.0126 (9)0.0105 (10)
C230.0562 (11)0.0480 (11)0.0510 (10)0.0038 (9)0.0284 (9)0.0048 (8)
C240.0813 (15)0.0529 (13)0.0771 (14)0.0102 (11)0.0261 (11)0.0052 (11)
C250.106 (2)0.0577 (15)0.109 (2)0.0035 (14)0.0435 (17)0.0292 (15)
C260.0799 (17)0.096 (2)0.0821 (16)0.0169 (15)0.0407 (14)0.0399 (15)
C270.0698 (14)0.106 (2)0.0576 (13)0.0073 (13)0.0194 (11)0.0129 (13)
C280.0769 (14)0.0605 (13)0.0610 (12)0.0120 (11)0.0228 (11)0.0084 (10)
C290.0991 (17)0.0744 (16)0.0854 (16)0.0376 (14)0.0483 (13)0.0165 (12)
N10.0604 (10)0.0557 (10)0.0611 (10)0.0151 (8)0.0322 (8)0.0083 (7)
O20.1194 (12)0.0654 (9)0.0392 (7)0.0163 (8)0.0087 (7)0.0095 (6)
O30.0751 (9)0.0600 (9)0.0827 (10)0.0249 (8)0.0324 (7)0.0237 (8)
Geometric parameters (Å, º) top
C1—O21.2136 (19)C15—H15A0.9700
C1—C21.473 (2)C15—H15B0.9700
C1—C121.565 (2)C16—O31.219 (2)
C2—C31.373 (3)C16—C171.492 (2)
C2—C101.402 (2)C17—C181.379 (3)
C3—C41.409 (3)C17—C221.390 (2)
C3—H30.9300C18—C191.379 (3)
C4—C51.357 (3)C18—H180.9300
C4—H40.9300C19—C201.364 (3)
C5—C111.403 (3)C19—H190.9300
C5—H50.9300C20—C211.355 (3)
C6—C71.353 (3)C20—H200.9300
C6—C111.408 (3)C21—C221.375 (3)
C6—H60.9300C21—H210.9300
C7—C81.418 (3)C22—H220.9300
C7—H70.9300C23—C281.375 (3)
C8—C91.361 (2)C23—C241.378 (3)
C8—H80.9300C24—C251.384 (3)
C9—C101.397 (2)C24—H240.9300
C9—C121.519 (2)C25—C261.353 (3)
C10—C111.406 (2)C25—H250.9300
C12—N11.465 (2)C26—C271.361 (3)
C12—C131.571 (2)C26—H260.9300
C13—C161.519 (2)C27—C281.379 (3)
C13—C141.551 (2)C27—H270.9300
C13—H130.9800C28—H280.9300
C14—C231.509 (2)C29—N11.461 (2)
C14—C151.516 (3)C29—H29A0.9600
C14—H140.9800C29—H29B0.9600
C15—N11.454 (2)C29—H29C0.9600
O2—C1—C2127.16 (17)C14—C15—H15A111.3
O2—C1—C12124.49 (16)N1—C15—H15B111.3
C2—C1—C12108.31 (14)C14—C15—H15B111.3
C3—C2—C10119.66 (17)H15A—C15—H15B109.2
C3—C2—C1133.22 (18)O3—C16—C17119.76 (15)
C10—C2—C1107.11 (15)O3—C16—C13120.78 (15)
C2—C3—C4118.1 (2)C17—C16—C13119.45 (15)
C2—C3—H3120.9C18—C17—C22118.44 (17)
C4—C3—H3120.9C18—C17—C16123.43 (15)
C5—C4—C3122.3 (2)C22—C17—C16118.12 (16)
C5—C4—H4118.9C17—C18—C19120.42 (19)
C3—C4—H4118.9C17—C18—H18119.8
C4—C5—C11121.20 (19)C19—C18—H18119.8
C4—C5—H5119.4C20—C19—C18119.9 (2)
C11—C5—H5119.4C20—C19—H19120.0
C7—C6—C11120.06 (17)C18—C19—H19120.0
C7—C6—H6120.0C21—C20—C19120.8 (2)
C11—C6—H6120.0C21—C20—H20119.6
C6—C7—C8122.84 (18)C19—C20—H20119.6
C6—C7—H7118.6C20—C21—C22119.9 (2)
