metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di-2-pyridyl­amine)­(methanol)sulfato­copper(II)

aDepartment of Chemistry, Syracuse University, Syracuse, New York 13244, USA
*Correspondence e-mail: jazubiet@syr.edu

(Received 20 September 2010; accepted 27 September 2010; online 2 October 2010)

The title complex, [Cu(SO4)(C10H9N3)(CH3OH)], is a mononuclear species with the CuII ion in a Jahn–Teller-distorted `4 + 1' square-pyramidal geometry. The basal plane is defined by the pyridyl N-atom donors of the bipyridyl­amine (bpa) ligand and two O-atom donors of the sulfate ligand. The coordination geometry is completed by the axial coordination of a methanol O-atom donor. The axial bond length displays the usual elongation: Cu—O(axial) = 2.168 (2), Cu—O(basal) = 2.016 (2) (average) and Cu—N(basal) = 1.951 (3) Å (average). In the crystal structure, the complex mol­ecules are linked through N—H⋯O and O—H⋯O hydrogen bonds into chains along [100].

Related literature

For structures of other copper-bis­(2-pyrid­yl)amine complexes, see: Fischer & Bau (1977[Fischer, B. E. & Bau, R. (1977). J. Chem. Soc. Chem. Commun. pp. 272-273.]); Kavounis et al. (1999[Kavounis, C. A., Tzavellas, C., Cardin, C. J. & Zubavichus, Y. (1999). Struct. Chem. 10, 411-417.]); Youngme et al. (2005[Youngme, S., Phuengphai, P., Pakawatchai, C., Van Albada, G. A. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 2125-2128.]). For solvatothermal chemistry of compounds containing copper-bis­(2-pyrid­yl)amine subunits, see: DeBurgo­master et al. (2010[DeBurgomaster, P., Bartholoma, M., Raffel, R., Ouellette, W., Muller, A. & Zubieta, J. (2010). Inorg. Chim. Acta, 63, 1386-1394.]). For structural chemistry of the related tridentate ligand bis­(2-pyridyl­meth­yl)amine, see: Bartholomä et al. (2010a[Bartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1195-m1196.], b[Bartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1197.],c[Bartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1198.],d[Bartholomä, M., Cheung, H. & Zubieta, J. (2010d). Acta Cryst. E66, m1199-m1200.],e[Bartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010e). Acta Cryst. E66, m1201-m1202.]). For copper–pyridyl subunits in the design of organic–inorganic hybrid materials, see: Armatas et al. (2005[Armatas, G. N., Burkholder, E. & Zubieta, J. (2005). J. Solid State Chem. 718, 2430-2435.]); Chesnut et al. (1999[Chesnut, D. J., Hagrman, D., Zapf, P. J., Hammond, R. P., LaDuca, R., Haushalter, R. C. & Zubieta, J. (1999). Coord. Chem. Rev. 190-192, 737-769.]); Hagrman et al. (1999[Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638-2684.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(SO4)(C10H9N3)(CH4O)]

  • Mr = 362.84

  • Monoclinic, P 21 /n

  • a = 7.1403 (10) Å

  • b = 10.7361 (15) Å

  • c = 17.798 (3) Å

  • β = 92.185 (3)°

  • V = 1363.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 90 K

  • 0.30 × 0.15 × 0.07 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.617, Tmax = 0.886

  • 13215 measured reflections

  • 3308 independent reflections

  • 3119 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.109

  • S = 1.26

  • 3308 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯O3i 0.90 1.97 2.854 (3) 169
O5—HO5⋯O3ii 0.89 1.82 2.700 (3) 168
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2006[Palmer, D. (2006). Crystal Maker. Crystal Maker Software Ltd, Yarnton, England.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In the course of our investigations of the design of materials constructed from metal oxide nodes linked through or decorated with copper-pyridyl subunits (Armatas et al. (2005); Chesnut et al. (1999); Hagrman et al. (1999)), we prepared and investigated a series of dipodal ligands with bis(2-pyridylmethyl)amine termini (Bartholomä et al. (2010a,b,c,d,e). Since this ligand acts as a tridentate donor, the structural consequences of introducing an analogous bidentate ligand, such as bis(2-pyridyl)amine were of interest in expanding the structural data base. Representative examples of copper-bis(2-pyridyl)amine complexes have been reported (Fischer & Bau (1977); Kavounis et al. (1999); Youngme et al. (2005)), as well as {Cu(bpa)}2+ subunits in metal oxide complexes (DeBurgomaster et al. (2010)). As shown in Fig. 1, the mononuclear complex exhibits copper(II) sites in a distorted '4 + 1' square pyramidal geometry. The basal plane is defined by the pyridyl nitrogen donors of the bis(2-pyridyl)amine ligand and two sulfato oxygen donors, while the apical position is occupied by the oxygen donor of the methanol ligand. The bond lengths demonstrate the lengthening of the axial Cu—O bond with respect to the bonds in the basal plane: Cu—N1, 1.946 (3) Å; Cu—N2, 1.955 (3) Å; Cu—O1, 2.004 (2) Å; Cu—O2, 2.027 (2) Å; Cu—O5, 2.168 (2) Å. The structure is stabilized by intermolecular hydrogen-bonding between the amine N—H group and a pendant sulfate oxygen and between the methanol O—H group and the pendant sulfate oxygen (Fig. 2). This results in a one-dimensional hydrogen-bonded double chain parallel to the [100] direction (Fig. 3).

Related literature top

For structures of other copper-bis(2-pyridyl)amine complexes, see: Fischer & Bau (1977); Kavounis et al. (1999); Youngme et al. (2005). For solvatothermal chemistry of compounds containing copper-bis(2-pyridyl)amine subunits, see: DeBurgomaster et al. (2010). For structural chemistry of the related tridentate ligand bis(2-pyridylmethyl)amine, see: Bartholomä et al. (2010a, b,c,d,e). For copper–pyridyl subunits in the design of organic–inorganic hybrid materials, see: Armatas et al. (2005); Chesnut et al. (1999); Hagrman et al. (1999).

Experimental top

Synthesis of [Cu(SO4)(C10H9N3)(CH3OH)]. A solution of Cu(SO4).5H2O (0.250 g, 1.0 mmol) and bis(2-pyridyl)amine (0.171 g, 1.0 mmol) in 10 ml of methanol was heated to 75° C for 48 h (initial and final pH, 4.0). Blue crystals of the product were isolated in 25% yield. Anal. Calcd. for C11H13CuN3O5S: C, 36.4; H, 3.58; N, 11.6. Found: C, 36.2; H, 3.69; N, 11.5.

Refinement top

Pyridyl hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C). The amine hydrogen atom and the hydrogen associated with the oxygen of the methanol molecule were also found on the difference Fourier map. These were included in the coordinate riding approximation with Uiso(H) free to vary.

Structure description top

In the course of our investigations of the design of materials constructed from metal oxide nodes linked through or decorated with copper-pyridyl subunits (Armatas et al. (2005); Chesnut et al. (1999); Hagrman et al. (1999)), we prepared and investigated a series of dipodal ligands with bis(2-pyridylmethyl)amine termini (Bartholomä et al. (2010a,b,c,d,e). Since this ligand acts as a tridentate donor, the structural consequences of introducing an analogous bidentate ligand, such as bis(2-pyridyl)amine were of interest in expanding the structural data base. Representative examples of copper-bis(2-pyridyl)amine complexes have been reported (Fischer & Bau (1977); Kavounis et al. (1999); Youngme et al. (2005)), as well as {Cu(bpa)}2+ subunits in metal oxide complexes (DeBurgomaster et al. (2010)). As shown in Fig. 1, the mononuclear complex exhibits copper(II) sites in a distorted '4 + 1' square pyramidal geometry. The basal plane is defined by the pyridyl nitrogen donors of the bis(2-pyridyl)amine ligand and two sulfato oxygen donors, while the apical position is occupied by the oxygen donor of the methanol ligand. The bond lengths demonstrate the lengthening of the axial Cu—O bond with respect to the bonds in the basal plane: Cu—N1, 1.946 (3) Å; Cu—N2, 1.955 (3) Å; Cu—O1, 2.004 (2) Å; Cu—O2, 2.027 (2) Å; Cu—O5, 2.168 (2) Å. The structure is stabilized by intermolecular hydrogen-bonding between the amine N—H group and a pendant sulfate oxygen and between the methanol O—H group and the pendant sulfate oxygen (Fig. 2). This results in a one-dimensional hydrogen-bonded double chain parallel to the [100] direction (Fig. 3).

For structures of other copper-bis(2-pyridyl)amine complexes, see: Fischer & Bau (1977); Kavounis et al. (1999); Youngme et al. (2005). For solvatothermal chemistry of compounds containing copper-bis(2-pyridyl)amine subunits, see: DeBurgomaster et al. (2010). For structural chemistry of the related tridentate ligand bis(2-pyridylmethyl)amine, see: Bartholomä et al. (2010a, b,c,d,e). For copper–pyridyl subunits in the design of organic–inorganic hybrid materials, see: Armatas et al. (2005); Chesnut et al. (1999); Hagrman et al. (1999).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the structure of the title complex, showing displacement ellipsoids at the 50% probability level and the atom-labeling scheme. The pyridyl group hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing in the bc plane.
[Figure 3] Fig. 3. A view of the hydrogen-bonded double chains running parallel to [100]. The hydrogen bonds are shown as red and green multiband cylinders.
(Di-2-pyridylamine)(methanol)sulfatocopper(II) top
Crystal data top
[Cu(SO4)(C10H9N3)(CH4O)]F(000) = 740
Mr = 362.84Dx = 1.768 Mg m3
Dm = 1.75 (2) Mg m3
Dm measured by flotation
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4522 reflections
a = 7.1403 (10) Åθ = 3.0–28.3°
b = 10.7361 (15) ŵ = 1.78 mm1
c = 17.798 (3) ÅT = 90 K
β = 92.185 (3)°Plate, green
V = 1363.4 (3) Å30.30 × 0.15 × 0.07 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3308 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 3.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1413
Tmin = 0.617, Tmax = 0.886l = 2323
13215 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0374P)2 + 3.5736P]
where P = (Fo2 + 2Fc2)/3
3308 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Cu(SO4)(C10H9N3)(CH4O)]V = 1363.4 (3) Å3
Mr = 362.84Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1403 (10) ŵ = 1.78 mm1
b = 10.7361 (15) ÅT = 90 K
c = 17.798 (3) Å0.30 × 0.15 × 0.07 mm
β = 92.185 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3119 reflections with I > 2σ(I)
Tmin = 0.617, Tmax = 0.886Rint = 0.033
13215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.26Δρmax = 0.79 e Å3
3308 reflectionsΔρmin = 0.75 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.64877 (5)0.27906 (3)0.05295 (2)0.00870 (12)
S10.37436 (10)0.16887 (7)0.11547 (4)0.00900 (16)
O10.4394 (3)0.1566 (2)0.03641 (12)0.0116 (4)
O20.5310 (3)0.2441 (2)0.15261 (13)0.0118 (5)
O30.2005 (3)0.2444 (2)0.11458 (13)0.0131 (5)
O40.3483 (3)0.0501 (2)0.15113 (13)0.0138 (5)
O50.8729 (3)0.1433 (2)0.06432 (14)0.0174 (5)
HO50.98870.16900.07700.029 (12)*
N10.6684 (4)0.3176 (2)0.05332 (15)0.0100 (5)
N20.7276 (4)0.5328 (2)0.03312 (15)0.0111 (5)
HN20.76380.59820.06060.017 (10)*
N30.7710 (4)0.4339 (2)0.08540 (15)0.0105 (5)
C10.6369 (4)0.2227 (3)0.10237 (18)0.0134 (6)
H10.62950.14040.08320.016*
C20.6153 (5)0.2405 (3)0.17841 (19)0.0144 (6)
H20.59780.17170.21150.017*
C30.6197 (5)0.3619 (3)0.20600 (19)0.0152 (7)
H30.59840.37740.25820.018*
C40.6550 (4)0.4588 (3)0.15736 (19)0.0129 (6)
H40.66010.54190.17550.015*
C50.6835 (4)0.4337 (3)0.08069 (18)0.0103 (6)
C60.7789 (4)0.5367 (3)0.04263 (18)0.0106 (6)
C70.8364 (5)0.6517 (3)0.07262 (19)0.0147 (6)
H70.83930.72360.04150.018*
C80.8885 (5)0.6594 (3)0.1477 (2)0.0169 (7)
H80.92720.73670.16910.020*
C90.8838 (5)0.5519 (3)0.19230 (19)0.0166 (7)
H90.92130.55460.24410.020*
C100.8242 (4)0.4435 (3)0.15956 (18)0.0138 (6)
H100.81940.37090.18990.017*
C110.8502 (5)0.0179 (3)0.0901 (2)0.0208 (8)
H11A0.97120.02520.09030.031*
H11B0.76030.02580.05650.031*
H11C0.80360.01890.14120.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00907 (19)0.00779 (19)0.00915 (19)0.00177 (14)0.00090 (13)0.00045 (14)
S10.0095 (3)0.0083 (3)0.0091 (3)0.0007 (3)0.0005 (3)0.0008 (3)
O10.0126 (11)0.0117 (11)0.0104 (10)0.0052 (8)0.0002 (8)0.0010 (9)
O20.0124 (11)0.0116 (11)0.0114 (10)0.0031 (8)0.0018 (8)0.0003 (8)
O30.0119 (11)0.0087 (10)0.0187 (12)0.0012 (8)0.0000 (9)0.0031 (9)
O40.0200 (12)0.0067 (10)0.0145 (11)0.0010 (9)0.0005 (9)0.0022 (9)
O50.0122 (11)0.0119 (11)0.0277 (13)0.0005 (9)0.0028 (10)0.0031 (10)
N10.0094 (12)0.0096 (12)0.0112 (12)0.0001 (10)0.0022 (9)0.0007 (10)
N20.0131 (13)0.0064 (12)0.0138 (13)0.0013 (10)0.0010 (10)0.0018 (10)
N30.0093 (12)0.0098 (12)0.0122 (13)0.0012 (10)0.0015 (10)0.0004 (10)
C10.0146 (15)0.0093 (14)0.0163 (16)0.0012 (12)0.0010 (12)0.0021 (12)
C20.0167 (16)0.0125 (15)0.0139 (15)0.0004 (12)0.0008 (12)0.0046 (12)
C30.0142 (15)0.0210 (17)0.0107 (15)0.0017 (13)0.0026 (12)0.0012 (13)
C40.0139 (15)0.0089 (14)0.0160 (16)0.0001 (12)0.0020 (12)0.0019 (12)
C50.0067 (13)0.0112 (14)0.0132 (15)0.0016 (11)0.0013 (11)0.0023 (12)
C60.0063 (13)0.0124 (15)0.0132 (15)0.0002 (11)0.0004 (11)0.0004 (12)
C70.0153 (16)0.0093 (15)0.0191 (16)0.0007 (12)0.0033 (12)0.0016 (13)
C80.0139 (16)0.0155 (16)0.0211 (17)0.0030 (13)0.0031 (13)0.0071 (14)
C90.0130 (15)0.0227 (18)0.0137 (16)0.0006 (13)0.0044 (12)0.0014 (13)
C100.0125 (15)0.0166 (16)0.0119 (15)0.0030 (12)0.0022 (12)0.0028 (12)
C110.0171 (17)0.0091 (16)0.036 (2)0.0005 (13)0.0048 (15)0.0021 (14)
Geometric parameters (Å, º) top
Cu1—N11.946 (3)C1—H10.9500
Cu1—N31.955 (3)C2—C31.394 (5)
Cu1—O12.004 (2)C2—H20.9500
Cu1—O22.027 (2)C3—C41.370 (5)
Cu1—O52.168 (2)C3—H30.9500
S1—O41.439 (2)C4—C51.398 (5)
S1—O31.482 (2)C4—H40.9500
S1—O11.504 (2)C6—C71.401 (4)
S1—O21.511 (2)C7—C81.375 (5)
O5—C111.434 (4)C7—H70.9500
O5—HO50.8923C8—C91.402 (5)
N1—C51.343 (4)C8—H80.9500
N1—C11.355 (4)C9—C101.363 (5)
N2—C61.384 (4)C9—H90.9500
N2—C51.389 (4)C10—H100.9500
N2—HN20.8988C11—H11A0.9800
N3—C61.343 (4)C11—H11B0.9800
N3—C101.363 (4)C11—H11C0.9800
C1—C21.369 (5)
N1—Cu1—N393.33 (11)C1—C2—C3118.4 (3)
N1—Cu1—O194.47 (10)C1—C2—H2120.8
N3—Cu1—O1157.45 (10)C3—C2—H2120.8
N1—Cu1—O2159.62 (10)C4—C3—C2119.6 (3)
N3—Cu1—O295.43 (10)C4—C3—H3120.2
O1—Cu1—O271.02 (9)C2—C3—H3120.2
N1—Cu1—O598.83 (10)C3—C4—C5119.1 (3)
N3—Cu1—O5102.96 (10)C3—C4—H4120.4
O1—Cu1—O596.70 (9)C5—C4—H4120.4
O2—Cu1—O597.08 (9)N1—C5—N2120.6 (3)
O4—S1—O3111.51 (14)N1—C5—C4121.5 (3)
O4—S1—O1112.62 (14)N2—C5—C4117.9 (3)
O3—S1—O1109.03 (13)N3—C6—N2120.8 (3)
O4—S1—O2112.73 (14)N3—C6—C7121.8 (3)
O3—S1—O2108.55 (13)N2—C6—C7117.4 (3)
O1—S1—O2101.91 (13)C8—C7—C6119.2 (3)
S1—O1—Cu193.46 (11)C8—C7—H7120.4
S1—O2—Cu192.35 (11)C6—C7—H7120.4
C11—O5—Cu1124.7 (2)C7—C8—C9119.3 (3)
C11—O5—HO5108.9C7—C8—H8120.3
Cu1—O5—HO5119.3C9—C8—H8120.3
C5—N1—C1118.5 (3)C10—C9—C8118.3 (3)
C5—N1—Cu1124.0 (2)C10—C9—H9120.8
C1—N1—Cu1116.7 (2)C8—C9—H9120.8
C6—N2—C5131.5 (3)C9—C10—N3123.3 (3)
C6—N2—HN2115.8C9—C10—H10118.3
C5—N2—HN2109.2N3—C10—H10118.3
C6—N3—C10118.1 (3)O5—C11—H11A109.5
C6—N3—Cu1124.0 (2)O5—C11—H11B109.5
C10—N3—Cu1117.0 (2)H11A—C11—H11B109.5
N1—C1—C2122.8 (3)O5—C11—H11C109.5
N1—C1—H1118.6H11A—C11—H11C109.5
C2—C1—H1118.6H11B—C11—H11C109.5
O4—S1—O1—Cu1130.74 (12)N1—Cu1—N3—C10168.3 (2)
O3—S1—O1—Cu1104.93 (12)O1—Cu1—N3—C1081.6 (4)
O2—S1—O1—Cu19.70 (13)O2—Cu1—N3—C1030.1 (2)
N1—Cu1—O1—S1157.87 (12)O5—Cu1—N3—C1068.4 (2)
N3—Cu1—O1—S148.0 (3)C5—N1—C1—C21.6 (5)
O2—Cu1—O1—S17.46 (10)Cu1—N1—C1—C2168.9 (3)
O5—Cu1—O1—S1102.68 (12)N1—C1—C2—C32.2 (5)
O4—S1—O2—Cu1130.54 (12)C1—C2—C3—C43.4 (5)
O3—S1—O2—Cu1105.41 (12)C2—C3—C4—C50.8 (5)
O1—S1—O2—Cu19.58 (13)C1—N1—C5—N2175.8 (3)
N1—Cu1—O2—S139.0 (3)Cu1—N1—C5—N214.4 (4)
N3—Cu1—O2—S1154.08 (12)C1—N1—C5—C44.3 (4)
O1—Cu1—O2—S17.42 (10)Cu1—N1—C5—C4165.4 (2)
O5—Cu1—O2—S1102.10 (11)C6—N2—C5—N16.5 (5)
N1—Cu1—O5—C11122.5 (3)C6—N2—C5—C4173.6 (3)
N3—Cu1—O5—C11141.9 (3)C3—C4—C5—N13.1 (5)
O1—Cu1—O5—C1126.9 (3)C3—C4—C5—N2177.0 (3)
O2—Cu1—O5—C1144.7 (3)C10—N3—C6—N2179.7 (3)
N3—Cu1—N1—C524.1 (3)Cu1—N3—C6—N211.3 (4)
O1—Cu1—N1—C5134.7 (3)C10—N3—C6—C71.1 (4)
O2—Cu1—N1—C591.3 (4)Cu1—N3—C6—C7167.9 (2)
O5—Cu1—N1—C5127.8 (2)C5—N2—C6—N38.2 (5)
N3—Cu1—N1—C1166.0 (2)C5—N2—C6—C7172.6 (3)
O1—Cu1—N1—C135.2 (2)N3—C6—C7—C80.8 (5)
O2—Cu1—N1—C178.6 (4)N2—C6—C7—C8180.0 (3)
O5—Cu1—N1—C162.3 (2)C6—C7—C8—C90.4 (5)
N1—Cu1—N3—C622.6 (3)C7—C8—C9—C101.2 (5)
O1—Cu1—N3—C687.5 (4)C8—C9—C10—N30.9 (5)
O2—Cu1—N3—C6139.0 (3)C6—N3—C10—C90.3 (5)
O5—Cu1—N3—C6122.4 (2)Cu1—N3—C10—C9169.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···O3i0.901.972.854 (3)169
O5—HO5···O3ii0.891.822.700 (3)168
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(SO4)(C10H9N3)(CH4O)]
Mr362.84
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)7.1403 (10), 10.7361 (15), 17.798 (3)
β (°) 92.185 (3)
V3)1363.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.30 × 0.15 × 0.07
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.617, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
13215, 3308, 3119
Rint0.033
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.109, 1.26
No. of reflections3308
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.75

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···O3i0.901.972.854 (3)169.3
O5—HO5···O3ii0.891.822.700 (3)168.4
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by a grant from the National Science Foundation, CHE-0907787.

References

First citationArmatas, G. N., Burkholder, E. & Zubieta, J. (2005). J. Solid State Chem. 718, 2430–2435.  Google Scholar
First citationBartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010e). Acta Cryst. E66, m1201–m1202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1195–m1196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1197.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010d). Acta Cryst. E66, m1199–m1200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChesnut, D. J., Hagrman, D., Zapf, P. J., Hammond, R. P., LaDuca, R., Haushalter, R. C. & Zubieta, J. (1999). Coord. Chem. Rev. 190–192, 737–769.  CrossRef CAS Google Scholar
First citationDeBurgomaster, P., Bartholoma, M., Raffel, R., Ouellette, W., Muller, A. & Zubieta, J. (2010). Inorg. Chim. Acta, 63, 1386–1394.  Web of Science CSD CrossRef Google Scholar
First citationFischer, B. E. & Bau, R. (1977). J. Chem. Soc. Chem. Commun. pp. 272–273.  CrossRef Web of Science Google Scholar
First citationHagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.  CrossRef Google Scholar
First citationKavounis, C. A., Tzavellas, C., Cardin, C. J. & Zubavichus, Y. (1999). Struct. Chem. 10, 411–417.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2006). Crystal Maker. Crystal Maker Software Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoungme, S., Phuengphai, P., Pakawatchai, C., Van Albada, G. A. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 2125–2128.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds