organic compounds
1-(3,5-Dimethylphenyl)-4,5-dimethyl-2-phenyl-1H-imidazole hemihydrate
aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com
In the title compound, C19H20N2·0.5H2O, the imidazole ring is essentially planar [maximum deviation = 0.005 (1) Å]. The imidazole ring makes dihedral angles of 67.46 (10) and 23.10 (11)° with the attached benzene and phenyl rings, respectively. The dihedral angle between the benzene and phenyl rings is 68.22 (10)°. Intermolecular O—H⋯N and C—H⋯N hydrogen bonds are found in the crystal structure.
Related literature
For pharmacological properties of imidazole compounds, see: Lombardino & Wiseman (1974); For the applications of substituted imidazoles, see: Maier et al. (1989a,b). For the synthesis of imidazoles, see: Welton (1999); Hermann & Kocher (1997). For imidazole derivatives as anticancer agents, see: Krezel (1998). For related structures and applications of imidazole derivatives, see: Gayathri et al. (2010a,b,c,d).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810039784/hg2722sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810039784/hg2722Isup2.hkl
To pure butane-2,3-dione (1.48 g, 15 mmol) in ethanol (10 ml), 3,5-xylidine (1.8 g, 15 mmol), ammonium acetate (1.15 g, 15 mmol) and benzaldehyde (1.5 g, 15 mmol) was added about 1 h by maintaining the temperature at 333 K. The reaction mixture was refluxed for 7 days and extracted with dichloromethane. The solid separated was purified by
using hexane: ethyl acetate as the Yield: 1.91 g (46%).H1W attached to O1W was located in a difference Fourier map and refined freely. Another H atom attached to O1W falls on a symmetry (-x, y, 1/2 - z). Remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 - 0.98 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.
Compounds with an imidazole ring system have many pharmacological properties and play important roles in biochemical processes (Lombardino & Wiseman (1974)). Many of the substituted imidazoles are known as inhibitors of fungicides and herbicides, plant growth regulators and therapeutic agents (Maier et al. (1989a,b). Recent advances in green chemistry and organometallic chemistry have extended the boundary of imidazoles to the synthesis and application of a large class of imidazoles as ionic liquids and imidazole related N-heterocyclic
(Welton (1999) and Hermann & Kocher (1997)). Imidazole derivatives are also used as as potential anticancer agents (Krezel (1998)). As part of our research (Gayathri et al., (2010a,b,c,d)), we have synthesized the title compound (I) and report its here.In the title compound (Fig. 1), C19H20N2.H2O, the imidazole ring is essentially planar [maximum deviation of 0.005 (1) Å for N3]. The imidazole ring makes dihedral angles of 67.46 (10) and 23.10 (11)° with the benzene ring (C11—C16) attached to N1 and phenyl ring (C21—C26) attached to C2 respectively. The dihedral angle between the benzene and phenyl rings is 68.22 (10)°. Intermolecular O1W—H1W···N3 and C12—H12···N3 hydrogen bonds are found in the
(Table 1, Fig. 2).For pharmacological properties of imidazole compounds, see: Lombardino & Wiseman (1974); For the applications of substituted imidazoles, see: Maier et al. (1989a,b). For the synthesis of imidazoles, see: Welton (1999); Hermann & Kocher (1997). For imidazole derivatives as anticancer agents, see: Krezel (1998). For related structures and applications of imidazole derivatives, see: Gayathri et al. (2010a,b,c,d).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).C19H20N2·0.5H2O | Dx = 1.176 Mg m−3 |
Mr = 285.38 | Melting point: 415 K |
Orthorhombic, Pbcn | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 5434 reflections |
a = 16.7611 (2) Å | θ = 5.2–28.5° |
b = 11.5467 (2) Å | µ = 0.55 mm−1 |
c = 16.6563 (2) Å | T = 123 K |
V = 3223.58 (8) Å3 | Prism, colourless |
Z = 8 | 0.47 × 0.38 × 0.18 mm |
F(000) = 1224 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 3193 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2630 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 74.2°, θmin = 5.3° |
ω scans | h = −20→20 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −13→8 |
Tmin = 0.818, Tmax = 1.000 | l = −20→18 |
7791 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.171 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0758P)2 + 2.1555P] where P = (Fo2 + 2Fc2)/3 |
3193 reflections | (Δ/σ)max = 0.001 |
203 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C19H20N2·0.5H2O | V = 3223.58 (8) Å3 |
Mr = 285.38 | Z = 8 |
Orthorhombic, Pbcn | Cu Kα radiation |
a = 16.7611 (2) Å | µ = 0.55 mm−1 |
b = 11.5467 (2) Å | T = 123 K |
c = 16.6563 (2) Å | 0.47 × 0.38 × 0.18 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 3193 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2630 reflections with I > 2σ(I) |
Tmin = 0.818, Tmax = 1.000 | Rint = 0.020 |
7791 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.171 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.56 e Å−3 |
3193 reflections | Δρmin = −0.33 e Å−3 |
203 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.06312 (10) | 0.58209 (13) | 0.08298 (9) | 0.0337 (5) | |
N3 | 0.02135 (14) | 0.41115 (14) | 0.12586 (9) | 0.0486 (6) | |
C2 | 0.00259 (13) | 0.52288 (16) | 0.11985 (10) | 0.0373 (6) | |
C4 | 0.09630 (17) | 0.39935 (18) | 0.09289 (12) | 0.0478 (7) | |
C5 | 0.12333 (13) | 0.50362 (17) | 0.06558 (11) | 0.0405 (6) | |
C11 | 0.07375 (11) | 0.70592 (16) | 0.07891 (12) | 0.0320 (5) | |
C12 | 0.07941 (11) | 0.75929 (17) | 0.00507 (13) | 0.0366 (6) | |
C13 | 0.09222 (12) | 0.87905 (18) | 0.00254 (15) | 0.0457 (7) | |
C14 | 0.09830 (12) | 0.93880 (18) | 0.07557 (17) | 0.0513 (8) | |
C15 | 0.09275 (11) | 0.88545 (18) | 0.14936 (15) | 0.0437 (7) | |
C16 | 0.08061 (11) | 0.76691 (17) | 0.15073 (13) | 0.0378 (6) | |
C17 | 0.09981 (16) | 0.9395 (2) | −0.07700 (17) | 0.0618 (9) | |
C18 | 0.10108 (15) | 0.9525 (2) | 0.22687 (18) | 0.0622 (9) | |
C21 | −0.07307 (12) | 0.57105 (19) | 0.14706 (11) | 0.0394 (6) | |
C22 | −0.10598 (12) | 0.67293 (19) | 0.11567 (12) | 0.0410 (6) | |
C23 | −0.17918 (13) | 0.7120 (3) | 0.14236 (13) | 0.0529 (8) | |
C24 | −0.22085 (14) | 0.6511 (3) | 0.20103 (14) | 0.0654 (11) | |
C25 | −0.18898 (15) | 0.5512 (3) | 0.23230 (14) | 0.0682 (12) | |
C26 | −0.11644 (14) | 0.5112 (2) | 0.20583 (13) | 0.0540 (8) | |
C41 | 0.1384 (2) | 0.2843 (2) | 0.09236 (15) | 0.0750 (12) | |
C51 | 0.19881 (14) | 0.5369 (2) | 0.02610 (16) | 0.0526 (8) | |
O1W | 0.00000 | 0.2332 (2) | 0.25000 | 0.126 (2) | |
H12 | 0.07471 | 0.71571 | −0.04308 | 0.0439* | |
H14 | 0.10666 | 1.02015 | 0.07411 | 0.0616* | |
H16 | 0.07696 | 0.72722 | 0.20056 | 0.0453* | |
H17A | 0.06867 | 0.89766 | −0.11750 | 0.0927* | |
H17B | 0.07968 | 1.01885 | −0.07221 | 0.0927* | |
H17C | 0.15601 | 0.94126 | −0.09315 | 0.0927* | |
H18A | 0.08520 | 1.03316 | 0.21803 | 0.0933* | |
H18B | 0.06672 | 0.91783 | 0.26797 | 0.0933* | |
H18C | 0.15672 | 0.94989 | 0.24485 | 0.0933* | |
H22 | −0.07782 | 0.71534 | 0.07585 | 0.0492* | |
H23 | −0.20127 | 0.78087 | 0.12053 | 0.0635* | |
H24 | −0.27110 | 0.67841 | 0.21935 | 0.0785* | |
H25 | −0.21725 | 0.50966 | 0.27246 | 0.0818* | |
H26 | −0.09530 | 0.44170 | 0.22774 | 0.0648* | |
H41A | 0.19154 | 0.29351 | 0.06879 | 0.1122* | |
H41B | 0.14340 | 0.25567 | 0.14751 | 0.1122* | |
H41C | 0.10750 | 0.22885 | 0.06044 | 0.1122* | |
H51A | 0.18815 | 0.55867 | −0.02975 | 0.0789* | |
H51B | 0.22245 | 0.60282 | 0.05453 | 0.0789* | |
H51C | 0.23592 | 0.47135 | 0.02731 | 0.0789* | |
H1W | 0.009 (3) | 0.280 (4) | 0.291 (3) | 0.138 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0457 (9) | 0.0230 (8) | 0.0325 (8) | −0.0005 (6) | −0.0068 (7) | −0.0043 (6) |
N3 | 0.0938 (15) | 0.0256 (8) | 0.0263 (8) | −0.0062 (9) | −0.0095 (9) | −0.0004 (6) |
C2 | 0.0581 (12) | 0.0287 (10) | 0.0251 (8) | −0.0106 (9) | −0.0087 (8) | −0.0003 (7) |
C4 | 0.0891 (18) | 0.0264 (10) | 0.0280 (9) | 0.0084 (10) | −0.0105 (10) | −0.0056 (7) |
C5 | 0.0575 (12) | 0.0305 (10) | 0.0334 (10) | 0.0089 (9) | −0.0118 (9) | −0.0095 (8) |
C11 | 0.0301 (9) | 0.0211 (9) | 0.0447 (10) | −0.0013 (7) | −0.0033 (8) | −0.0052 (7) |
C12 | 0.0339 (9) | 0.0286 (10) | 0.0472 (11) | 0.0000 (7) | 0.0032 (8) | −0.0027 (8) |
C13 | 0.0348 (10) | 0.0308 (10) | 0.0716 (15) | 0.0026 (8) | 0.0136 (10) | 0.0091 (10) |
C14 | 0.0373 (11) | 0.0228 (10) | 0.0939 (19) | −0.0027 (8) | 0.0135 (11) | −0.0146 (11) |
C15 | 0.0325 (10) | 0.0304 (10) | 0.0682 (14) | −0.0029 (8) | 0.0044 (9) | −0.0163 (10) |
C16 | 0.0318 (9) | 0.0329 (10) | 0.0486 (11) | 0.0011 (8) | −0.0046 (8) | −0.0120 (8) |
C17 | 0.0595 (15) | 0.0423 (13) | 0.0835 (19) | 0.0066 (11) | 0.0225 (13) | 0.0217 (12) |
C18 | 0.0514 (13) | 0.0480 (14) | 0.0872 (19) | −0.0053 (11) | 0.0009 (13) | −0.0374 (13) |
C21 | 0.0488 (11) | 0.0423 (11) | 0.0270 (9) | −0.0163 (9) | −0.0087 (8) | 0.0002 (8) |
C22 | 0.0420 (10) | 0.0500 (12) | 0.0311 (9) | −0.0106 (9) | −0.0029 (8) | −0.0017 (9) |
C23 | 0.0415 (11) | 0.0765 (17) | 0.0407 (11) | −0.0037 (11) | −0.0059 (9) | −0.0032 (11) |
C24 | 0.0373 (11) | 0.118 (3) | 0.0409 (12) | −0.0158 (14) | 0.0000 (10) | −0.0047 (14) |
C25 | 0.0509 (14) | 0.117 (3) | 0.0366 (12) | −0.0310 (15) | −0.0069 (10) | 0.0178 (14) |
C26 | 0.0594 (14) | 0.0665 (16) | 0.0361 (11) | −0.0281 (12) | −0.0119 (10) | 0.0113 (10) |
C41 | 0.147 (3) | 0.0334 (12) | 0.0445 (13) | 0.0293 (16) | −0.0177 (16) | −0.0015 (10) |
C51 | 0.0514 (13) | 0.0427 (12) | 0.0637 (14) | 0.0120 (10) | −0.0073 (11) | −0.0182 (11) |
O1W | 0.300 (7) | 0.0283 (13) | 0.0503 (16) | 0.0000 | 0.041 (3) | 0.0000 |
O1W—H1Wi | 0.88 (5) | C24—C25 | 1.374 (5) |
O1W—H1W | 0.88 (5) | C25—C26 | 1.373 (4) |
N1—C5 | 1.387 (3) | C12—H12 | 0.9500 |
N1—C2 | 1.369 (3) | C14—H14 | 0.9500 |
N1—C11 | 1.443 (2) | C16—H16 | 0.9500 |
N3—C4 | 1.378 (4) | C17—H17B | 0.9800 |
N3—C2 | 1.332 (3) | C17—H17A | 0.9800 |
C2—C21 | 1.457 (3) | C17—H17C | 0.9800 |
C4—C41 | 1.504 (3) | C18—H18C | 0.9800 |
C4—C5 | 1.365 (3) | C18—H18B | 0.9800 |
C5—C51 | 1.477 (3) | C18—H18A | 0.9800 |
C11—C12 | 1.379 (3) | C22—H22 | 0.9500 |
C11—C16 | 1.393 (3) | C23—H23 | 0.9500 |
C12—C13 | 1.400 (3) | C24—H24 | 0.9500 |
C13—C17 | 1.503 (4) | C25—H25 | 0.9500 |
C13—C14 | 1.402 (4) | C26—H26 | 0.9500 |
C14—C15 | 1.378 (4) | C41—H41B | 0.9800 |
C15—C18 | 1.512 (4) | C41—H41C | 0.9800 |
C15—C16 | 1.384 (3) | C41—H41A | 0.9800 |
C21—C22 | 1.401 (3) | C51—H51C | 0.9800 |
C21—C26 | 1.402 (3) | C51—H51A | 0.9800 |
C22—C23 | 1.381 (3) | C51—H51B | 0.9800 |
C23—C24 | 1.392 (4) | ||
O1W···N3i | 2.937 (2) | C26···H16i | 3.0200 |
O1W···N3 | 2.937 (2) | C41···H22ii | 2.9800 |
O1W···H26 | 2.9100 | C41···H51C | 2.9200 |
O1W···H26i | 2.9100 | C51···H41A | 2.9000 |
O1W···H17Aii | 2.9100 | H1W···N3i | 2.11 (5) |
O1W···H18Aiii | 2.7700 | H1W···C4i | 2.96 (5) |
O1W···H18Aiv | 2.7700 | H1W···H26i | 2.3800 |
O1W···H17Av | 2.9100 | H12···H17A | 2.4400 |
N3···O1W | 2.937 (2) | H12···N3ii | 2.5800 |
N3···O1W | 2.937 (2) | H14···H41Cxii | 2.4200 |
N3···C26i | 3.426 (3) | H14···H17B | 2.4800 |
N3···C12ii | 3.388 (3) | H14···H18A | 2.4300 |
N1···H22 | 2.8200 | H16···C2 | 2.9900 |
N3···H26 | 2.6100 | H16···H18B | 2.4800 |
N3···H1Wi | 2.11 (5) | H16···C24i | 3.0500 |
N3···H26i | 2.7600 | H16···C25i | 2.9800 |
N3···H12ii | 2.5800 | H16···C26i | 3.0200 |
C2···C26i | 3.477 (3) | H17A···O1Wxiii | 2.9100 |
C4···C22ii | 3.576 (3) | H17A···H12 | 2.4400 |
C5···C25i | 3.584 (3) | H17A···O1Wii | 2.9100 |
C11···C22 | 3.098 (3) | H17B···C14ix | 3.0200 |
C12···N3ii | 3.388 (3) | H17B···H14 | 2.4800 |
C12···C51 | 3.274 (3) | H17C···C24xiv | 2.9400 |
C16···C22 | 3.362 (3) | H18A···O1Wxii | 2.7700 |
C16···C21 | 3.428 (3) | H18A···O1Wxv | 2.7700 |
C17···C18vi | 3.497 (4) | H18A···H14 | 2.4300 |
C18···C18i | 3.475 (4) | H18B···C15i | 3.0300 |
C18···C17vii | 3.497 (4) | H18B···H16 | 2.4800 |
C21···C16 | 3.428 (3) | H18B···C18i | 2.8400 |
C22···C41ii | 3.542 (3) | H18B···H18Bi | 2.3200 |
C22···C4ii | 3.576 (3) | H18C···C25xvi | 2.8600 |
C22···C16 | 3.362 (3) | H18C···H25xvi | 2.2400 |
C22···C11 | 3.098 (3) | H22···C16 | 2.9900 |
C25···C5i | 3.584 (3) | H22···C41ii | 2.9800 |
C26···N3i | 3.426 (3) | H22···N1 | 2.8200 |
C26···C2i | 3.477 (3) | H22···C11 | 2.5400 |
C41···C22ii | 3.542 (3) | H22···H41Cii | 2.4100 |
C51···C12 | 3.274 (3) | H22···C12 | 2.9300 |
C2···H16 | 2.9900 | H25···H18Cxi | 2.2400 |
C4···H1Wi | 2.96 (5) | H26···O1W | 2.9100 |
C4···H26i | 3.0300 | H26···C4i | 3.0300 |
C11···H51B | 2.7900 | H26···H1Wi | 2.3800 |
C11···H22 | 2.5400 | H26···O1W | 2.9100 |
C12···H51A | 3.0000 | H26···N3i | 2.7600 |
C12···H22 | 2.9300 | H26···N3 | 2.6100 |
C13···H51Cviii | 3.1000 | H41A···C51 | 2.9000 |
C14···H51Cviii | 2.9200 | H41A···H51C | 2.2900 |
C14···H17Bix | 3.0200 | H41C···H14iv | 2.4200 |
C15···H18Bi | 3.0300 | H41C···H22ii | 2.4100 |
C16···H22 | 2.9900 | H51A···C12 | 3.0000 |
C18···H18Bi | 2.8400 | H51B···C11 | 2.7900 |
C24···H17Cx | 2.9400 | H51C···H41A | 2.2900 |
C24···H16i | 3.0500 | H51C···C13xvii | 3.1000 |
C25···H18Cxi | 2.8600 | H51C···C14xvii | 2.9200 |
C25···H16i | 2.9800 | H51C···C41 | 2.9200 |
H1W—O1W—H1Wi | 105 (4) | C13—C14—H14 | 118.00 |
C2—N1—C11 | 127.42 (16) | C11—C16—H16 | 120.00 |
C5—N1—C11 | 123.22 (16) | C15—C16—H16 | 120.00 |
C2—N1—C5 | 107.86 (15) | C13—C17—H17B | 109.00 |
C2—N3—C4 | 106.33 (18) | C13—C17—H17C | 109.00 |
N1—C2—C21 | 126.44 (17) | C13—C17—H17A | 109.00 |
N3—C2—C21 | 123.50 (19) | H17A—C17—H17C | 109.00 |
N1—C2—N3 | 110.03 (18) | H17B—C17—H17C | 110.00 |
N3—C4—C41 | 121.2 (2) | H17A—C17—H17B | 109.00 |
C5—C4—C41 | 128.4 (2) | C15—C18—H18B | 109.00 |
N3—C4—C5 | 110.39 (19) | C15—C18—H18C | 109.00 |
N1—C5—C51 | 123.13 (18) | C15—C18—H18A | 109.00 |
C4—C5—C51 | 131.5 (2) | H18A—C18—H18C | 109.00 |
N1—C5—C4 | 105.38 (19) | H18B—C18—H18C | 109.00 |
N1—C11—C16 | 118.10 (17) | H18A—C18—H18B | 109.00 |
C12—C11—C16 | 122.30 (18) | C23—C22—H22 | 120.00 |
N1—C11—C12 | 119.56 (17) | C21—C22—H22 | 120.00 |
C11—C12—C13 | 118.6 (2) | C22—C23—H23 | 120.00 |
C12—C13—C17 | 119.9 (2) | C24—C23—H23 | 120.00 |
C14—C13—C17 | 122.0 (2) | C25—C24—H24 | 120.00 |
C12—C13—C14 | 118.1 (2) | C23—C24—H24 | 120.00 |
C13—C14—C15 | 123.3 (2) | C24—C25—H25 | 120.00 |
C14—C15—C18 | 121.8 (2) | C26—C25—H25 | 120.00 |
C16—C15—C18 | 120.4 (2) | C25—C26—H26 | 119.00 |
C14—C15—C16 | 117.8 (2) | C21—C26—H26 | 119.00 |
C11—C16—C15 | 119.9 (2) | C4—C41—H41A | 109.00 |
C2—C21—C22 | 123.18 (18) | C4—C41—H41B | 109.00 |
C2—C21—C26 | 118.72 (19) | H41A—C41—H41B | 110.00 |
C22—C21—C26 | 118.08 (19) | H41A—C41—H41C | 110.00 |
C21—C22—C23 | 120.3 (2) | C4—C41—H41C | 109.00 |
C22—C23—C24 | 120.5 (3) | H41B—C41—H41C | 109.00 |
C23—C24—C25 | 119.7 (2) | C5—C51—H51B | 109.00 |
C24—C25—C26 | 120.3 (2) | C5—C51—H51C | 109.00 |
C21—C26—C25 | 121.2 (2) | C5—C51—H51A | 109.00 |
C11—C12—H12 | 121.00 | H51A—C51—H51C | 109.00 |
C13—C12—H12 | 121.00 | H51B—C51—H51C | 109.00 |
C15—C14—H14 | 118.00 | H51A—C51—H51B | 109.00 |
C5—N1—C2—N3 | −0.6 (2) | C41—C4—C5—N1 | −177.7 (2) |
C5—N1—C2—C21 | −178.74 (17) | C41—C4—C5—C51 | 1.8 (4) |
C11—N1—C2—N3 | −166.83 (17) | N1—C11—C12—C13 | −178.02 (17) |
C11—N1—C2—C21 | 15.0 (3) | C16—C11—C12—C13 | −0.2 (3) |
C2—N1—C5—C4 | 0.1 (2) | N1—C11—C16—C15 | 178.49 (17) |
C2—N1—C5—C51 | −179.45 (19) | C12—C11—C16—C15 | 0.7 (3) |
C11—N1—C5—C4 | 167.03 (17) | C11—C12—C13—C14 | −0.3 (3) |
C11—N1—C5—C51 | −12.5 (3) | C11—C12—C13—C17 | 179.14 (19) |
C2—N1—C11—C12 | −122.8 (2) | C12—C13—C14—C15 | 0.4 (3) |
C2—N1—C11—C16 | 59.3 (3) | C17—C13—C14—C15 | −179.0 (2) |
C5—N1—C11—C12 | 72.8 (2) | C13—C14—C15—C16 | 0.0 (3) |
C5—N1—C11—C16 | −105.1 (2) | C13—C14—C15—C18 | 178.9 (2) |
C4—N3—C2—N1 | 0.8 (2) | C14—C15—C16—C11 | −0.6 (3) |
C4—N3—C2—C21 | 179.07 (18) | C18—C15—C16—C11 | −179.42 (18) |
C2—N3—C4—C5 | −0.8 (2) | C2—C21—C22—C23 | 178.0 (2) |
C2—N3—C4—C41 | 177.5 (2) | C26—C21—C22—C23 | −0.1 (3) |
N1—C2—C21—C22 | 22.9 (3) | C2—C21—C26—C25 | −178.5 (2) |
N1—C2—C21—C26 | −158.99 (19) | C22—C21—C26—C25 | −0.3 (3) |
N3—C2—C21—C22 | −155.0 (2) | C21—C22—C23—C24 | 0.4 (4) |
N3—C2—C21—C26 | 23.1 (3) | C22—C23—C24—C25 | −0.3 (4) |
N3—C4—C5—N1 | 0.5 (2) | C23—C24—C25—C26 | −0.1 (4) |
N3—C4—C5—C51 | 179.9 (2) | C24—C25—C26—C21 | 0.4 (4) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z; (iii) −x, y−1, −z+1/2; (iv) x, y−1, z; (v) x, −y+1, z+1/2; (vi) x, −y+2, z−1/2; (vii) x, −y+2, z+1/2; (viii) −x+1/2, y+1/2, z; (ix) −x, −y+2, −z; (x) x−1/2, −y+3/2, −z; (xi) x−1/2, y−1/2, −z+1/2; (xii) x, y+1, z; (xiii) x, −y+1, z−1/2; (xiv) x+1/2, −y+3/2, −z; (xv) −x, y+1, −z+1/2; (xvi) x+1/2, y+1/2, −z+1/2; (xvii) −x+1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···N3i | 0.88 (5) | 2.11 (5) | 2.937 (2) | 155 (4) |
C12—H12···N3ii | 0.95 | 2.58 | 3.388 (3) | 144 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C19H20N2·0.5H2O |
Mr | 285.38 |
Crystal system, space group | Orthorhombic, Pbcn |
Temperature (K) | 123 |
a, b, c (Å) | 16.7611 (2), 11.5467 (2), 16.6563 (2) |
V (Å3) | 3223.58 (8) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.55 |
Crystal size (mm) | 0.47 × 0.38 × 0.18 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.818, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7791, 3193, 2630 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.171, 1.08 |
No. of reflections | 3193 |
No. of parameters | 203 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.56, −0.33 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···N3i | 0.88 (5) | 2.11 (5) | 2.937 (2) | 155 (4) |
C12—H12···N3ii | 0.95 | 2.58 | 3.388 (3) | 144 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, −y+1, −z. |
Acknowledgements
JJ is thankful to the Department of Science and Technology [No. SR/S1/IC-07/2007], University Grants Commission [F. No. 36–21/2008 (SR)] for providing funding for this research work. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gayathri, P., Jayabharathi, J., Saravanan, K., Thiruvalluvar, A. & Butcher, R. J. (2010a). Acta Cryst. E66, o1791. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gayathri, P., Jayabharathi, J., Srinivasan, N., Thiruvalluvar, A. & Butcher, R. J. (2010b). Acta Cryst. E66, o1703. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gayathri, P., Thiruvalluvar, A., Saravanan, K., Jayabharathi, J. & Butcher, R. J. (2010c). Acta Cryst. E66, o2219. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gayathri, P., Thiruvalluvar, A., Srinivasan, N., Jayabharathi, J. & Butcher, R. J. (2010d). Acta Cryst. E66, o2519. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hermann, W. A. & Kocher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187. CrossRef Web of Science Google Scholar
Krezel, I. (1998). Farmaco, 53, 342–345. Web of Science CrossRef CAS PubMed Google Scholar
Lombardino, J. G. & Wiseman, E. H. (1974). J. Med. Chem. 17, 1182–1188. CrossRef CAS PubMed Web of Science Google Scholar
Maier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989a). US Patent 4 820 335. Google Scholar
Maier, T., Schmierer, R., Bauer, K., Bieringer, H., Buerstell, H. & Sachse, B. (1989b). Chem. Abstr. 111, 19494. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Welton, T. (1999). Chem. Rev. 99, 2071–2084. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compounds with an imidazole ring system have many pharmacological properties and play important roles in biochemical processes (Lombardino & Wiseman (1974)). Many of the substituted imidazoles are known as inhibitors of fungicides and herbicides, plant growth regulators and therapeutic agents (Maier et al. (1989a,b). Recent advances in green chemistry and organometallic chemistry have extended the boundary of imidazoles to the synthesis and application of a large class of imidazoles as ionic liquids and imidazole related N-heterocyclic carbenes (Welton (1999) and Hermann & Kocher (1997)). Imidazole derivatives are also used as as potential anticancer agents (Krezel (1998)). As part of our research (Gayathri et al., (2010a,b,c,d)), we have synthesized the title compound (I) and report its crystal structure here.
In the title compound (Fig. 1), C19H20N2.H2O, the imidazole ring is essentially planar [maximum deviation of 0.005 (1) Å for N3]. The imidazole ring makes dihedral angles of 67.46 (10) and 23.10 (11)° with the benzene ring (C11—C16) attached to N1 and phenyl ring (C21—C26) attached to C2 respectively. The dihedral angle between the benzene and phenyl rings is 68.22 (10)°. Intermolecular O1W—H1W···N3 and C12—H12···N3 hydrogen bonds are found in the crystal structure (Table 1, Fig. 2).