C8—C7—H7118.6C20—C21—H21120.0
C9—C8—C7118.87 (18)C22—C21—H21120.0
C9—C8—H8120.6C21—C22—C17120.5 (2)
C7—C8—H8120.6C21—C22—H22119.7
C8—C9—C10118.02 (15)C17—C22—H22119.7
C8—C9—C12132.51 (16)C28—C23—C24116.91 (19)
C10—C9—C12109.46 (13)C28—C23—C14121.96 (17)
C9—C10—C2113.33 (14)C24—C23—C14121.06 (18)
C9—C10—C11124.21 (16)C23—C24—C25121.1 (2)
C2—C10—C11122.45 (16)C23—C24—H24119.4
C5—C11—C10116.29 (18)C25—C24—H24119.4
C5—C11—C6127.74 (18)C26—C25—C24120.9 (2)
C10—C11—C6115.96 (18)C26—C25—H25119.5
N1—C12—C9112.92 (13)C24—C25—H25119.5
N1—C12—C1114.40 (13)C25—C26—C27118.9 (2)
C9—C12—C1101.69 (12)C25—C26—H26120.6
N1—C12—C13102.93 (12)C27—C26—H26120.6
C9—C12—C13116.96 (13)C26—C27—C28120.5 (2)
C1—C12—C13108.34 (13)C26—C27—H27119.7
C16—C13—C14113.29 (13)C28—C27—H27119.7
C16—C13—C12113.06 (13)C23—C28—C27121.6 (2)
C14—C13—C12105.31 (13)C23—C28—H28119.2
C16—C13—H13108.3C27—C28—H28119.2
C14—C13—H13108.3N1—C29—H29A109.5
C12—C13—H13108.3N1—C29—H29B109.5
C23—C14—C15116.74 (15)H29A—C29—H29B109.5
C23—C14—C13112.37 (14)N1—C29—H29C109.5
C15—C14—C13103.08 (14)H29A—C29—H29C109.5
C23—C14—H14108.1H29B—C29—H29C109.5
C15—C14—H14108.1C15—N1—C29115.24 (15)
C13—C14—H14108.1C15—N1—C12107.82 (14)
N1—C15—C14102.41 (14)C29—N1—C12115.72 (15)
N1—C15—H15A111.3
O2—C1—C2—C30.6 (4)C9—C12—C13—C14131.26 (14)
C12—C1—C2—C3177.3 (2)C1—C12—C13—C14114.66 (14)
O2—C1—C2—C10179.13 (18)C16—C13—C14—C2390.89 (18)
C12—C1—C2—C101.20 (19)C12—C13—C14—C23145.06 (14)
C10—C2—C3—C40.7 (3)C16—C13—C14—C15142.59 (16)
C1—C2—C3—C4177.7 (2)C12—C13—C14—C1518.54 (17)
C2—C3—C4—C51.5 (4)C23—C14—C15—N1161.09 (15)
C3—C4—C5—C110.9 (4)C13—C14—C15—N137.41 (19)
C11—C6—C7—C80.6 (3)C14—C13—C16—O324.2 (2)
C6—C7—C8—C90.9 (3)C12—C13—C16—O395.49 (18)
C7—C8—C9—C102.1 (2)C14—C13—C16—C17156.88 (14)
C7—C8—C9—C12177.34 (17)C12—C13—C16—C1783.41 (18)
C8—C9—C10—C2177.88 (16)O3—C16—C17—C18175.23 (18)
C12—C9—C10—C22.6 (2)C13—C16—C17—C185.9 (2)
C8—C9—C10—C111.9 (3)O3—C16—C17—C223.9 (2)
C12—C9—C10—C11177.67 (16)C13—C16—C17—C22174.97 (16)
C3—C2—C10—C9179.55 (18)C22—C17—C18—C190.6 (3)
C1—C2—C10—C90.8 (2)C16—C17—C18—C19178.6 (2)
C3—C2—C10—C110.7 (3)C17—C18—C19—C200.1 (4)
C1—C2—C10—C11179.43 (16)C18—C19—C20—C210.5 (4)
C4—C5—C11—C100.5 (3)C19—C20—C21—C220.7 (4)
C4—C5—C11—C6179.7 (2)C20—C21—C22—C170.2 (4)
C9—C10—C11—C5179.02 (18)C18—C17—C22—C210.4 (3)
C2—C10—C11—C51.3 (3)C16—C17—C22—C21178.81 (19)
C9—C10—C11—C60.4 (3)C15—C14—C23—C2855.7 (2)
C2—C10—C11—C6179.36 (17)C13—C14—C23—C2863.1 (2)
C7—C6—C11—C5179.8 (2)C15—C14—C23—C24127.57 (19)
C7—C6—C11—C100.9 (3)C13—C14—C23—C24113.66 (18)
C8—C9—C12—N154.5 (2)C28—C23—C24—C251.2 (3)
C10—C9—C12—N1126.08 (15)C14—C23—C24—C25175.76 (18)
C8—C9—C12—C1177.53 (18)C23—C24—C25—C260.0 (3)
C10—C9—C12—C13.02 (17)C24—C25—C26—C271.4 (4)
C8—C9—C12—C1364.7 (2)C25—C26—C27—C281.6 (3)
C10—C9—C12—C13114.74 (16)C24—C23—C28—C271.0 (3)
O2—C1—C12—N157.4 (2)C14—C23—C28—C27175.89 (17)
C2—C1—C12—N1124.57 (15)C26—C27—C28—C230.4 (3)
O2—C1—C12—C9179.48 (18)C14—C15—N1—C29175.49 (17)
C2—C1—C12—C92.53 (17)C14—C15—N1—C1244.53 (19)
O2—C1—C12—C1356.7 (2)C9—C12—N1—C15158.77 (15)
C2—C1—C12—C13121.27 (15)C1—C12—N1—C1585.56 (17)
N1—C12—C13—C16117.34 (15)C13—C12—N1—C1531.75 (17)
C9—C12—C13—C167.1 (2)C9—C12—N1—C2970.5 (2)
C1—C12—C13—C16121.15 (15)C1—C12—N1—C2945.1 (2)
N1—C12—C13—C146.86 (16)C13—C12—N1—C29162.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg5i0.932.853.638 (2)144
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H23NO2
Mr417.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.6462 (4), 15.8352 (8), 16.7174 (8)
β (°) 99.827 (2)
V3)2255.27 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.34 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.969, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
16782, 5549, 2944
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.02
No. of reflections5549
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg5i0.932.853.638 (2)144
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationAugustine, T., Ramkumar, V., Arul Antony, S. & Kanakam, C. C. (2007). Acta Cryst. E63, o4412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBridges, R. J., Lovering, F. E., Humphrey, J. M., Stanley, M. S., Blakely, T. N., Cristofaro, M. F. & Chamberlin, A. R. (1993). Bioorg. Med. Chem. Lett. 3, 115–121.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SADABS, APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrigg, G. (1987). Chem. Soc. Rev. 16, 89–121.  CrossRef CAS Web of Science Google Scholar
First citationHuisgen, R. (1988). Adv. Cycloaddition, 1, 1–31.  CAS Google Scholar
First citationPadwa, A. (1984). 1,3-Dipolar Addition Chemistry. New York: John Wiley.  Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds