metal-organic compounds
(Di-2-pyridylamine)(methanol)sulfatocopper(II)
aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu
The title complex, [Cu(SO4)(C10H9N3)(CH3OH)], is a mononuclear species with the CuII ion in a Jahn–Teller-distorted `4 + 1' square-pyramidal geometry. The basal plane is defined by the pyridyl N-atom donors of the bipyridylamine (bpa) ligand and two O-atom donors of the sulfate ligand. The coordination geometry is completed by the axial coordination of a methanol O-atom donor. The axial bond length displays the usual elongation: Cu—O(axial) = 2.168 (2), Cu—O(basal) = 2.016 (2) (average) and Cu—N(basal) = 1.951 (3) Å (average). In the the complex molecules are linked through N—H⋯O and O—H⋯O hydrogen bonds into chains along [100].
Related literature
For structures of other copper-bis(2-pyridyl)amine complexes, see: Fischer & Bau (1977); Kavounis et al. (1999); Youngme et al. (2005). For solvatothermal chemistry of compounds containing copper-bis(2-pyridyl)amine subunits, see: DeBurgomaster et al. (2010). For structural chemistry of the related tridentate ligand bis(2-pyridylmethyl)amine, see: Bartholomä et al. (2010a, b,c,d,e). For copper–pyridyl subunits in the design of organic–inorganic hybrid materials, see: Armatas et al. (2005); Chesnut et al. (1999); Hagrman et al. (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810038675/hg2716sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810038675/hg2716Isup2.hkl
Synthesis of [Cu(SO4)(C10H9N3)(CH3OH)]. A solution of Cu(SO4).5H2O (0.250 g, 1.0 mmol) and bis(2-pyridyl)amine (0.171 g, 1.0 mmol) in 10 ml of methanol was heated to 75° C for 48 h (initial and final pH, 4.0). Blue crystals of the product were isolated in 25% yield. Anal. Calcd. for C11H13CuN3O5S: C, 36.4; H, 3.58; N, 11.6. Found: C, 36.2; H, 3.69; N, 11.5.
Pyridyl hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C). The amine hydrogen atom and the hydrogen associated with the oxygen of the methanol molecule were also found on the difference Fourier map. These were included in the coordinate riding approximation with Uiso(H) free to vary.
In the course of our investigations of the design of materials constructed from metal oxide nodes linked through or decorated with copper-pyridyl subunits (Armatas et al. (2005); Chesnut et al. (1999); Hagrman et al. (1999)), we prepared and investigated a series of dipodal ligands with bis(2-pyridylmethyl)amine termini (Bartholomä et al. (2010a,b,c,d,e). Since this ligand acts as a tridentate donor, the structural consequences of introducing an analogous bidentate ligand, such as bis(2-pyridyl)amine were of interest in expanding the structural data base. Representative examples of copper-bis(2-pyridyl)amine complexes have been reported (Fischer & Bau (1977); Kavounis et al. (1999); Youngme et al. (2005)), as well as {Cu(bpa)}2+ subunits in metal oxide complexes (DeBurgomaster et al. (2010)). As shown in Fig. 1, the mononuclear complex exhibits copper(II) sites in a distorted '4 + 1' square pyramidal geometry. The basal plane is defined by the pyridyl nitrogen donors of the bis(2-pyridyl)amine ligand and two sulfato oxygen donors, while the apical position is occupied by the oxygen donor of the methanol ligand. The bond lengths demonstrate the lengthening of the axial Cu—O bond with respect to the bonds in the basal plane: Cu—N1, 1.946 (3) Å; Cu—N2, 1.955 (3) Å; Cu—O1, 2.004 (2) Å; Cu—O2, 2.027 (2) Å; Cu—O5, 2.168 (2) Å. The structure is stabilized by intermolecular hydrogen-bonding between the amine N—H group and a pendant sulfate oxygen and between the methanol O—H group and the pendant sulfate oxygen (Fig. 2). This results in a one-dimensional hydrogen-bonded double chain parallel to the [100] direction (Fig. 3).
For structures of other copper-bis(2-pyridyl)amine complexes, see: Fischer & Bau (1977); Kavounis et al. (1999); Youngme et al. (2005). For solvatothermal chemistry of compounds containing copper-bis(2-pyridyl)amine subunits, see: DeBurgomaster et al. (2010). For structural chemistry of the related tridentate ligand bis(2-pyridylmethyl)amine, see: Bartholomä et al. (2010a, b,c,d,e). For copper–pyridyl subunits in the design of organic–inorganic hybrid materials, see: Armatas et al. (2005); Chesnut et al. (1999); Hagrman et al. (1999).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(SO4)(C10H9N3)(CH4O)] | F(000) = 740 |
Mr = 362.84 | Dx = 1.768 Mg m−3 Dm = 1.75 (2) Mg m−3 Dm measured by flotation |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 4522 reflections |
a = 7.1403 (10) Å | θ = 3.0–28.3° |
b = 10.7361 (15) Å | µ = 1.78 mm−1 |
c = 17.798 (3) Å | T = 90 K |
β = 92.185 (3)° | Plate, green |
V = 1363.4 (3) Å3 | 0.30 × 0.15 × 0.07 mm |
Z = 4 |
Bruker APEX CCD area-detector diffractometer | 3308 independent reflections |
Radiation source: fine-focus sealed tube | 3119 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 512 pixels mm-1 | θmax = 28.1°, θmin = 3.0° |
φ and ω scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | k = −14→13 |
Tmin = 0.617, Tmax = 0.886 | l = −23→23 |
13215 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0374P)2 + 3.5736P] where P = (Fo2 + 2Fc2)/3 |
3308 reflections | (Δ/σ)max < 0.001 |
192 parameters | Δρmax = 0.79 e Å−3 |
0 restraints | Δρmin = −0.75 e Å−3 |
[Cu(SO4)(C10H9N3)(CH4O)] | V = 1363.4 (3) Å3 |
Mr = 362.84 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.1403 (10) Å | µ = 1.78 mm−1 |
b = 10.7361 (15) Å | T = 90 K |
c = 17.798 (3) Å | 0.30 × 0.15 × 0.07 mm |
β = 92.185 (3)° |
Bruker APEX CCD area-detector diffractometer | 3308 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 3119 reflections with I > 2σ(I) |
Tmin = 0.617, Tmax = 0.886 | Rint = 0.033 |
13215 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.26 | Δρmax = 0.79 e Å−3 |
3308 reflections | Δρmin = −0.75 e Å−3 |
192 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.64877 (5) | 0.27906 (3) | 0.05295 (2) | 0.00870 (12) | |
S1 | 0.37436 (10) | 0.16887 (7) | 0.11547 (4) | 0.00900 (16) | |
O1 | 0.4394 (3) | 0.1566 (2) | 0.03641 (12) | 0.0116 (4) | |
O2 | 0.5310 (3) | 0.2441 (2) | 0.15261 (13) | 0.0118 (5) | |
O3 | 0.2005 (3) | 0.2444 (2) | 0.11458 (13) | 0.0131 (5) | |
O4 | 0.3483 (3) | 0.0501 (2) | 0.15113 (13) | 0.0138 (5) | |
O5 | 0.8729 (3) | 0.1433 (2) | 0.06432 (14) | 0.0174 (5) | |
HO5 | 0.9887 | 0.1690 | 0.0770 | 0.029 (12)* | |
N1 | 0.6684 (4) | 0.3176 (2) | −0.05332 (15) | 0.0100 (5) | |
N2 | 0.7276 (4) | 0.5328 (2) | −0.03312 (15) | 0.0111 (5) | |
HN2 | 0.7638 | 0.5982 | −0.0606 | 0.017 (10)* | |
N3 | 0.7710 (4) | 0.4339 (2) | 0.08540 (15) | 0.0105 (5) | |
C1 | 0.6369 (4) | 0.2227 (3) | −0.10237 (18) | 0.0134 (6) | |
H1 | 0.6295 | 0.1404 | −0.0832 | 0.016* | |
C2 | 0.6153 (5) | 0.2405 (3) | −0.17841 (19) | 0.0144 (6) | |
H2 | 0.5978 | 0.1717 | −0.2115 | 0.017* | |
C3 | 0.6197 (5) | 0.3619 (3) | −0.20600 (19) | 0.0152 (7) | |
H3 | 0.5984 | 0.3774 | −0.2582 | 0.018* | |
C4 | 0.6550 (4) | 0.4588 (3) | −0.15736 (19) | 0.0129 (6) | |
H4 | 0.6601 | 0.5419 | −0.1755 | 0.015* | |
C5 | 0.6835 (4) | 0.4337 (3) | −0.08069 (18) | 0.0103 (6) | |
C6 | 0.7789 (4) | 0.5367 (3) | 0.04263 (18) | 0.0106 (6) | |
C7 | 0.8364 (5) | 0.6517 (3) | 0.07262 (19) | 0.0147 (6) | |
H7 | 0.8393 | 0.7236 | 0.0415 | 0.018* | |
C8 | 0.8885 (5) | 0.6594 (3) | 0.1477 (2) | 0.0169 (7) | |
H8 | 0.9272 | 0.7367 | 0.1691 | 0.020* | |
C9 | 0.8838 (5) | 0.5519 (3) | 0.19230 (19) | 0.0166 (7) | |
H9 | 0.9213 | 0.5546 | 0.2441 | 0.020* | |
C10 | 0.8242 (4) | 0.4435 (3) | 0.15956 (18) | 0.0138 (6) | |
H10 | 0.8194 | 0.3709 | 0.1899 | 0.017* | |
C11 | 0.8502 (5) | 0.0179 (3) | 0.0901 (2) | 0.0208 (8) | |
H11A | 0.9712 | −0.0252 | 0.0903 | 0.031* | |
H11B | 0.7603 | −0.0258 | 0.0565 | 0.031* | |
H11C | 0.8036 | 0.0189 | 0.1412 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00907 (19) | 0.00779 (19) | 0.00915 (19) | −0.00177 (14) | −0.00090 (13) | 0.00045 (14) |
S1 | 0.0095 (3) | 0.0083 (3) | 0.0091 (3) | −0.0007 (3) | −0.0005 (3) | 0.0008 (3) |
O1 | 0.0126 (11) | 0.0117 (11) | 0.0104 (10) | −0.0052 (8) | −0.0002 (8) | −0.0010 (9) |
O2 | 0.0124 (11) | 0.0116 (11) | 0.0114 (10) | −0.0031 (8) | −0.0018 (8) | −0.0003 (8) |
O3 | 0.0119 (11) | 0.0087 (10) | 0.0187 (12) | 0.0012 (8) | 0.0000 (9) | 0.0031 (9) |
O4 | 0.0200 (12) | 0.0067 (10) | 0.0145 (11) | −0.0010 (9) | −0.0005 (9) | 0.0022 (9) |
O5 | 0.0122 (11) | 0.0119 (11) | 0.0277 (13) | −0.0005 (9) | −0.0028 (10) | 0.0031 (10) |
N1 | 0.0094 (12) | 0.0096 (12) | 0.0112 (12) | −0.0001 (10) | 0.0022 (9) | −0.0007 (10) |
N2 | 0.0131 (13) | 0.0064 (12) | 0.0138 (13) | −0.0013 (10) | −0.0010 (10) | 0.0018 (10) |
N3 | 0.0093 (12) | 0.0098 (12) | 0.0122 (13) | −0.0012 (10) | −0.0015 (10) | 0.0004 (10) |
C1 | 0.0146 (15) | 0.0093 (14) | 0.0163 (16) | −0.0012 (12) | 0.0010 (12) | −0.0021 (12) |
C2 | 0.0167 (16) | 0.0125 (15) | 0.0139 (15) | −0.0004 (12) | 0.0008 (12) | −0.0046 (12) |
C3 | 0.0142 (15) | 0.0210 (17) | 0.0107 (15) | 0.0017 (13) | 0.0026 (12) | 0.0012 (13) |
C4 | 0.0139 (15) | 0.0089 (14) | 0.0160 (16) | 0.0001 (12) | 0.0020 (12) | 0.0019 (12) |
C5 | 0.0067 (13) | 0.0112 (14) | 0.0132 (15) | 0.0016 (11) | 0.0013 (11) | −0.0023 (12) |
C6 | 0.0063 (13) | 0.0124 (15) | 0.0132 (15) | 0.0002 (11) | 0.0004 (11) | 0.0004 (12) |
C7 | 0.0153 (16) | 0.0093 (15) | 0.0191 (16) | 0.0007 (12) | −0.0033 (12) | 0.0016 (13) |
C8 | 0.0139 (16) | 0.0155 (16) | 0.0211 (17) | −0.0030 (13) | −0.0031 (13) | −0.0071 (14) |
C9 | 0.0130 (15) | 0.0227 (18) | 0.0137 (16) | −0.0006 (13) | −0.0044 (12) | −0.0014 (13) |
C10 | 0.0125 (15) | 0.0166 (16) | 0.0119 (15) | −0.0030 (12) | −0.0022 (12) | 0.0028 (12) |
C11 | 0.0171 (17) | 0.0091 (16) | 0.036 (2) | 0.0005 (13) | −0.0048 (15) | 0.0021 (14) |
Cu1—N1 | 1.946 (3) | C1—H1 | 0.9500 |
Cu1—N3 | 1.955 (3) | C2—C3 | 1.394 (5) |
Cu1—O1 | 2.004 (2) | C2—H2 | 0.9500 |
Cu1—O2 | 2.027 (2) | C3—C4 | 1.370 (5) |
Cu1—O5 | 2.168 (2) | C3—H3 | 0.9500 |
S1—O4 | 1.439 (2) | C4—C5 | 1.398 (5) |
S1—O3 | 1.482 (2) | C4—H4 | 0.9500 |
S1—O1 | 1.504 (2) | C6—C7 | 1.401 (4) |
S1—O2 | 1.511 (2) | C7—C8 | 1.375 (5) |
O5—C11 | 1.434 (4) | C7—H7 | 0.9500 |
O5—HO5 | 0.8923 | C8—C9 | 1.402 (5) |
N1—C5 | 1.343 (4) | C8—H8 | 0.9500 |
N1—C1 | 1.355 (4) | C9—C10 | 1.363 (5) |
N2—C6 | 1.384 (4) | C9—H9 | 0.9500 |
N2—C5 | 1.389 (4) | C10—H10 | 0.9500 |
N2—HN2 | 0.8988 | C11—H11A | 0.9800 |
N3—C6 | 1.343 (4) | C11—H11B | 0.9800 |
N3—C10 | 1.363 (4) | C11—H11C | 0.9800 |
C1—C2 | 1.369 (5) | ||
N1—Cu1—N3 | 93.33 (11) | C1—C2—C3 | 118.4 (3) |
N1—Cu1—O1 | 94.47 (10) | C1—C2—H2 | 120.8 |
N3—Cu1—O1 | 157.45 (10) | C3—C2—H2 | 120.8 |
N1—Cu1—O2 | 159.62 (10) | C4—C3—C2 | 119.6 (3) |
N3—Cu1—O2 | 95.43 (10) | C4—C3—H3 | 120.2 |
O1—Cu1—O2 | 71.02 (9) | C2—C3—H3 | 120.2 |
N1—Cu1—O5 | 98.83 (10) | C3—C4—C5 | 119.1 (3) |
N3—Cu1—O5 | 102.96 (10) | C3—C4—H4 | 120.4 |
O1—Cu1—O5 | 96.70 (9) | C5—C4—H4 | 120.4 |
O2—Cu1—O5 | 97.08 (9) | N1—C5—N2 | 120.6 (3) |
O4—S1—O3 | 111.51 (14) | N1—C5—C4 | 121.5 (3) |
O4—S1—O1 | 112.62 (14) | N2—C5—C4 | 117.9 (3) |
O3—S1—O1 | 109.03 (13) | N3—C6—N2 | 120.8 (3) |
O4—S1—O2 | 112.73 (14) | N3—C6—C7 | 121.8 (3) |
O3—S1—O2 | 108.55 (13) | N2—C6—C7 | 117.4 (3) |
O1—S1—O2 | 101.91 (13) | C8—C7—C6 | 119.2 (3) |
S1—O1—Cu1 | 93.46 (11) | C8—C7—H7 | 120.4 |
S1—O2—Cu1 | 92.35 (11) | C6—C7—H7 | 120.4 |
C11—O5—Cu1 | 124.7 (2) | C7—C8—C9 | 119.3 (3) |
C11—O5—HO5 | 108.9 | C7—C8—H8 | 120.3 |
Cu1—O5—HO5 | 119.3 | C9—C8—H8 | 120.3 |
C5—N1—C1 | 118.5 (3) | C10—C9—C8 | 118.3 (3) |
C5—N1—Cu1 | 124.0 (2) | C10—C9—H9 | 120.8 |
C1—N1—Cu1 | 116.7 (2) | C8—C9—H9 | 120.8 |
C6—N2—C5 | 131.5 (3) | C9—C10—N3 | 123.3 (3) |
C6—N2—HN2 | 115.8 | C9—C10—H10 | 118.3 |
C5—N2—HN2 | 109.2 | N3—C10—H10 | 118.3 |
C6—N3—C10 | 118.1 (3) | O5—C11—H11A | 109.5 |
C6—N3—Cu1 | 124.0 (2) | O5—C11—H11B | 109.5 |
C10—N3—Cu1 | 117.0 (2) | H11A—C11—H11B | 109.5 |
N1—C1—C2 | 122.8 (3) | O5—C11—H11C | 109.5 |
N1—C1—H1 | 118.6 | H11A—C11—H11C | 109.5 |
C2—C1—H1 | 118.6 | H11B—C11—H11C | 109.5 |
O4—S1—O1—Cu1 | −130.74 (12) | N1—Cu1—N3—C10 | −168.3 (2) |
O3—S1—O1—Cu1 | 104.93 (12) | O1—Cu1—N3—C10 | 81.6 (4) |
O2—S1—O1—Cu1 | −9.70 (13) | O2—Cu1—N3—C10 | 30.1 (2) |
N1—Cu1—O1—S1 | −157.87 (12) | O5—Cu1—N3—C10 | −68.4 (2) |
N3—Cu1—O1—S1 | −48.0 (3) | C5—N1—C1—C2 | −1.6 (5) |
O2—Cu1—O1—S1 | 7.46 (10) | Cu1—N1—C1—C2 | 168.9 (3) |
O5—Cu1—O1—S1 | 102.68 (12) | N1—C1—C2—C3 | −2.2 (5) |
O4—S1—O2—Cu1 | 130.54 (12) | C1—C2—C3—C4 | 3.4 (5) |
O3—S1—O2—Cu1 | −105.41 (12) | C2—C3—C4—C5 | −0.8 (5) |
O1—S1—O2—Cu1 | 9.58 (13) | C1—N1—C5—N2 | −175.8 (3) |
N1—Cu1—O2—S1 | 39.0 (3) | Cu1—N1—C5—N2 | 14.4 (4) |
N3—Cu1—O2—S1 | 154.08 (12) | C1—N1—C5—C4 | 4.3 (4) |
O1—Cu1—O2—S1 | −7.42 (10) | Cu1—N1—C5—C4 | −165.4 (2) |
O5—Cu1—O2—S1 | −102.10 (11) | C6—N2—C5—N1 | 6.5 (5) |
N1—Cu1—O5—C11 | −122.5 (3) | C6—N2—C5—C4 | −173.6 (3) |
N3—Cu1—O5—C11 | 141.9 (3) | C3—C4—C5—N1 | −3.1 (5) |
O1—Cu1—O5—C11 | −26.9 (3) | C3—C4—C5—N2 | 177.0 (3) |
O2—Cu1—O5—C11 | 44.7 (3) | C10—N3—C6—N2 | 179.7 (3) |
N3—Cu1—N1—C5 | −24.1 (3) | Cu1—N3—C6—N2 | −11.3 (4) |
O1—Cu1—N1—C5 | 134.7 (3) | C10—N3—C6—C7 | −1.1 (4) |
O2—Cu1—N1—C5 | 91.3 (4) | Cu1—N3—C6—C7 | 167.9 (2) |
O5—Cu1—N1—C5 | −127.8 (2) | C5—N2—C6—N3 | −8.2 (5) |
N3—Cu1—N1—C1 | 166.0 (2) | C5—N2—C6—C7 | 172.6 (3) |
O1—Cu1—N1—C1 | −35.2 (2) | N3—C6—C7—C8 | 0.8 (5) |
O2—Cu1—N1—C1 | −78.6 (4) | N2—C6—C7—C8 | −180.0 (3) |
O5—Cu1—N1—C1 | 62.3 (2) | C6—C7—C8—C9 | 0.4 (5) |
N1—Cu1—N3—C6 | 22.6 (3) | C7—C8—C9—C10 | −1.2 (5) |
O1—Cu1—N3—C6 | −87.5 (4) | C8—C9—C10—N3 | 0.9 (5) |
O2—Cu1—N3—C6 | −139.0 (3) | C6—N3—C10—C9 | 0.3 (5) |
O5—Cu1—N3—C6 | 122.4 (2) | Cu1—N3—C10—C9 | −169.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—HN2···O3i | 0.90 | 1.97 | 2.854 (3) | 169 |
O5—HO5···O3ii | 0.89 | 1.82 | 2.700 (3) | 168 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(SO4)(C10H9N3)(CH4O)] |
Mr | 362.84 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 90 |
a, b, c (Å) | 7.1403 (10), 10.7361 (15), 17.798 (3) |
β (°) | 92.185 (3) |
V (Å3) | 1363.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.78 |
Crystal size (mm) | 0.30 × 0.15 × 0.07 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.617, 0.886 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13215, 3308, 3119 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.662 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.109, 1.26 |
No. of reflections | 3308 |
No. of parameters | 192 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.79, −0.75 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—HN2···O3i | 0.90 | 1.97 | 2.854 (3) | 169.3 |
O5—HO5···O3ii | 0.89 | 1.82 | 2.700 (3) | 168.4 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z. |
Acknowledgements
This work was supported by a grant from the National Science Foundation, CHE-0907787.
References
Armatas, G. N., Burkholder, E. & Zubieta, J. (2005). J. Solid State Chem. 718, 2430–2435. Google Scholar
Bartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010e). Acta Cryst. E66, m1201–m1202. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1195–m1196. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1197. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1198. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Cheung, H. & Zubieta, J. (2010d). Acta Cryst. E66, m1199–m1200. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Chesnut, D. J., Hagrman, D., Zapf, P. J., Hammond, R. P., LaDuca, R., Haushalter, R. C. & Zubieta, J. (1999). Coord. Chem. Rev. 190–192, 737–769. CrossRef CAS Google Scholar
DeBurgomaster, P., Bartholoma, M., Raffel, R., Ouellette, W., Muller, A. & Zubieta, J. (2010). Inorg. Chim. Acta, 63, 1386–1394. Web of Science CSD CrossRef Google Scholar
Fischer, B. E. & Bau, R. (1977). J. Chem. Soc. Chem. Commun. pp. 272–273. CrossRef Web of Science Google Scholar
Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684. CrossRef Google Scholar
Kavounis, C. A., Tzavellas, C., Cardin, C. J. & Zubavichus, Y. (1999). Struct. Chem. 10, 411–417. Web of Science CSD CrossRef CAS Google Scholar
Palmer, D. (2006). Crystal Maker. Crystal Maker Software Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Youngme, S., Phuengphai, P., Pakawatchai, C., Van Albada, G. A. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 2125–2128. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our investigations of the design of materials constructed from metal oxide nodes linked through or decorated with copper-pyridyl subunits (Armatas et al. (2005); Chesnut et al. (1999); Hagrman et al. (1999)), we prepared and investigated a series of dipodal ligands with bis(2-pyridylmethyl)amine termini (Bartholomä et al. (2010a,b,c,d,e). Since this ligand acts as a tridentate donor, the structural consequences of introducing an analogous bidentate ligand, such as bis(2-pyridyl)amine were of interest in expanding the structural data base. Representative examples of copper-bis(2-pyridyl)amine complexes have been reported (Fischer & Bau (1977); Kavounis et al. (1999); Youngme et al. (2005)), as well as {Cu(bpa)}2+ subunits in metal oxide complexes (DeBurgomaster et al. (2010)). As shown in Fig. 1, the mononuclear complex exhibits copper(II) sites in a distorted '4 + 1' square pyramidal geometry. The basal plane is defined by the pyridyl nitrogen donors of the bis(2-pyridyl)amine ligand and two sulfato oxygen donors, while the apical position is occupied by the oxygen donor of the methanol ligand. The bond lengths demonstrate the lengthening of the axial Cu—O bond with respect to the bonds in the basal plane: Cu—N1, 1.946 (3) Å; Cu—N2, 1.955 (3) Å; Cu—O1, 2.004 (2) Å; Cu—O2, 2.027 (2) Å; Cu—O5, 2.168 (2) Å. The structure is stabilized by intermolecular hydrogen-bonding between the amine N—H group and a pendant sulfate oxygen and between the methanol O—H group and the pendant sulfate oxygen (Fig. 2). This results in a one-dimensional hydrogen-bonded double chain parallel to the [100] direction (Fig. 3).