metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­chlorido­bis­­[tris­(4-meth­­oxy­phenyl)­phosphane]palladium(II) toluene solvate

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 4 October 2010; accepted 12 October 2010; online 20 October 2010)

In the title compound, trans-[PdCl2{P(4-MeOC6H4)3}2]·C7H8, the Pd(II) atom lies on a center of symmetry, resulting in a distorted trans-square planar geometry. The Pd—P and Pd—Cl bond lengths are 2.3409 (4) and 2.2981 (4) Å, respectively. An intra­molecular C—H⋯Cl hydrogen bond occurs. In the crystal, weak C—H⋯O inter­actions are observed between the aromatic rings of adjacent mol­ecules. The toluene solvate molecule is equally disordered over two sets of sites.

Related literature

For a review on related compounds, see: Spessard & Miessler (1996[Spessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131-135. New Jersey: Prentice Hall.]). For related compounds, see: Meijboom & Omondi (2010[Meijboom, R. & Omondi, B. (2010). Acta Cryst. B66. Submitted.]). For the synthesis of the starting materials, see: Drew & Doyle (1990[Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346-349.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C21H21O3P)2]·C7H8

  • Mr = 974.13

  • Triclinic, [P \overline 1]

  • a = 7.8545 (4) Å

  • b = 12.1231 (7) Å

  • c = 12.4024 (8) Å

  • α = 85.666 (2)°

  • β = 78.762 (2)°

  • γ = 75.919 (2)°

  • V = 1123.03 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 100 K

  • 0.27 × 0.20 × 0.08 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.950

  • 19639 measured reflections

  • 5573 independent reflections

  • 5169 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.06

  • 5573 reflections

  • 273 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 1.28 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C01—H01B⋯O2i 0.98 2.36 3.327 (7) 170
C3—H3A⋯O2ii 0.98 2.57 3.255 (3) 127
C36—H36⋯Cl 0.95 2.79 3.5402 (19) 136
Symmetry codes: (i) x+1, y-1, z; (ii) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound, were obtained.

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{P(4-MeOC6H4)3}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 88.422 (15) and P—Pd—Cli = 91.578 (15)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. The title compound, having a Pd—Cl bond length of 2.2981 (4) Å and a Pd—P bond length of 2.3409 (4) Å, fits well into the typical range for complexes of this kind. Notably the title compound crystallized as a solvated complex; these type of PdII complexes have a tendency to crystallize as solvates (Meijboom & Omondi, 2010). The solvate molecule, toluene, is found 50:50 disordered molecule.

Related literature top

For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Meijboom & Omondi (2010). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Experimental top

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl2(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). A solution of tris(4-methoxyphenyl)phosphine (0.2 mmol) in dichloromethane (2.0 cm3) was added to a solution of [PdCl2(COD)] (0.1 mmol) in dichloromethane (3.0 cm3). Slow evaporation of the solvent gave the parent palladium compound. Recrystallization from tolunene/hexane afforded crystals of the title compound.

Refinement top

The aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.95–0.98) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms respectively. Methyl torsion angles were refined from electron density

Structure description top

Transition metal complexes containing phosphine, arsine and stibine ligands are widely being investigated in various fields of organometallic chemistry (Spessard & Miessler, 1996). As part of a systematic investigation involving complexes with the general formula trans-[MX2(L)2] (M = Pt or Pd; X = halogen, Me, Ph; L = Group 15 donor ligand), crystals of the title compound, were obtained.

[PdCl2(L)2] (L = tertiary phosphine, arsine or stibine) complexes can conveniently be prepared by the substitution of 1,5-cyclooctadiene (COD) from [PdCl2(COD)]. The title compound, trans-[PdCl2{P(4-MeOC6H4)3}2], crystallizes in the triclinic spacegroup P1, with the Pd atom on a center of symmetry and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, slightly distorted square planar and the Pd atom is not elevated out of the coordinating atom plane. All angles in the coordination polyhedron are close to the ideal value of 90°, with P—Pd—Cl = 88.422 (15) and P—Pd—Cli = 91.578 (15)°. As required by the crystallographic symmetry, the P—Pd—Pi and Cl—Pd—Cli angles are 180°. Some weak intermolecular interactions were observed and are reported in Table 1.

The title compound compares well with other closely related PdII complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. The title compound, having a Pd—Cl bond length of 2.2981 (4) Å and a Pd—P bond length of 2.3409 (4) Å, fits well into the typical range for complexes of this kind. Notably the title compound crystallized as a solvated complex; these type of PdII complexes have a tendency to crystallize as solvates (Meijboom & Omondi, 2010). The solvate molecule, toluene, is found 50:50 disordered molecule.

For a review on related compounds, see: Spessard & Miessler (1996). For related compounds, see: Meijboom & Omondi (2010). For the synthesis of the starting materials, see: Drew & Doyle (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure (I), showing 50% probability displacement ellipsoids. For the C atoms, the first digit indicates ring number and the second digit indicates the position of the atom in the ring. Accented lettering indicate atoms generated by symmetry (1 - x,1 - y,1 - z).
trans-Dichloridobis[tris(4-methoxyphenyl)phosphane]palladium(II) toluene monosolvate top
Crystal data top
[PdCl2(C21H21O3P)2]·C7H8Z = 1
Mr = 974.13F(000) = 502
Triclinic, P1Dx = 1.44 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8545 (4) ÅCell parameters from 5142 reflections
b = 12.1231 (7) Åθ = 2.4–28.3°
c = 12.4024 (8) ŵ = 0.65 mm1
α = 85.666 (2)°T = 100 K
β = 78.762 (2)°Plate, yellow
γ = 75.919 (2)°0.27 × 0.2 × 0.08 mm
V = 1123.03 (11) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5573 independent reflections
Radiation source: fine-focus sealed tube5169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.4 pixels mm-1θmax = 28.3°, θmin = 2.4°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1616
Tmin = 0.844, Tmax = 0.950l = 1616
19639 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0261P)2 + 1.197P]
where P = (Fo2 + 2Fc2)/3
5573 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 1.28 e Å3
4 restraintsΔρmin = 0.67 e Å3
Crystal data top
[PdCl2(C21H21O3P)2]·C7H8γ = 75.919 (2)°
Mr = 974.13V = 1123.03 (11) Å3
Triclinic, P1Z = 1
a = 7.8545 (4) ÅMo Kα radiation
b = 12.1231 (7) ŵ = 0.65 mm1
c = 12.4024 (8) ÅT = 100 K
α = 85.666 (2)°0.27 × 0.2 × 0.08 mm
β = 78.762 (2)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5573 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5169 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.950Rint = 0.037
19639 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0294 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.06Δρmax = 1.28 e Å3
5573 reflectionsΔρmin = 0.67 e Å3
273 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 6 s/frame. A total of 1637 frames were collected with a frame width of 0.5° covering up to θ = 28.31° with 99.8% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd0.50.50.50.01073 (6)
P0.32288 (6)0.43533 (4)0.65434 (4)0.01130 (9)
Cl0.44125 (6)0.67186 (4)0.58287 (4)0.01752 (10)
C110.2359 (2)0.31163 (15)0.64258 (14)0.0129 (3)
C120.3519 (2)0.20484 (15)0.62301 (15)0.0150 (3)
H120.47660.19720.61680.018*
C130.2882 (2)0.10942 (15)0.61244 (15)0.0162 (3)
H130.36890.03750.5990.019*
C140.1045 (3)0.11999 (16)0.62176 (16)0.0179 (4)
C150.0126 (3)0.22615 (16)0.64053 (17)0.0198 (4)
H150.13730.23390.64620.024*
C160.0528 (2)0.32029 (15)0.65097 (15)0.0159 (3)
H160.02820.39220.66410.019*
C210.1254 (2)0.54510 (14)0.70174 (14)0.0124 (3)
C220.0282 (2)0.60449 (16)0.62413 (15)0.0161 (3)
H220.06380.58360.54930.019*
C230.1195 (2)0.69346 (15)0.65361 (15)0.0163 (3)
H230.1870.73150.60020.02*
C240.1672 (2)0.72600 (15)0.76289 (15)0.0159 (3)
C250.0732 (3)0.66642 (16)0.84167 (15)0.0180 (4)
H250.10830.68780.91630.022*
C260.0716 (2)0.57583 (15)0.81157 (15)0.0151 (3)
H260.13430.53470.86580.018*
C310.4441 (2)0.39989 (15)0.76733 (14)0.0131 (3)
C320.3972 (3)0.32619 (17)0.85375 (15)0.0186 (4)
H320.30150.29140.85240.022*
C330.4873 (3)0.30242 (17)0.94193 (16)0.0194 (4)
H330.45390.25160.99990.023*
C340.6271 (2)0.35369 (16)0.94457 (15)0.0169 (4)
C350.6740 (3)0.42844 (16)0.85931 (15)0.0180 (4)
H350.76830.46420.86140.022*
C360.5843 (2)0.45100 (16)0.77175 (15)0.0161 (3)
H360.61810.50180.71390.019*
C10.1436 (3)0.07965 (17)0.6040 (2)0.0291 (5)
H1A0.23110.0820.53550.044*
H1B0.07270.13550.6020.044*
H1C0.2060.09770.66650.044*
O10.0278 (2)0.03200 (12)0.61544 (14)0.0259 (3)
C20.3886 (3)0.88867 (18)0.72033 (18)0.0257 (4)
H2A0.30030.92080.66890.039*
H2B0.48150.95050.75740.039*
H2C0.44280.84420.67990.039*
O20.30260 (18)0.81656 (12)0.80035 (12)0.0217 (3)
C30.6746 (3)0.2635 (2)1.11707 (17)0.0274 (5)
H3A0.54970.29411.15070.041*
H3B0.75090.26041.17160.041*
H3C0.68830.18671.09160.041*
O30.7257 (2)0.33564 (13)1.02543 (11)0.0231 (3)
C010.7355 (9)0.0476 (6)1.0145 (5)0.0481 (14)*0.5
H01A0.71920.10181.07620.072*0.5
H01B0.7340.08240.9460.072*0.5
H01C0.63860.02111.02610.072*0.5
C020.9034 (10)0.0180 (6)1.0076 (6)0.0624 (18)*0.5
C030.9981 (10)0.0566 (5)1.0829 (5)0.0409 (14)*0.5
H030.96240.10951.13790.049*0.5
C041.1548 (11)0.0191 (6)1.0822 (6)0.0619 (18)*0.5
H041.23310.04261.13340.074*0.5
C051.1757 (14)0.0568 (8)0.9956 (8)0.074 (2)*0.5
H051.26740.09490.99740.088*0.5
C061.0987 (9)0.0869 (6)0.9139 (6)0.0521 (15)*0.5
H061.14350.13270.85480.063*0.5
C070.9368 (10)0.0471 (5)0.9159 (5)0.0410 (14)*0.5
H070.8650.06440.86070.049*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01295 (9)0.00955 (9)0.00981 (9)0.00301 (6)0.00176 (6)0.00060 (6)
P0.0125 (2)0.0109 (2)0.0107 (2)0.00299 (16)0.00240 (15)0.00014 (15)
Cl0.0238 (2)0.0120 (2)0.0163 (2)0.00615 (16)0.00094 (16)0.00323 (15)
C110.0160 (8)0.0127 (8)0.0108 (7)0.0056 (6)0.0026 (6)0.0017 (6)
C120.0149 (8)0.0147 (8)0.0157 (8)0.0044 (7)0.0034 (6)0.0012 (6)
C130.0194 (9)0.0117 (8)0.0172 (8)0.0027 (7)0.0046 (7)0.0009 (6)
C140.0232 (9)0.0140 (8)0.0196 (9)0.0072 (7)0.0086 (7)0.0018 (7)
C150.0156 (9)0.0180 (9)0.0278 (10)0.0054 (7)0.0070 (7)0.0003 (7)
C160.0155 (8)0.0136 (8)0.0186 (9)0.0020 (7)0.0046 (7)0.0010 (7)
C210.0119 (8)0.0110 (8)0.0148 (8)0.0034 (6)0.0029 (6)0.0002 (6)
C220.0189 (9)0.0165 (9)0.0132 (8)0.0034 (7)0.0042 (7)0.0008 (6)
C230.0173 (9)0.0148 (8)0.0172 (8)0.0023 (7)0.0073 (7)0.0017 (7)
C240.0126 (8)0.0145 (8)0.0208 (9)0.0033 (6)0.0028 (7)0.0022 (7)
C250.0173 (9)0.0212 (9)0.0147 (8)0.0021 (7)0.0025 (7)0.0039 (7)
C260.0153 (8)0.0161 (8)0.0141 (8)0.0023 (7)0.0045 (6)0.0003 (6)
C310.0134 (8)0.0138 (8)0.0115 (8)0.0016 (6)0.0033 (6)0.0005 (6)
C320.0196 (9)0.0223 (9)0.0173 (9)0.0108 (7)0.0056 (7)0.0043 (7)
C330.0233 (10)0.0206 (9)0.0174 (9)0.0104 (8)0.0067 (7)0.0049 (7)
C340.0180 (9)0.0192 (9)0.0147 (8)0.0041 (7)0.0055 (7)0.0014 (7)
C350.0172 (9)0.0210 (9)0.0185 (9)0.0088 (7)0.0054 (7)0.0012 (7)
C360.0166 (8)0.0170 (9)0.0150 (8)0.0052 (7)0.0032 (7)0.0024 (7)
C10.0310 (11)0.0126 (9)0.0482 (14)0.0063 (8)0.0169 (10)0.0006 (9)
O10.0244 (7)0.0132 (7)0.0448 (9)0.0067 (6)0.0144 (7)0.0006 (6)
C20.0239 (10)0.0197 (10)0.0302 (11)0.0043 (8)0.0088 (8)0.0007 (8)
O20.0191 (7)0.0194 (7)0.0228 (7)0.0045 (5)0.0052 (5)0.0033 (5)
C30.0359 (12)0.0337 (12)0.0201 (10)0.0178 (10)0.0149 (9)0.0094 (8)
O30.0266 (7)0.0310 (8)0.0178 (7)0.0141 (6)0.0122 (6)0.0064 (6)
Geometric parameters (Å, º) top
Pd—Cl2.2981 (4)C33—H330.95
Pd—Cli2.2981 (4)C34—O31.356 (2)
Pd—Pi2.3409 (4)C34—C351.393 (3)
Pd—P2.3409 (4)C35—C361.382 (3)
P—C211.8112 (17)C35—H350.95
P—C311.8124 (18)C36—H360.95
P—C111.8185 (18)C1—O11.435 (2)
C11—C121.397 (2)C1—H1A0.98
C11—C161.400 (2)C1—H1B0.98
C12—C131.391 (2)C1—H1C0.98
C12—H120.95C2—O21.431 (2)
C13—C141.399 (3)C2—H2A0.98
C13—H130.95C2—H2B0.98
C14—O11.360 (2)C2—H2C0.98
C14—C151.394 (3)C3—O31.435 (2)
C15—C161.384 (3)C3—H3A0.98
C15—H150.95C3—H3B0.98
C16—H160.95C3—H3C0.98
C21—C221.394 (2)C01—C021.434 (10)
C21—C261.396 (2)C01—H01A0.98
C22—C231.389 (3)C01—H01B0.98
C22—H220.95C01—H01C0.98
C23—C241.394 (3)C02—C031.296 (10)
C23—H230.95C02—C071.353 (10)
C24—O21.367 (2)C03—C041.410 (10)
C24—C251.391 (3)C03—H030.95
C25—C261.389 (2)C04—C051.372 (12)
C25—H250.95C04—H040.95
C26—H260.95C05—C061.265 (11)
C31—C321.394 (2)C05—H050.95
C31—C361.400 (3)C06—C071.462 (9)
C32—C331.391 (3)C06—H060.95
C32—H320.95C07—H070.95
C33—C341.393 (3)
Cl—Pd—Cli180C34—C33—H33120.3
Cl—Pd—Pi91.578 (15)O3—C34—C35115.85 (17)
Cli—Pd—Pi88.422 (15)O3—C34—C33124.53 (17)
Cl—Pd—P88.422 (15)C35—C34—C33119.62 (17)
Cli—Pd—P91.578 (15)C36—C35—C34120.49 (17)
Pi—Pd—P180.00 (2)C36—C35—H35119.8
C21—P—C31106.76 (8)C34—C35—H35119.8
C21—P—C11103.93 (8)C35—C36—C31120.74 (17)
C31—P—C11105.02 (8)C35—C36—H36119.6
C21—P—Pd110.78 (6)C31—C36—H36119.6
C31—P—Pd110.54 (6)O1—C1—H1A109.5
C11—P—Pd118.96 (6)O1—C1—H1B109.5
C12—C11—C16118.07 (16)H1A—C1—H1B109.5
C12—C11—P120.39 (14)O1—C1—H1C109.5
C16—C11—P121.53 (13)H1A—C1—H1C109.5
C13—C12—C11121.28 (17)H1B—C1—H1C109.5
C13—C12—H12119.4C14—O1—C1117.21 (16)
C11—C12—H12119.4O2—C2—H2A109.5
C12—C13—C14119.65 (17)O2—C2—H2B109.5
C12—C13—H13120.2H2A—C2—H2B109.5
C14—C13—H13120.2O2—C2—H2C109.5
O1—C14—C15115.85 (17)H2A—C2—H2C109.5
O1—C14—C13124.46 (17)H2B—C2—H2C109.5
C15—C14—C13119.68 (17)C24—O2—C2117.50 (15)
C16—C15—C14120.00 (18)O3—C3—H3A109.5
C16—C15—H15120O3—C3—H3B109.5
C14—C15—H15120H3A—C3—H3B109.5
C15—C16—C11121.33 (17)O3—C3—H3C109.5
C15—C16—H16119.3H3A—C3—H3C109.5
C11—C16—H16119.3H3B—C3—H3C109.5
C22—C21—C26118.89 (16)C34—O3—C3117.05 (15)
C22—C21—P118.30 (13)C02—C01—H01A109.5
C26—C21—P122.75 (14)C02—C01—H01B109.5
C23—C22—C21121.52 (17)H01A—C01—H01B109.5
C23—C22—H22119.2C02—C01—H01C109.5
C21—C22—H22119.2H01A—C01—H01C109.5
C22—C23—C24118.83 (17)H01B—C01—H01C109.5
C22—C23—H23120.6C03—C02—C07130.7 (7)
C24—C23—H23120.6C03—C02—C01119.1 (7)
O2—C24—C25115.53 (16)C07—C02—C01110.2 (7)
O2—C24—C23124.16 (17)C02—C03—C04119.2 (7)
C25—C24—C23120.30 (17)C02—C03—H03120.4
C26—C25—C24120.24 (17)C04—C03—H03120.4
C26—C25—H25119.9C05—C04—C03108.9 (8)
C24—C25—H25119.9C05—C04—H04125.5
C25—C26—C21120.14 (17)C03—C04—H04125.5
C25—C26—H26119.9C06—C05—C04133.6 (10)
C21—C26—H26119.9C06—C05—H05113.2
C32—C31—C36118.22 (16)C04—C05—H05113.2
C32—C31—P121.90 (14)C05—C06—C07116.0 (8)
C36—C31—P119.82 (13)C05—C06—H06122
C33—C32—C31121.47 (17)C07—C06—H06122
C33—C32—H32119.3C02—C07—C06110.4 (7)
C31—C32—H32119.3C02—C07—H07124.8
C32—C33—C34119.46 (17)C06—C07—H07124.8
C32—C33—H33120.3
Cl—Pd—P—C2140.71 (6)C23—C24—C25—C261.6 (3)
Cli—Pd—P—C21139.29 (6)C24—C25—C26—C210.9 (3)
Cl—Pd—P—C3177.43 (6)C22—C21—C26—C251.9 (3)
Cli—Pd—P—C31102.57 (6)P—C21—C26—C25175.13 (14)
Cl—Pd—P—C11160.99 (7)C21—P—C31—C3281.11 (16)
Cli—Pd—P—C1119.01 (7)C11—P—C31—C3228.83 (17)
C21—P—C11—C12170.72 (14)Pd—P—C31—C32158.32 (14)
C31—P—C11—C1258.74 (16)C21—P—C31—C3696.04 (15)
Pd—P—C11—C1265.57 (16)C11—P—C31—C36154.02 (14)
C21—P—C11—C1610.31 (17)Pd—P—C31—C3624.53 (16)
C31—P—C11—C16122.28 (15)C36—C31—C32—C330.7 (3)
Pd—P—C11—C16113.40 (14)P—C31—C32—C33177.86 (15)
C16—C11—C12—C130.2 (3)C31—C32—C33—C340.4 (3)
P—C11—C12—C13179.23 (14)C32—C33—C34—O3179.07 (18)
C11—C12—C13—C140.1 (3)C32—C33—C34—C350.4 (3)
C12—C13—C14—O1178.36 (18)O3—C34—C35—C36178.74 (17)
C12—C13—C14—C150.6 (3)C33—C34—C35—C360.7 (3)
O1—C14—C15—C16178.38 (18)C34—C35—C36—C310.4 (3)
C13—C14—C15—C160.6 (3)C32—C31—C36—C350.3 (3)
C14—C15—C16—C110.3 (3)P—C31—C36—C35177.54 (14)
C12—C11—C16—C150.1 (3)C15—C14—O1—C1175.70 (19)
P—C11—C16—C15179.15 (15)C13—C14—O1—C13.3 (3)
C31—P—C21—C22166.77 (14)C25—C24—O2—C2172.50 (17)
C11—P—C21—C2282.53 (15)C23—C24—O2—C26.5 (3)
Pd—P—C21—C2246.36 (15)C35—C34—O3—C3176.95 (18)
C31—P—C21—C2610.31 (17)C33—C34—O3—C33.6 (3)
C11—P—C21—C26100.39 (16)C07—C02—C03—C047.9 (11)
Pd—P—C21—C26130.73 (14)C01—C02—C03—C04174.1 (6)
C26—C21—C22—C230.4 (3)C02—C03—C04—C050.4 (9)
P—C21—C22—C23176.82 (14)C03—C04—C05—C069.8 (14)
C21—C22—C23—C242.2 (3)C04—C05—C06—C0710.3 (14)
C22—C23—C24—O2175.75 (17)C03—C02—C07—C067.4 (10)
C22—C23—C24—C253.2 (3)C01—C02—C07—C06174.4 (5)
O2—C24—C25—C26177.36 (17)C05—C06—C07—C021.1 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C01—H01B···O2ii0.982.363.327 (7)170
C3—H3A···O2iii0.982.573.255 (3)127
C36—H36···Cl0.952.793.5402 (19)136
Symmetry codes: (ii) x+1, y1, z; (iii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[PdCl2(C21H21O3P)2]·C7H8
Mr974.13
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8545 (4), 12.1231 (7), 12.4024 (8)
α, β, γ (°)85.666 (2), 78.762 (2), 75.919 (2)
V3)1123.03 (11)
Z1
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.27 × 0.2 × 0.08
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.844, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
19639, 5573, 5169
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.06
No. of reflections5573
No. of parameters273
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.67

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C01—H01B···O2i0.982.363.327 (7)170.1
C3—H3A···O2ii0.982.573.255 (3)126.6
C36—H36···Cl0.952.793.5402 (19)136.1
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z+2.
 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg and SASOL is gratefully acknowledged. The University of the Free State (Professor A. Roodt) is thanked for the use of its diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMeijboom, R. & Omondi, B. (2010). Acta Cryst. B66. Submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpessard, G. O. & Miessler, G. L. (1996). Organometallic Chemistry, pp. 131–135. New Jersey: Prentice Hall.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds