organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­methyl-7,8,9,10-tetra­hydro­cyclo­hepta­[b]indol-6(5H)-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 5 October 2010; accepted 15 October 2010; online 23 October 2010)

In the title mol­ecule, C15H17NO, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cyclo­heptene ring adopts a slightly distorted boat conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds are found.

Related literature

For the importance of the indole nucleus, see: Satoshi & Tominari (2001[Satoshi, H. & Tominari, C. (2001). Nat. Prod. Rep. 18, 66-87.]). For the synthesis of fused cyclo­hept[b]indole derivatives, see: Butin et al. (2010[Butin, A. V., Kostyukova, N. O., Tsiunchik, F. A., Lysenko, S. A. & Trushkov, I. V. (2010). Chem. Heterocycl. Compd, 46, 117-119.]); Fujimori & Yamane (1978[Fujimori, K. & Yamane, K. (1978). Bull. Chem. Soc. Jpn, 51, 3579-3581.]); Wahlström et al. (2007[Wahlström, N., Slatt, J., Stensland, B., Ertan, A., Bergman, J. & Janosik, T. (2007). J. Org. Chem. 72, 5886-5889.]). For heteroannulated cyclo­hept[b]indole derivatives, see: Kavitha & Prasad (1999[Kavitha, C. & Prasad, K. J. R. (1999). Heterocycl. Commun. 5, 481-488.], 2001[Kavitha, C. & Prasad, K. J. R. (2001). Indian J. Chem. Sect. B, 40, 601-602.]). For crystallographic studies of cyclo­hept[b]indoles, see: Sridharan et al. (2008a[Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Butcher, R. J. (2008a). Acta Cryst. E64, o1697.],b[Sridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008b). Acta Cryst. E64, o1207.], 2009[Sridharan, M., Rajendra Prasad, K. J., Thomas Gunaseelan, A., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o698.]); Yamuna et al. (2010[Yamuna, E., Sridharan, M., Prasad, K. J. R. & Zeller, M. (2010). J. Chem. Crystallogr. 40, 402-411.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO

  • Mr = 227.30

  • Orthorhombic, P c a 21

  • a = 15.5889 (3) Å

  • b = 10.5707 (2) Å

  • c = 7.5388 (2) Å

  • V = 1242.29 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 295 K

  • 0.49 × 0.32 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.887, Tmax = 1.000

  • 1327 measured reflections

  • 1327 independent reflections

  • 1285 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.129

  • S = 1.09

  • 1327 reflections

  • 156 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O6i 0.97 2.59 3.550 (3) 168
Symmetry code: (i) [x+{\script{1\over 2}}, -y+1, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Since the indole nucleus is present in a large number of naturally occurring as well as biologically active molecules, indole derivatives are of considerable contemporary interest and importance (Satoshi & Tominari, 2001). Due to the importance of these compounds, several fused cyclohept[b]indole derivatives have been synthesized (Butin et al., 2010); Fujimori & Yamane, 1978); Wahlström et al., 2007)). In our laboratory 7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one was used as a synthon to derive various heteroannulated cyclohept[b]indole derivatives (Kavitha & Prasad 1999, 2001). Recently we have reported crystallographic studies for some cyclohept[b]indoles from our laboratory (Sridharan et al., 2008a,b, 2009); Yamuna et al., 2010). For optimal drug design, knowledge of the exact geometry and shape of the molecule is essential and thus we decided to subject the compounds synthesized to single-crystal X-ray diffraction studies.

The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, C15H17NO, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cycloheptene ring adopts a slightly distorted boat conformation. In the crystal structure intermolecular C—H···O hydrogen bonds are found (Table 1, Fig. 2).

Related literature top

For the importance of the indole nucleus, see: Satoshi & Tominari (2001). For the synthesis of fused cyclohept[b]indole derivatives, see: Butin et al. (2010); Fujimori & Yamane (1978); Wahlström et al. (2007). For heteroannulated cyclohept[b]indole derivatives, see: Kavitha & Prasad (1999, 2001). For crystallographic studies of cyclohept[b]indoles, see: Sridharan et al. (2008a,b, 2009); Yamuna et al. (2010).

Experimental top

To a solution of 2-methyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one (0.213 g, 0.001 mol) in 5 ml acetone added powdered KOH (0.280 g, 0.005 mol) in ice cold condition. After few minutes methyl iodide (0.13 ml, 0.002 mol) was added drop by drop with vigorous stirring and the reaction mixture was stirrired for 15 min at room temperature. Benzene was added to the reaction mixture and insoluble materials are removed by filtration. The benzene solution was washed with saturated NaCl solution, dried by using Na2SO4 and evaporation yielded the title compound (0.204 g, 90%). This was recrystallized from benzene and ethyl acetate mixture.

Refinement top

Owing to the absence of any anamalous scatterers in the molecule, the Friedel pairs were merged. The absolute structure in the present model have been chosen arbitrarily. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.2 - 1.5 times Ueq(C).

Structure description top

Since the indole nucleus is present in a large number of naturally occurring as well as biologically active molecules, indole derivatives are of considerable contemporary interest and importance (Satoshi & Tominari, 2001). Due to the importance of these compounds, several fused cyclohept[b]indole derivatives have been synthesized (Butin et al., 2010); Fujimori & Yamane, 1978); Wahlström et al., 2007)). In our laboratory 7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one was used as a synthon to derive various heteroannulated cyclohept[b]indole derivatives (Kavitha & Prasad 1999, 2001). Recently we have reported crystallographic studies for some cyclohept[b]indoles from our laboratory (Sridharan et al., 2008a,b, 2009); Yamuna et al., 2010). For optimal drug design, knowledge of the exact geometry and shape of the molecule is essential and thus we decided to subject the compounds synthesized to single-crystal X-ray diffraction studies.

The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. In the title molecule, C15H17NO, the dihedral angle between the benzene and pyrrole rings is 1.45 (13)°. The cycloheptene ring adopts a slightly distorted boat conformation. In the crystal structure intermolecular C—H···O hydrogen bonds are found (Table 1, Fig. 2).

For the importance of the indole nucleus, see: Satoshi & Tominari (2001). For the synthesis of fused cyclohept[b]indole derivatives, see: Butin et al. (2010); Fujimori & Yamane (1978); Wahlström et al. (2007). For heteroannulated cyclohept[b]indole derivatives, see: Kavitha & Prasad (1999, 2001). For crystallographic studies of cyclohept[b]indoles, see: Sridharan et al. (2008a,b, 2009); Yamuna et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
2,5-Dimethyl-7,8,9,10-tetrahydrocyclohepta[b]indol-6(5H)-one top
Crystal data top
C15H17NODx = 1.215 Mg m3
Mr = 227.30Melting point: 346 K
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2acCell parameters from 2494 reflections
a = 15.5889 (3) Åθ = 5.1–73.7°
b = 10.5707 (2) ŵ = 0.59 mm1
c = 7.5388 (2) ÅT = 295 K
V = 1242.29 (5) Å3Plate, pale yellow-orange
Z = 40.49 × 0.32 × 0.12 mm
F(000) = 488
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1327 independent reflections
Radiation source: Enhance (Cu) X-ray Source1285 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 10.5081 pixels mm-1θmax = 73.8°, θmin = 5.1°
ω scansh = 019
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 013
Tmin = 0.887, Tmax = 1.000l = 09
1327 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.097P)2 + 0.041P]
where P = (Fo2 + 2Fc2)/3
1327 reflections(Δ/σ)max = 0.001
156 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C15H17NOV = 1242.29 (5) Å3
Mr = 227.30Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 15.5889 (3) ŵ = 0.59 mm1
b = 10.5707 (2) ÅT = 295 K
c = 7.5388 (2) Å0.49 × 0.32 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
1327 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1285 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.000
1327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.129H-atom parameters constrained
S = 1.09Δρmax = 0.17 e Å3
1327 reflectionsΔρmin = 0.16 e Å3
156 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.18943 (11)0.4617 (2)0.5238 (5)0.1003 (11)
N50.29328 (12)0.68004 (18)0.4471 (3)0.0561 (6)
C10.51734 (15)0.75136 (19)0.4664 (3)0.0534 (6)
C20.52228 (19)0.8760 (2)0.4100 (4)0.0667 (8)
C30.4462 (2)0.9404 (2)0.3639 (5)0.0789 (9)
C40.3667 (2)0.8856 (2)0.3734 (4)0.0738 (9)
C4A0.36199 (15)0.7584 (2)0.4294 (3)0.0534 (6)
C50.20448 (16)0.7199 (3)0.4212 (5)0.0757 (9)
C5A0.32271 (11)0.56233 (19)0.5029 (3)0.0478 (5)
C60.26683 (13)0.4538 (2)0.5353 (3)0.0573 (6)
C70.30755 (16)0.3306 (2)0.5819 (5)0.0711 (9)
C80.37596 (17)0.2890 (3)0.4485 (6)0.0817 (12)
C90.46482 (15)0.3391 (2)0.4821 (4)0.0614 (7)
C100.46951 (13)0.46270 (19)0.5847 (4)0.0536 (6)
C10A0.41137 (11)0.56610 (16)0.5207 (3)0.0434 (5)
C10B0.43718 (13)0.69124 (18)0.4753 (3)0.0469 (5)
C210.6075 (3)0.9427 (3)0.3943 (6)0.0945 (13)
H10.566860.707860.498200.0640*
H30.450221.023720.325320.0947*
H40.317520.930660.343950.0886*
H5A0.202870.790650.341420.1136*
H5B0.180190.744100.533210.1136*
H5C0.172000.651200.372010.1136*
H7A0.263450.266050.588450.0853*
H7B0.333620.337650.698350.0853*
H8A0.378400.197260.448330.0980*
H8B0.358080.315610.331100.0980*
H9A0.493070.350960.368710.0737*
H9B0.496890.275430.546910.0737*
H10A0.456050.445400.707980.0643*
H10B0.528130.493340.580320.0643*
H21A0.652870.884800.422750.1418*
H21B0.609001.012910.475110.1418*
H21C0.614810.972960.275210.1418*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0441 (8)0.0967 (14)0.160 (3)0.0048 (8)0.0028 (14)0.0057 (18)
N50.0518 (9)0.0564 (10)0.0600 (11)0.0183 (8)0.0059 (8)0.0087 (9)
C10.0627 (11)0.0451 (9)0.0524 (12)0.0035 (8)0.0046 (9)0.0064 (8)
C20.0934 (17)0.0432 (10)0.0636 (14)0.0093 (10)0.0126 (13)0.0110 (11)
C30.122 (2)0.0374 (9)0.0772 (18)0.0010 (12)0.0128 (18)0.0027 (12)
C40.1000 (19)0.0475 (12)0.0740 (17)0.0272 (12)0.0020 (14)0.0022 (12)
C4A0.0629 (12)0.0465 (10)0.0509 (10)0.0129 (8)0.0003 (9)0.0069 (9)
C50.0588 (13)0.0851 (17)0.0833 (17)0.0332 (13)0.0132 (13)0.0156 (16)
C5A0.0438 (9)0.0511 (10)0.0485 (9)0.0080 (7)0.0005 (8)0.0059 (9)
C60.0440 (9)0.0653 (11)0.0625 (12)0.0037 (8)0.0062 (9)0.0094 (11)
C70.0565 (11)0.0587 (12)0.098 (2)0.0114 (10)0.0112 (13)0.0050 (15)
C80.0641 (13)0.0681 (14)0.113 (3)0.0050 (11)0.0031 (16)0.0378 (19)
C90.0596 (11)0.0469 (10)0.0777 (15)0.0111 (8)0.0124 (11)0.0058 (11)
C100.0425 (8)0.0492 (10)0.0691 (14)0.0037 (7)0.0056 (9)0.0103 (10)
C10A0.0429 (8)0.0430 (9)0.0444 (9)0.0042 (7)0.0001 (8)0.0025 (8)
C10B0.0567 (10)0.0404 (9)0.0436 (9)0.0062 (7)0.0024 (8)0.0033 (8)
C210.120 (3)0.0646 (15)0.099 (2)0.0374 (17)0.018 (2)0.0114 (17)
Geometric parameters (Å, º) top
O6—C61.213 (3)C10A—C10B1.424 (3)
N5—C4A1.361 (3)C1—H10.9300
N5—C51.460 (3)C3—H30.9300
N5—C5A1.391 (3)C4—H40.9300
C1—C21.387 (3)C5—H5A0.9600
C1—C10B1.404 (3)C5—H5B0.9600
C2—C31.411 (4)C5—H5C0.9600
C2—C211.509 (5)C7—H7A0.9700
C3—C41.370 (4)C7—H7B0.9700
C4—C4A1.411 (3)C8—H8A0.9700
C4A—C10B1.413 (3)C8—H8B0.9700
C5A—C61.461 (3)C9—H9A0.9700
C5A—C10A1.389 (2)C9—H9B0.9700
C6—C71.491 (3)C10—H10A0.9700
C7—C81.530 (5)C10—H10B0.9700
C8—C91.505 (4)C21—H21A0.9600
C9—C101.520 (3)C21—H21B0.9600
C10—C10A1.500 (3)C21—H21C0.9600
O6···N52.878 (3)H1···O6viii2.6300
O6···C52.847 (4)H3···H8Avi2.3400
O6···H5C2.3200H4···C52.9000
O6···H7Bi2.8100H4···H5A2.3200
O6···H8Bii2.8800H5A···C42.7500
O6···H1iii2.6300H5A···H42.3200
O6···H10Biii2.5900H5B···C4ii3.0600
N5···O62.878 (3)H5B···C4Aii3.0600
C5···O62.847 (4)H5C···O62.3200
C5···C5Ai3.591 (4)H5C···C62.8400
C5A···C5ii3.591 (4)H5C···C5Ai2.9400
C1···H10Aiv2.8800H5C···C10Ai3.0800
C1···H10B2.8600H7B···C102.6400
C3···H21Bv3.0900H7B···C10A3.0200
C3···H8Avi2.9800H7B···H10A2.2200
C4···H5Bi3.0600H7B···O6ii2.8100
C4···H5A2.7500H8A···C3ix2.9800
C4A···H5Bi3.0600H8A···H3ix2.3400
C5···H42.9000H8B···C5A2.9600
C5A···H8B2.9600H8B···O6i2.8800
C5A···H5Cii2.9400H9A···C10iv2.9700
C6···H5C2.8400H9A···H10Aiv2.5900
C7···H10A2.7800H10A···C72.7800
C10···H13.0700H10A···H7B2.2200
C10···H7B2.6400H10A···C1vii2.8800
C10···H9Avii2.9700H10A···C10Bvii2.9900
C10A···H7B3.0200H10A···H9Avii2.5900
C10A···H5Cii3.0800H10B···C12.8600
C10B···H10Aiv2.9900H10B···H12.4300
H1···C103.0700H10B···O6viii2.5900
H1···H10B2.4300H21A···H12.3700
H1···H21A2.3700H21B···C3x3.0900
C4A—N5—C5123.9 (2)C4A—C4—H4121.00
C4A—N5—C5A108.33 (17)N5—C5—H5A109.00
C5—N5—C5A127.7 (2)N5—C5—H5B109.00
C2—C1—C10B119.6 (2)N5—C5—H5C109.00
C1—C2—C3119.2 (2)H5A—C5—H5B109.00
C1—C2—C21121.1 (3)H5A—C5—H5C109.00
C3—C2—C21119.7 (2)H5B—C5—H5C109.00
C2—C3—C4122.9 (2)C6—C7—H7A109.00
C3—C4—C4A117.8 (2)C6—C7—H7B109.00
N5—C4A—C4130.6 (2)C8—C7—H7A109.00
N5—C4A—C10B108.85 (18)C8—C7—H7B109.00
C4—C4A—C10B120.6 (2)H7A—C7—H7B108.00
N5—C5A—C6123.79 (17)C7—C8—H8A108.00
N5—C5A—C10A109.37 (17)C7—C8—H8B108.00
C6—C5A—C10A126.84 (18)C9—C8—H8A108.00
O6—C6—C5A121.8 (2)C9—C8—H8B108.00
O6—C6—C7120.1 (2)H8A—C8—H8B107.00
C5A—C6—C7118.13 (18)C8—C9—H9A108.00
C6—C7—C8113.1 (3)C8—C9—H9B108.00
C7—C8—C9115.5 (3)C10—C9—H9A108.00
C8—C9—C10115.6 (2)C10—C9—H9B108.00
C9—C10—C10A115.7 (2)H9A—C9—H9B107.00
C5A—C10A—C10127.70 (17)C9—C10—H10A108.00
C5A—C10A—C10B106.53 (16)C9—C10—H10B108.00
C10—C10A—C10B125.70 (16)C10A—C10—H10A108.00
C1—C10B—C4A119.95 (18)C10A—C10—H10B108.00
C1—C10B—C10A133.12 (19)H10A—C10—H10B107.00
C4A—C10B—C10A106.92 (17)C2—C21—H21A109.00
C2—C1—H1120.00C2—C21—H21B109.00
C10B—C1—H1120.00C2—C21—H21C109.00
C2—C3—H3119.00H21A—C21—H21B109.00
C4—C3—H3119.00H21A—C21—H21C110.00
C3—C4—H4121.00H21B—C21—H21C109.00
C5—N5—C4A—C45.0 (4)C4—C4A—C10B—C10A178.4 (2)
C5—N5—C4A—C10B176.1 (3)N5—C5A—C6—O63.8 (4)
C5A—N5—C4A—C4178.6 (3)N5—C5A—C6—C7175.6 (2)
C5A—N5—C4A—C10B0.4 (3)C10A—C5A—C6—O6176.5 (3)
C4A—N5—C5A—C6179.7 (2)C10A—C5A—C6—C74.1 (4)
C4A—N5—C5A—C10A0.0 (3)N5—C5A—C10A—C10177.3 (2)
C5—N5—C5A—C64.0 (4)N5—C5A—C10A—C10B0.4 (3)
C5—N5—C5A—C10A176.4 (3)C6—C5A—C10A—C103.1 (4)
C10B—C1—C2—C30.5 (4)C6—C5A—C10A—C10B179.9 (2)
C10B—C1—C2—C21178.4 (3)O6—C6—C7—C8126.1 (3)
C2—C1—C10B—C4A0.9 (3)C5A—C6—C7—C853.3 (3)
C2—C1—C10B—C10A177.5 (3)C6—C7—C8—C986.9 (3)
C1—C2—C3—C40.5 (5)C7—C8—C9—C1025.7 (4)
C21—C2—C3—C4179.5 (3)C8—C9—C10—C10A48.2 (3)
C2—C3—C4—C4A1.0 (5)C9—C10—C10A—C5A57.1 (3)
C3—C4—C4A—N5178.3 (3)C9—C10—C10A—C10B126.6 (2)
C3—C4—C4A—C10B0.6 (4)C5A—C10A—C10B—C1179.3 (2)
N5—C4A—C10B—C1179.5 (2)C5A—C10A—C10B—C4A0.7 (3)
N5—C4A—C10B—C10A0.6 (3)C10—C10A—C10B—C13.9 (4)
C4—C4A—C10B—C10.4 (3)C10—C10A—C10B—C4A177.5 (2)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+1/2, y, z+1/2; (iii) x1/2, y+1, z; (iv) x+1, y+1, z1/2; (v) x+1, y+2, z1/2; (vi) x, y+1, z; (vii) x+1, y+1, z+1/2; (viii) x+1/2, y+1, z; (ix) x, y1, z; (x) x+1, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O6viii0.972.593.550 (3)168
Symmetry code: (viii) x+1/2, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H17NO
Mr227.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)295
a, b, c (Å)15.5889 (3), 10.5707 (2), 7.5388 (2)
V3)1242.29 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.59
Crystal size (mm)0.49 × 0.32 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
1327, 1327, 1285
Rint0.000
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.129, 1.09
No. of reflections1327
No. of parameters156
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O6i0.972.593.550 (3)168
Symmetry code: (i) x+1/2, y+1, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationButin, A. V., Kostyukova, N. O., Tsiunchik, F. A., Lysenko, S. A. & Trushkov, I. V. (2010). Chem. Heterocycl. Compd, 46, 117–119.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFujimori, K. & Yamane, K. (1978). Bull. Chem. Soc. Jpn, 51, 3579–3581.  CrossRef CAS Web of Science Google Scholar
First citationKavitha, C. & Prasad, K. J. R. (1999). Heterocycl. Commun. 5, 481–488.  CrossRef CAS Google Scholar
First citationKavitha, C. & Prasad, K. J. R. (2001). Indian J. Chem. Sect. B, 40, 601–602.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSatoshi, H. & Tominari, C. (2001). Nat. Prod. Rep. 18, 66–87.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Butcher, R. J. (2008a). Acta Cryst. E64, o1697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008b). Acta Cryst. E64, o1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSridharan, M., Rajendra Prasad, K. J., Thomas Gunaseelan, A., Thiruvalluvar, A. & Butcher, R. J. (2009). Acta Cryst. E65, o698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWahlström, N., Slatt, J., Stensland, B., Ertan, A., Bergman, J. & Janosik, T. (2007). J. Org. Chem. 72, 5886–5889.  Web of Science PubMed Google Scholar
First citationYamuna, E., Sridharan, M., Prasad, K. J. R. & Zeller, M. (2010). J. Chem. Crystallogr. 40, 402–411.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds