organic compounds
2,5-Dimethyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one
aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com
In the title molecule, C15H17NO, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cycloheptene ring adopts a slightly distorted boat conformation. In the intermolecular C—H⋯O hydrogen bonds are found.
Related literature
For the importance of the indole nucleus, see: Satoshi & Tominari (2001). For the synthesis of fused cyclohept[b]indole derivatives, see: Butin et al. (2010); Fujimori & Yamane (1978); Wahlström et al. (2007). For heteroannulated cyclohept[b]indole derivatives, see: Kavitha & Prasad (1999, 2001). For crystallographic studies of cyclohept[b]indoles, see: Sridharan et al. (2008a,b, 2009); Yamuna et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S1600536810041772/hg2724sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041772/hg2724Isup2.hkl
To a solution of 2-methyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one (0.213 g, 0.001 mol) in 5 ml acetone added powdered KOH (0.280 g, 0.005 mol) in ice cold condition. After few minutes methyl iodide (0.13 ml, 0.002 mol) was added drop by drop with vigorous stirring and the reaction mixture was stirrired for 15 min at room temperature. Benzene was added to the reaction mixture and insoluble materials are removed by filtration. The benzene solution was washed with saturated NaCl solution, dried by using Na2SO4 and evaporation yielded the title compound (0.204 g, 90%). This was recrystallized from benzene and ethyl acetate mixture.
Owing to the absence of any anamalous scatterers in the molecule, the Friedel pairs were merged. The
in the present model have been chosen arbitrarily. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2 - 1.5 times Ueq(C).Since the indole nucleus is present in a large number of naturally occurring as well as biologically active molecules, indole derivatives are of considerable contemporary interest and importance (Satoshi & Tominari, 2001). Due to the importance of these compounds, several fused cyclohept[b]indole derivatives have been synthesized (Butin et al., 2010); Fujimori & Yamane, 1978); Wahlström et al., 2007)). In our laboratory 7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one was used as a synthon to derive various heteroannulated cyclohept[b]indole derivatives (Kavitha & Prasad 1999, 2001). Recently we have reported crystallographic studies for some cyclohept[b]indoles from our laboratory (Sridharan et al., 2008a,b, 2009); Yamuna et al., 2010). For optimal drug design, knowledge of the exact geometry and shape of the molecule is essential and thus we decided to subject the compounds synthesized to single-crystal X-ray diffraction studies.
The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, C15H17NO, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cycloheptene ring adopts a slightly distorted boat conformation. In the
intermolecular C—H···O hydrogen bonds are found (Table 1, Fig. 2).For the importance of the indole nucleus, see: Satoshi & Tominari (2001). For the synthesis of fused cyclohept[b]indole derivatives, see: Butin et al. (2010); Fujimori & Yamane (1978); Wahlström et al. (2007). For heteroannulated cyclohept[b]indole derivatives, see: Kavitha & Prasad (1999, 2001). For crystallographic studies of cyclohept[b]indoles, see: Sridharan et al. (2008a,b, 2009); Yamuna et al. (2010).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).C15H17NO | Dx = 1.215 Mg m−3 |
Mr = 227.30 | Melting point: 346 K |
Orthorhombic, Pca21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2c -2ac | Cell parameters from 2494 reflections |
a = 15.5889 (3) Å | θ = 5.1–73.7° |
b = 10.5707 (2) Å | µ = 0.59 mm−1 |
c = 7.5388 (2) Å | T = 295 K |
V = 1242.29 (5) Å3 | Plate, pale yellow-orange |
Z = 4 | 0.49 × 0.32 × 0.12 mm |
F(000) = 488 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 1327 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1285 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 73.8°, θmin = 5.1° |
ω scans | h = 0→19 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = 0→13 |
Tmin = 0.887, Tmax = 1.000 | l = 0→9 |
1327 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.097P)2 + 0.041P] where P = (Fo2 + 2Fc2)/3 |
1327 reflections | (Δ/σ)max = 0.001 |
156 parameters | Δρmax = 0.17 e Å−3 |
1 restraint | Δρmin = −0.16 e Å−3 |
C15H17NO | V = 1242.29 (5) Å3 |
Mr = 227.30 | Z = 4 |
Orthorhombic, Pca21 | Cu Kα radiation |
a = 15.5889 (3) Å | µ = 0.59 mm−1 |
b = 10.5707 (2) Å | T = 295 K |
c = 7.5388 (2) Å | 0.49 × 0.32 × 0.12 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 1327 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1285 reflections with I > 2σ(I) |
Tmin = 0.887, Tmax = 1.000 | Rint = 0.000 |
1327 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 1 restraint |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.17 e Å−3 |
1327 reflections | Δρmin = −0.16 e Å−3 |
156 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O6 | 0.18943 (11) | 0.4617 (2) | 0.5238 (5) | 0.1003 (11) | |
N5 | 0.29328 (12) | 0.68004 (18) | 0.4471 (3) | 0.0561 (6) | |
C1 | 0.51734 (15) | 0.75136 (19) | 0.4664 (3) | 0.0534 (6) | |
C2 | 0.52228 (19) | 0.8760 (2) | 0.4100 (4) | 0.0667 (8) | |
C3 | 0.4462 (2) | 0.9404 (2) | 0.3639 (5) | 0.0789 (9) | |
C4 | 0.3667 (2) | 0.8856 (2) | 0.3734 (4) | 0.0738 (9) | |
C4A | 0.36199 (15) | 0.7584 (2) | 0.4294 (3) | 0.0534 (6) | |
C5 | 0.20448 (16) | 0.7199 (3) | 0.4212 (5) | 0.0757 (9) | |
C5A | 0.32271 (11) | 0.56233 (19) | 0.5029 (3) | 0.0478 (5) | |
C6 | 0.26683 (13) | 0.4538 (2) | 0.5353 (3) | 0.0573 (6) | |
C7 | 0.30755 (16) | 0.3306 (2) | 0.5819 (5) | 0.0711 (9) | |
C8 | 0.37596 (17) | 0.2890 (3) | 0.4485 (6) | 0.0817 (12) | |
C9 | 0.46482 (15) | 0.3391 (2) | 0.4821 (4) | 0.0614 (7) | |
C10 | 0.46951 (13) | 0.46270 (19) | 0.5847 (4) | 0.0536 (6) | |
C10A | 0.41137 (11) | 0.56610 (16) | 0.5207 (3) | 0.0434 (5) | |
C10B | 0.43718 (13) | 0.69124 (18) | 0.4753 (3) | 0.0469 (5) | |
C21 | 0.6075 (3) | 0.9427 (3) | 0.3943 (6) | 0.0945 (13) | |
H1 | 0.56686 | 0.70786 | 0.49820 | 0.0640* | |
H3 | 0.45022 | 1.02372 | 0.32532 | 0.0947* | |
H4 | 0.31752 | 0.93066 | 0.34395 | 0.0886* | |
H5A | 0.20287 | 0.79065 | 0.34142 | 0.1136* | |
H5B | 0.18019 | 0.74410 | 0.53321 | 0.1136* | |
H5C | 0.17200 | 0.65120 | 0.37201 | 0.1136* | |
H7A | 0.26345 | 0.26605 | 0.58845 | 0.0853* | |
H7B | 0.33362 | 0.33765 | 0.69835 | 0.0853* | |
H8A | 0.37840 | 0.19726 | 0.44833 | 0.0980* | |
H8B | 0.35808 | 0.31561 | 0.33110 | 0.0980* | |
H9A | 0.49307 | 0.35096 | 0.36871 | 0.0737* | |
H9B | 0.49689 | 0.27543 | 0.54691 | 0.0737* | |
H10A | 0.45605 | 0.44540 | 0.70798 | 0.0643* | |
H10B | 0.52813 | 0.49334 | 0.58032 | 0.0643* | |
H21A | 0.65287 | 0.88480 | 0.42275 | 0.1418* | |
H21B | 0.60900 | 1.01291 | 0.47511 | 0.1418* | |
H21C | 0.61481 | 0.97296 | 0.27521 | 0.1418* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O6 | 0.0441 (8) | 0.0967 (14) | 0.160 (3) | −0.0048 (8) | 0.0028 (14) | 0.0057 (18) |
N5 | 0.0518 (9) | 0.0564 (10) | 0.0600 (11) | 0.0183 (8) | −0.0059 (8) | −0.0087 (9) |
C1 | 0.0627 (11) | 0.0451 (9) | 0.0524 (12) | −0.0035 (8) | 0.0046 (9) | −0.0064 (8) |
C2 | 0.0934 (17) | 0.0432 (10) | 0.0636 (14) | −0.0093 (10) | 0.0126 (13) | −0.0110 (11) |
C3 | 0.122 (2) | 0.0374 (9) | 0.0772 (18) | −0.0010 (12) | 0.0128 (18) | −0.0027 (12) |
C4 | 0.1000 (19) | 0.0475 (12) | 0.0740 (17) | 0.0272 (12) | −0.0020 (14) | −0.0022 (12) |
C4A | 0.0629 (12) | 0.0465 (10) | 0.0509 (10) | 0.0129 (8) | 0.0003 (9) | −0.0069 (9) |
C5 | 0.0588 (13) | 0.0851 (17) | 0.0833 (17) | 0.0332 (13) | −0.0132 (13) | −0.0156 (16) |
C5A | 0.0438 (9) | 0.0511 (10) | 0.0485 (9) | 0.0080 (7) | 0.0005 (8) | −0.0059 (9) |
C6 | 0.0440 (9) | 0.0653 (11) | 0.0625 (12) | −0.0037 (8) | 0.0062 (9) | −0.0094 (11) |
C7 | 0.0565 (11) | 0.0587 (12) | 0.098 (2) | −0.0114 (10) | 0.0112 (13) | 0.0050 (15) |
C8 | 0.0641 (13) | 0.0681 (14) | 0.113 (3) | 0.0050 (11) | −0.0031 (16) | −0.0378 (19) |
C9 | 0.0596 (11) | 0.0469 (10) | 0.0777 (15) | 0.0111 (8) | 0.0124 (11) | 0.0058 (11) |
C10 | 0.0425 (8) | 0.0492 (10) | 0.0691 (14) | 0.0037 (7) | −0.0056 (9) | 0.0103 (10) |
C10A | 0.0429 (8) | 0.0430 (9) | 0.0444 (9) | 0.0042 (7) | −0.0001 (8) | −0.0025 (8) |
C10B | 0.0567 (10) | 0.0404 (9) | 0.0436 (9) | 0.0062 (7) | 0.0024 (8) | −0.0033 (8) |
C21 | 0.120 (3) | 0.0646 (15) | 0.099 (2) | −0.0374 (17) | 0.018 (2) | −0.0114 (17) |
O6—C6 | 1.213 (3) | C10A—C10B | 1.424 (3) |
N5—C4A | 1.361 (3) | C1—H1 | 0.9300 |
N5—C5 | 1.460 (3) | C3—H3 | 0.9300 |
N5—C5A | 1.391 (3) | C4—H4 | 0.9300 |
C1—C2 | 1.387 (3) | C5—H5A | 0.9600 |
C1—C10B | 1.404 (3) | C5—H5B | 0.9600 |
C2—C3 | 1.411 (4) | C5—H5C | 0.9600 |
C2—C21 | 1.509 (5) | C7—H7A | 0.9700 |
C3—C4 | 1.370 (4) | C7—H7B | 0.9700 |
C4—C4A | 1.411 (3) | C8—H8A | 0.9700 |
C4A—C10B | 1.413 (3) | C8—H8B | 0.9700 |
C5A—C6 | 1.461 (3) | C9—H9A | 0.9700 |
C5A—C10A | 1.389 (2) | C9—H9B | 0.9700 |
C6—C7 | 1.491 (3) | C10—H10A | 0.9700 |
C7—C8 | 1.530 (5) | C10—H10B | 0.9700 |
C8—C9 | 1.505 (4) | C21—H21A | 0.9600 |
C9—C10 | 1.520 (3) | C21—H21B | 0.9600 |
C10—C10A | 1.500 (3) | C21—H21C | 0.9600 |
O6···N5 | 2.878 (3) | H1···O6viii | 2.6300 |
O6···C5 | 2.847 (4) | H3···H8Avi | 2.3400 |
O6···H5C | 2.3200 | H4···C5 | 2.9000 |
O6···H7Bi | 2.8100 | H4···H5A | 2.3200 |
O6···H8Bii | 2.8800 | H5A···C4 | 2.7500 |
O6···H1iii | 2.6300 | H5A···H4 | 2.3200 |
O6···H10Biii | 2.5900 | H5B···C4ii | 3.0600 |
N5···O6 | 2.878 (3) | H5B···C4Aii | 3.0600 |
C5···O6 | 2.847 (4) | H5C···O6 | 2.3200 |
C5···C5Ai | 3.591 (4) | H5C···C6 | 2.8400 |
C5A···C5ii | 3.591 (4) | H5C···C5Ai | 2.9400 |
C1···H10Aiv | 2.8800 | H5C···C10Ai | 3.0800 |
C1···H10B | 2.8600 | H7B···C10 | 2.6400 |
C3···H21Bv | 3.0900 | H7B···C10A | 3.0200 |
C3···H8Avi | 2.9800 | H7B···H10A | 2.2200 |
C4···H5Bi | 3.0600 | H7B···O6ii | 2.8100 |
C4···H5A | 2.7500 | H8A···C3ix | 2.9800 |
C4A···H5Bi | 3.0600 | H8A···H3ix | 2.3400 |
C5···H4 | 2.9000 | H8B···C5A | 2.9600 |
C5A···H8B | 2.9600 | H8B···O6i | 2.8800 |
C5A···H5Cii | 2.9400 | H9A···C10iv | 2.9700 |
C6···H5C | 2.8400 | H9A···H10Aiv | 2.5900 |
C7···H10A | 2.7800 | H10A···C7 | 2.7800 |
C10···H1 | 3.0700 | H10A···H7B | 2.2200 |
C10···H7B | 2.6400 | H10A···C1vii | 2.8800 |
C10···H9Avii | 2.9700 | H10A···C10Bvii | 2.9900 |
C10A···H7B | 3.0200 | H10A···H9Avii | 2.5900 |
C10A···H5Cii | 3.0800 | H10B···C1 | 2.8600 |
C10B···H10Aiv | 2.9900 | H10B···H1 | 2.4300 |
H1···C10 | 3.0700 | H10B···O6viii | 2.5900 |
H1···H10B | 2.4300 | H21A···H1 | 2.3700 |
H1···H21A | 2.3700 | H21B···C3x | 3.0900 |
C4A—N5—C5 | 123.9 (2) | C4A—C4—H4 | 121.00 |
C4A—N5—C5A | 108.33 (17) | N5—C5—H5A | 109.00 |
C5—N5—C5A | 127.7 (2) | N5—C5—H5B | 109.00 |
C2—C1—C10B | 119.6 (2) | N5—C5—H5C | 109.00 |
C1—C2—C3 | 119.2 (2) | H5A—C5—H5B | 109.00 |
C1—C2—C21 | 121.1 (3) | H5A—C5—H5C | 109.00 |
C3—C2—C21 | 119.7 (2) | H5B—C5—H5C | 109.00 |
C2—C3—C4 | 122.9 (2) | C6—C7—H7A | 109.00 |
C3—C4—C4A | 117.8 (2) | C6—C7—H7B | 109.00 |
N5—C4A—C4 | 130.6 (2) | C8—C7—H7A | 109.00 |
N5—C4A—C10B | 108.85 (18) | C8—C7—H7B | 109.00 |
C4—C4A—C10B | 120.6 (2) | H7A—C7—H7B | 108.00 |
N5—C5A—C6 | 123.79 (17) | C7—C8—H8A | 108.00 |
N5—C5A—C10A | 109.37 (17) | C7—C8—H8B | 108.00 |
C6—C5A—C10A | 126.84 (18) | C9—C8—H8A | 108.00 |
O6—C6—C5A | 121.8 (2) | C9—C8—H8B | 108.00 |
O6—C6—C7 | 120.1 (2) | H8A—C8—H8B | 107.00 |
C5A—C6—C7 | 118.13 (18) | C8—C9—H9A | 108.00 |
C6—C7—C8 | 113.1 (3) | C8—C9—H9B | 108.00 |
C7—C8—C9 | 115.5 (3) | C10—C9—H9A | 108.00 |
C8—C9—C10 | 115.6 (2) | C10—C9—H9B | 108.00 |
C9—C10—C10A | 115.7 (2) | H9A—C9—H9B | 107.00 |
C5A—C10A—C10 | 127.70 (17) | C9—C10—H10A | 108.00 |
C5A—C10A—C10B | 106.53 (16) | C9—C10—H10B | 108.00 |
C10—C10A—C10B | 125.70 (16) | C10A—C10—H10A | 108.00 |
C1—C10B—C4A | 119.95 (18) | C10A—C10—H10B | 108.00 |
C1—C10B—C10A | 133.12 (19) | H10A—C10—H10B | 107.00 |
C4A—C10B—C10A | 106.92 (17) | C2—C21—H21A | 109.00 |
C2—C1—H1 | 120.00 | C2—C21—H21B | 109.00 |
C10B—C1—H1 | 120.00 | C2—C21—H21C | 109.00 |
C2—C3—H3 | 119.00 | H21A—C21—H21B | 109.00 |
C4—C3—H3 | 119.00 | H21A—C21—H21C | 110.00 |
C3—C4—H4 | 121.00 | H21B—C21—H21C | 109.00 |
C5—N5—C4A—C4 | −5.0 (4) | C4—C4A—C10B—C10A | −178.4 (2) |
C5—N5—C4A—C10B | 176.1 (3) | N5—C5A—C6—O6 | −3.8 (4) |
C5A—N5—C4A—C4 | 178.6 (3) | N5—C5A—C6—C7 | 175.6 (2) |
C5A—N5—C4A—C10B | −0.4 (3) | C10A—C5A—C6—O6 | 176.5 (3) |
C4A—N5—C5A—C6 | −179.7 (2) | C10A—C5A—C6—C7 | −4.1 (4) |
C4A—N5—C5A—C10A | 0.0 (3) | N5—C5A—C10A—C10 | 177.3 (2) |
C5—N5—C5A—C6 | 4.0 (4) | N5—C5A—C10A—C10B | 0.4 (3) |
C5—N5—C5A—C10A | −176.4 (3) | C6—C5A—C10A—C10 | −3.1 (4) |
C10B—C1—C2—C3 | 0.5 (4) | C6—C5A—C10A—C10B | −179.9 (2) |
C10B—C1—C2—C21 | −178.4 (3) | O6—C6—C7—C8 | 126.1 (3) |
C2—C1—C10B—C4A | −0.9 (3) | C5A—C6—C7—C8 | −53.3 (3) |
C2—C1—C10B—C10A | 177.5 (3) | C6—C7—C8—C9 | 86.9 (3) |
C1—C2—C3—C4 | 0.5 (5) | C7—C8—C9—C10 | −25.7 (4) |
C21—C2—C3—C4 | 179.5 (3) | C8—C9—C10—C10A | −48.2 (3) |
C2—C3—C4—C4A | −1.0 (5) | C9—C10—C10A—C5A | 57.1 (3) |
C3—C4—C4A—N5 | −178.3 (3) | C9—C10—C10A—C10B | −126.6 (2) |
C3—C4—C4A—C10B | 0.6 (4) | C5A—C10A—C10B—C1 | −179.3 (2) |
N5—C4A—C10B—C1 | 179.5 (2) | C5A—C10A—C10B—C4A | −0.7 (3) |
N5—C4A—C10B—C10A | 0.6 (3) | C10—C10A—C10B—C1 | 3.9 (4) |
C4—C4A—C10B—C1 | 0.4 (3) | C10—C10A—C10B—C4A | −177.5 (2) |
Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) −x+1/2, y, z+1/2; (iii) x−1/2, −y+1, z; (iv) −x+1, −y+1, z−1/2; (v) −x+1, −y+2, z−1/2; (vi) x, y+1, z; (vii) −x+1, −y+1, z+1/2; (viii) x+1/2, −y+1, z; (ix) x, y−1, z; (x) −x+1, −y+2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O6viii | 0.97 | 2.59 | 3.550 (3) | 168 |
Symmetry code: (viii) x+1/2, −y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C15H17NO |
Mr | 227.30 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 295 |
a, b, c (Å) | 15.5889 (3), 10.5707 (2), 7.5388 (2) |
V (Å3) | 1242.29 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.59 |
Crystal size (mm) | 0.49 × 0.32 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.887, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1327, 1327, 1285 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.623 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.129, 1.09 |
No. of reflections | 1327 |
No. of parameters | 156 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.17, −0.16 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O6i | 0.97 | 2.59 | 3.550 (3) | 168 |
Symmetry code: (i) x+1/2, −y+1, z. |
Acknowledgements
RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Butin, A. V., Kostyukova, N. O., Tsiunchik, F. A., Lysenko, S. A. & Trushkov, I. V. (2010). Chem. Heterocycl. Compd, 46, 117–119. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fujimori, K. & Yamane, K. (1978). Bull. Chem. Soc. Jpn, 51, 3579–3581. CrossRef CAS Web of Science Google Scholar
Kavitha, C. & Prasad, K. J. R. (1999). Heterocycl. Commun. 5, 481–488. CrossRef CAS Google Scholar
Kavitha, C. & Prasad, K. J. R. (2001). Indian J. Chem. Sect. B, 40, 601–602. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Satoshi, H. & Tominari, C. (2001). Nat. Prod. Rep. 18, 66–87. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Butcher, R. J. (2008a). Acta Cryst. E64, o1697. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008b). Acta Cryst. E64, o1207. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sridharan, M., Rajendra Prasad, K. J., Thomas Gunaseelan, A., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o698. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wahlström, N., Slatt, J., Stensland, B., Ertan, A., Bergman, J. & Janosik, T. (2007). J. Org. Chem. 72, 5886–5889. Web of Science PubMed Google Scholar
Yamuna, E., Sridharan, M., Prasad, K. J. R. & Zeller, M. (2010). J. Chem. Crystallogr. 40, 402–411. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since the indole nucleus is present in a large number of naturally occurring as well as biologically active molecules, indole derivatives are of considerable contemporary interest and importance (Satoshi & Tominari, 2001). Due to the importance of these compounds, several fused cyclohept[b]indole derivatives have been synthesized (Butin et al., 2010); Fujimori & Yamane, 1978); Wahlström et al., 2007)). In our laboratory 7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one was used as a synthon to derive various heteroannulated cyclohept[b]indole derivatives (Kavitha & Prasad 1999, 2001). Recently we have reported crystallographic studies for some cyclohept[b]indoles from our laboratory (Sridharan et al., 2008a,b, 2009); Yamuna et al., 2010). For optimal drug design, knowledge of the exact geometry and shape of the molecule is essential and thus we decided to subject the compounds synthesized to single-crystal X-ray diffraction studies.
The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, C15H17NO, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cycloheptene ring adopts a slightly distorted boat conformation. In the crystal structure intermolecular C—H···O hydrogen bonds are found (Table 1, Fig. 2).