organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,3-Di­methyl-2,6-di­phenyl­piperidin-4-yl­­idene)isonicotinohydrazide

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 10 October 2010; accepted 12 October 2010; online 20 October 2010)

In the title mol­ecule, C25H26N4O, the piperidine ring adopts a chair conformation, with the plane through the four coplanar atoms making dihedral angles of 84.76 (6), 82.28 (5) and 81.91 (6)° with the pyridine­ring and the phenyl rings at the 2 and 6 positions, respectively. The pyridine ring makes dihedral angles of 64.13 (8) and 10.75 (8)° with the phenyl rings at the 2 and 6 positions, respectively. The dihedral angle between the two phenyl rings is 53.57 (8)°. The phenyl rings and one of the methyl groups at position 3 have an equatorial orientation. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the high bacteriostatic activity of isonicotinic acid hydrazide (INH) against mycobacterium tuberculosis, see: Hearn & Cynamon (2003[Hearn, M. J. & Cynamon, M. H. (2003). Drug Des. Discov. 18, 103-108.]). For Schiff bases of INH as anti­mycobacterial agents, see: Hearn et al. (2009[Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppins, R., Davis, J., Kang, H. J., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem. 44, 4169-4178.]). For a novel class of anti­mycobacterial agents, see: Jha & Dimmock (2006[Jha, A. & Dimmock, J. R. (2006). Pharmazie, 61, 562-563.]). For piperidin-4-ones as anti­bacterial agents, see: Srinivasan et al. (2006[Srinivasan, M., Perumal, S. & Selvaraj, S. (2006). Chem. Pharm. Bull. 54, 795-801.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N4O

  • Mr = 398.50

  • Triclinic, [P \overline 1]

  • a = 6.2128 (1) Å

  • b = 12.8346 (3) Å

  • c = 15.0022 (3) Å

  • α = 65.293 (1)°

  • β = 78.823 (1)°

  • γ = 86.948 (1)°

  • V = 1065.62 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 1.000

  • 25613 measured reflections

  • 5420 independent reflections

  • 3821 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.01

  • 5420 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O14i 0.89 (2) 2.10 (2) 2.9648 (17) 167.1 (17)
C5—H5A⋯O14i 0.97 2.56 3.4376 (17) 151
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2004[Bruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isonicotinoyl hydrazide is the chief derivative of isonicotinic acid, possessing high bacteriostatic activity against mycobacteria of tuberculosis (Hearn & Cynamon (2003)) and is used for the treatment and localization of all forms of tuberculosis. Piperidin-4-one and its derivatives have been long known for wide spectrum of biological activities (Srinivasan et al., (2006)). Schiff bases of Isonicotinic acid hydrazide (INH) (Hearn et al., (2009)) have been shown high levels of activity against Mycobacterium tuberculosis in vitro and in tuberculosis-infected macrophages. Jha & Dimmock (2006) have reported a novel class of antimycobacterial agents. Due to the above importance, the crystal structure of the title compound (I) has been determined by X-ray diffraction.

In the title molecule, C25H26N4O, Fig.1., the piperidine ring adopts a chair conformation, with the plane through the four coplanar atoms (C2,C3,C5,C6) making a dihedral angle of 84.76 (6)°, 82.28 (5)° & 81.91 (6)° with the pyridine, phenyl rings at 2 & 6 respectively. The pyridine ring makes dihedral angles of 64.13 (8)° & 10.75 (8)° with the phenyl rings at 2 & 6 respectively. The dihedral angle between the two phenyl rings is 53.57 (8)°. The phenyl rings at position 2 & 6 and one of the methyl groups at position 3 have an equatorial orientation. The hydrazone double bond has E configuration about the >CNNH bond. The puckering parameters (Cremer & Pople, 1975) of piperidine ring are q2=0.0644 (14) Å, q3=0.5856 (14) Å, Q=0.5890 (14) Å, θ=6.22 (14)° and φ=29.3 (13)°. Molecules are linked by N5—H5···O14 and C5—H5A···O14 hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the high bacteriosatic activity of isonicotinic acid hydrazide (INH) against mycobacterium tuberculosis, see: Hearn & Cynamon (2003). For Schiff bases of INH as antimycobacterial agents, see: Hearn et al. (2009). For a novel class of antimycobacterial agents, see: Jha & Dimmock (2006). For piperidin-4-ones as antibacterial agents, see: Srinivasan et al. (2006). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of 3,3-dimethyl-r(2),c(6)-diarylpiperidin-4-one (0.28 g, 1 mmol), isoniazid (0.21 g, 1.5 mmol) and 0.5 ml of acetic acid in methanol medium was refluxed for three hours and then cooled to room temperature. The precipitate was filtered and washed with water. The crude product was recrystallized from ethanol. Colourless crystals were thus obtained in (0.298 g, 75%) yield. A single-crystal suitable for X-ray structure analysis was obtained by slow evaporation of a solution in a mixture of ethyl acetate and ethanol (1:1 v/v) at room temperature.

Refinement top

H1 at N1 and H5 at N5 atoms were located in a difference Fourier map and refined isotropically: N1—H1 = 0.90 (2) Å, N5—H5 = 0.89 (2) Å. Remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with Csp2—H = 0.93, C(methyl)—H = 0.96, C(methylene)—H = 0.97 and C(methine)—H = 0.98 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Structure description top

Isonicotinoyl hydrazide is the chief derivative of isonicotinic acid, possessing high bacteriostatic activity against mycobacteria of tuberculosis (Hearn & Cynamon (2003)) and is used for the treatment and localization of all forms of tuberculosis. Piperidin-4-one and its derivatives have been long known for wide spectrum of biological activities (Srinivasan et al., (2006)). Schiff bases of Isonicotinic acid hydrazide (INH) (Hearn et al., (2009)) have been shown high levels of activity against Mycobacterium tuberculosis in vitro and in tuberculosis-infected macrophages. Jha & Dimmock (2006) have reported a novel class of antimycobacterial agents. Due to the above importance, the crystal structure of the title compound (I) has been determined by X-ray diffraction.

In the title molecule, C25H26N4O, Fig.1., the piperidine ring adopts a chair conformation, with the plane through the four coplanar atoms (C2,C3,C5,C6) making a dihedral angle of 84.76 (6)°, 82.28 (5)° & 81.91 (6)° with the pyridine, phenyl rings at 2 & 6 respectively. The pyridine ring makes dihedral angles of 64.13 (8)° & 10.75 (8)° with the phenyl rings at 2 & 6 respectively. The dihedral angle between the two phenyl rings is 53.57 (8)°. The phenyl rings at position 2 & 6 and one of the methyl groups at position 3 have an equatorial orientation. The hydrazone double bond has E configuration about the >CNNH bond. The puckering parameters (Cremer & Pople, 1975) of piperidine ring are q2=0.0644 (14) Å, q3=0.5856 (14) Å, Q=0.5890 (14) Å, θ=6.22 (14)° and φ=29.3 (13)°. Molecules are linked by N5—H5···O14 and C5—H5A···O14 hydrogen bonds (Table 1, Fig. 2).

For the high bacteriosatic activity of isonicotinic acid hydrazide (INH) against mycobacterium tuberculosis, see: Hearn & Cynamon (2003). For Schiff bases of INH as antimycobacterial agents, see: Hearn et al. (2009). For a novel class of antimycobacterial agents, see: Jha & Dimmock (2006). For piperidin-4-ones as antibacterial agents, see: Srinivasan et al. (2006). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-NT (Bruker, 2004); data reduction: SAINT-NT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
(E)-N'-(3,3-dimethyl-2,6-diphenylpiperidin-4-ylidene)isonicotinohydrazide top
Crystal data top
C25H26N4OZ = 2
Mr = 398.50F(000) = 424
Triclinic, P1Dx = 1.242 Mg m3
Hall symbol: -P 1Melting point: 490 K
a = 6.2128 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8346 (3) ÅCell parameters from 9908 reflections
c = 15.0022 (3) Åθ = 1.8–25.0°
α = 65.293 (1)°µ = 0.08 mm1
β = 78.823 (1)°T = 293 K
γ = 86.948 (1)°Prism, colourless
V = 1065.62 (4) Å30.22 × 0.18 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5420 independent reflections
Radiation source: fine-focus sealed tube3821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scanθmax = 28.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.856, Tmax = 1.000k = 1717
25613 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.2037P]
where P = (Fo2 + 2Fc2)/3
5420 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C25H26N4Oγ = 86.948 (1)°
Mr = 398.50V = 1065.62 (4) Å3
Triclinic, P1Z = 2
a = 6.2128 (1) ÅMo Kα radiation
b = 12.8346 (3) ŵ = 0.08 mm1
c = 15.0022 (3) ÅT = 293 K
α = 65.293 (1)°0.22 × 0.18 × 0.16 mm
β = 78.823 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5420 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3821 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.023
25613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
5420 reflectionsΔρmin = 0.17 e Å3
281 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O141.03274 (18)0.14364 (9)0.56827 (8)0.0695 (4)
N10.33045 (18)0.26040 (10)0.65579 (8)0.0448 (3)
N40.60062 (18)0.04110 (9)0.69192 (8)0.0467 (3)
N50.74773 (19)0.05142 (10)0.61377 (9)0.0514 (4)
N440.7572 (2)0.44715 (11)0.90685 (10)0.0642 (5)
C20.36826 (19)0.17468 (10)0.75246 (9)0.0414 (3)
C30.3208 (2)0.05259 (11)0.76155 (9)0.0448 (4)
C40.4717 (2)0.04288 (11)0.67242 (9)0.0443 (4)
C50.4554 (2)0.13676 (11)0.57172 (9)0.0496 (4)
C60.4863 (2)0.25405 (11)0.57214 (9)0.0444 (4)
C140.8758 (2)0.14316 (11)0.63200 (10)0.0488 (4)
C210.2393 (2)0.20405 (10)0.83490 (9)0.0421 (4)
C220.0312 (2)0.24877 (12)0.83080 (10)0.0496 (4)
C230.0766 (3)0.28184 (13)0.90385 (11)0.0580 (5)
C240.0198 (3)0.27101 (14)0.98165 (11)0.0636 (5)
C250.2234 (3)0.22530 (15)0.98804 (12)0.0665 (6)
C260.3326 (2)0.19245 (12)0.91516 (10)0.0542 (5)
C310.0813 (2)0.03536 (14)0.75770 (13)0.0622 (5)
C320.3741 (3)0.03629 (12)0.86027 (10)0.0625 (5)
C410.8240 (2)0.24660 (11)0.72951 (10)0.0439 (4)
C420.6160 (2)0.28642 (12)0.78285 (12)0.0558 (5)
C430.5917 (3)0.38594 (13)0.86975 (12)0.0631 (5)
C450.9553 (3)0.40873 (13)0.85467 (12)0.0620 (5)
C460.9973 (2)0.31085 (12)0.76702 (11)0.0538 (4)
C610.4552 (2)0.35141 (11)0.47507 (9)0.0443 (4)
C620.6328 (2)0.39763 (12)0.39928 (10)0.0529 (4)
C630.6084 (3)0.48708 (13)0.30964 (11)0.0613 (5)
C640.4057 (3)0.53062 (13)0.29626 (11)0.0644 (5)
C650.2281 (3)0.48566 (16)0.37049 (13)0.0766 (6)
C660.2510 (3)0.39566 (15)0.45995 (12)0.0689 (5)
H10.345 (2)0.3300 (15)0.6547 (11)0.059 (4)*
H20.524340.180030.753680.0496*
H50.794 (3)0.0072 (16)0.5558 (14)0.075 (5)*
H5A0.567180.127800.520670.0595*
H5B0.312930.131530.556240.0595*
H60.635450.260470.582150.0533*
H220.036220.256540.778260.0596*
H230.215950.311710.900100.0695*
H240.052610.294611.030080.0763*
H250.288080.216381.041640.0798*
H260.471230.161980.919950.0651*
H31A0.062990.037150.755270.0934*
H31B0.012400.036480.816220.0934*
H31C0.043260.095960.699180.0934*
H32A0.522230.023340.864040.0938*
H32B0.275050.029330.915050.0938*
H32C0.358590.111940.863660.0938*
H420.493520.246760.760580.0670*
H430.450020.411650.904490.0757*
H451.074480.450490.878650.0745*
H461.140850.288230.733430.0646*
H620.771170.368580.408180.0635*
H630.729830.517460.258630.0736*
H640.389290.591060.236300.0773*
H650.090440.515500.361180.0919*
H660.128310.364800.510130.0826*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O140.0718 (7)0.0506 (6)0.0626 (7)0.0153 (5)0.0123 (5)0.0131 (5)
N10.0559 (6)0.0363 (6)0.0362 (6)0.0060 (4)0.0079 (4)0.0103 (4)
N40.0519 (6)0.0376 (6)0.0438 (6)0.0072 (4)0.0037 (5)0.0133 (5)
N50.0587 (7)0.0419 (6)0.0429 (6)0.0118 (5)0.0016 (5)0.0118 (5)
N440.0746 (9)0.0483 (7)0.0572 (8)0.0074 (6)0.0041 (6)0.0141 (6)
C20.0412 (6)0.0404 (6)0.0363 (6)0.0043 (5)0.0081 (5)0.0099 (5)
C30.0481 (7)0.0372 (6)0.0407 (7)0.0047 (5)0.0029 (5)0.0107 (5)
C40.0490 (7)0.0369 (6)0.0419 (7)0.0051 (5)0.0069 (5)0.0127 (5)
C50.0582 (8)0.0459 (7)0.0394 (7)0.0141 (6)0.0088 (6)0.0142 (6)
C60.0439 (6)0.0435 (7)0.0366 (6)0.0047 (5)0.0081 (5)0.0080 (5)
C140.0518 (7)0.0411 (7)0.0492 (7)0.0073 (5)0.0050 (6)0.0174 (6)
C210.0491 (7)0.0350 (6)0.0359 (6)0.0016 (5)0.0086 (5)0.0085 (5)
C220.0531 (7)0.0509 (8)0.0420 (7)0.0086 (6)0.0121 (5)0.0160 (6)
C230.0582 (8)0.0569 (9)0.0543 (8)0.0116 (6)0.0061 (6)0.0219 (7)
C240.0834 (11)0.0604 (9)0.0473 (8)0.0067 (8)0.0058 (7)0.0261 (7)
C250.0870 (11)0.0714 (10)0.0493 (9)0.0103 (8)0.0256 (8)0.0286 (8)
C260.0597 (8)0.0547 (8)0.0498 (8)0.0094 (6)0.0201 (6)0.0199 (7)
C310.0533 (8)0.0591 (9)0.0741 (10)0.0079 (7)0.0000 (7)0.0316 (8)
C320.0834 (10)0.0430 (8)0.0414 (7)0.0117 (7)0.0001 (7)0.0047 (6)
C410.0488 (7)0.0374 (6)0.0468 (7)0.0052 (5)0.0073 (5)0.0200 (5)
C420.0485 (7)0.0436 (7)0.0700 (10)0.0042 (5)0.0108 (6)0.0190 (7)
C430.0585 (9)0.0458 (8)0.0712 (10)0.0030 (6)0.0018 (7)0.0164 (7)
C450.0665 (9)0.0547 (9)0.0585 (9)0.0187 (7)0.0169 (7)0.0172 (7)
C460.0484 (7)0.0512 (8)0.0569 (8)0.0087 (6)0.0068 (6)0.0199 (7)
C610.0513 (7)0.0392 (6)0.0371 (6)0.0028 (5)0.0091 (5)0.0107 (5)
C620.0575 (8)0.0434 (7)0.0467 (7)0.0056 (6)0.0024 (6)0.0116 (6)
C630.0793 (10)0.0447 (8)0.0439 (8)0.0021 (7)0.0041 (7)0.0093 (6)
C640.0909 (12)0.0442 (8)0.0468 (8)0.0019 (7)0.0235 (8)0.0034 (6)
C650.0661 (10)0.0710 (11)0.0685 (11)0.0096 (8)0.0279 (8)0.0001 (9)
C660.0509 (8)0.0719 (10)0.0557 (9)0.0046 (7)0.0109 (7)0.0007 (8)
Geometric parameters (Å, º) top
O14—C141.2279 (17)C61—C621.3717 (18)
N1—C21.4627 (17)C62—C631.385 (2)
N1—C61.4578 (17)C63—C641.367 (3)
N4—N51.3889 (17)C64—C651.358 (2)
N4—C41.2744 (19)C65—C661.384 (3)
N5—C141.345 (2)C2—H20.9800
N44—C431.325 (2)C5—H5A0.9700
N44—C451.319 (2)C5—H5B0.9700
N1—H10.90 (2)C6—H60.9800
N5—H50.89 (2)C22—H220.9300
C2—C31.554 (2)C23—H230.9300
C2—C211.5123 (18)C24—H240.9300
C3—C41.5242 (18)C25—H250.9300
C3—C321.5303 (19)C26—H260.9300
C3—C311.5314 (18)C31—H31A0.9600
C4—C51.5063 (18)C31—H31B0.9600
C5—C61.530 (2)C31—H31C0.9600
C6—C611.5105 (18)C32—H32A0.9600
C14—C411.499 (2)C32—H32B0.9600
C21—C221.3882 (19)C32—H32C0.9600
C21—C261.3855 (18)C42—H420.9300
C22—C231.380 (2)C43—H430.9300
C23—C241.366 (2)C45—H450.9300
C24—C251.369 (3)C46—H460.9300
C25—C261.379 (2)C62—H620.9300
C41—C421.3781 (19)C63—H630.9300
C41—C461.3814 (19)C64—H640.9300
C42—C431.381 (2)C65—H650.9300
C45—C461.377 (2)C66—H660.9300
C61—C661.382 (2)
O14···N5i2.9648 (17)H2···H32A2.4400
O14···H462.5900H5···C52.65 (2)
O14···H5i2.10 (2)H5···H5A2.0100
O14···H5Ai2.5600H5···O14i2.10 (2)
N4···C422.866 (2)H5···C14i3.037 (19)
N5···O14i2.9648 (17)H5A···N52.4800
N1···H31C2.6200H5A···H52.0100
N1···H222.6200H5A···O14i2.5600
N1···H662.5700H5B···C312.8500
N4···H32A2.6400H5B···H31C2.3400
N4···H32C2.5300H6···H22.3100
N4···H422.4700H6···H622.3900
N5···H5A2.4800H22···N12.6200
N5···H422.8400H22···C313.0200
N44···H43ii2.7400H23···H64iv2.3400
C22···C313.330 (3)H24···C45vi2.8500
C26···C323.350 (2)H26···H22.3600
C31···C223.330 (3)H31A···H32C2.5700
C32···C263.350 (2)H31B···C212.8600
C42···N42.866 (2)H31B···C222.8500
C46···C63i3.596 (2)H31B···H32B2.4300
C46···C62i3.546 (2)H31C···N12.6200
C62···C46i3.546 (2)H31C···C52.8100
C63···C46i3.596 (2)H31C···H5B2.3400
C5···H31C2.8100H32A···N42.6400
C5···H52.65 (2)H32A···H22.4400
C14···H5i3.037 (19)H32B···C212.7400
C21···H32B2.7400H32B···C262.8900
C21···H31B2.8600H32B···H31B2.4300
C22···H63iii3.0600H32C···N42.5300
C22···H31B2.8500H32C···H31A2.5700
C22···H12.790 (14)H32C···C24v3.0800
C23···H64iv3.0400H42···N42.4700
C24···H32Cv3.0800H42···N52.8400
C26···H64iii3.1000H42···H46vii2.4300
C26···H32B2.8900H43···H45vii2.5500
C31···H223.0200H43···N44ii2.7400
C31···H5B2.8500H45···H43viii2.5500
C45···H63i3.0100H46···O142.5900
C45···H24vi2.8500H46···H42viii2.4300
C46···H62i3.0900H46···C62i2.9900
C62···H46i2.9900H62···H62.3900
C63···H1iii2.66 (2)H62···H65viii2.5900
C64···H1iii2.824 (18)H62···C46i3.0900
C66···H12.853 (15)H63···C22iii3.0600
H1···C222.790 (14)H63···C45i3.0100
H1···C662.853 (15)H64···C23iv3.0400
H1···C63iii2.66 (2)H64···C26iii3.1000
H1···C64iii2.824 (18)H64···H23iv2.3400
H2···H62.3100H65···H62vii2.5900
H2···H262.3600H66···N12.5700
C2—N1—C6112.55 (11)C3—C2—H2107.00
N5—N4—C4118.90 (11)C21—C2—H2107.00
N4—N5—C14119.82 (12)C4—C5—H5A110.00
C43—N44—C45116.03 (15)C4—C5—H5B110.00
C2—N1—H1108.0 (9)C6—C5—H5A110.00
C6—N1—H1108.4 (9)C6—C5—H5B110.00
C14—N5—H5114.1 (13)H5A—C5—H5B108.00
N4—N5—H5123.4 (14)N1—C6—H6109.00
N1—C2—C21109.36 (11)C5—C6—H6109.00
C3—C2—C21115.32 (10)C61—C6—H6109.00
N1—C2—C3109.55 (10)C21—C22—H22120.00
C2—C3—C4105.43 (10)C23—C22—H22120.00
C31—C3—C32109.43 (12)C22—C23—H23120.00
C2—C3—C32108.92 (11)C24—C23—H23120.00
C4—C3—C31109.77 (12)C23—C24—H24120.00
C2—C3—C31112.07 (12)C25—C24—H24120.00
C4—C3—C32111.19 (12)C24—C25—H25120.00
N4—C4—C3116.53 (11)C26—C25—H25120.00
N4—C4—C5127.81 (12)C21—C26—H26119.00
C3—C4—C5115.62 (12)C25—C26—H26119.00
C4—C5—C6109.92 (11)C3—C31—H31A109.00
N1—C6—C61110.52 (11)C3—C31—H31B109.00
C5—C6—C61111.96 (11)C3—C31—H31C109.00
N1—C6—C5108.38 (11)H31A—C31—H31B109.00
O14—C14—C41119.65 (13)H31A—C31—H31C109.00
N5—C14—C41120.00 (12)H31B—C31—H31C109.00
O14—C14—N5120.34 (13)C3—C32—H32A109.00
C2—C21—C22122.00 (11)C3—C32—H32B109.00
C2—C21—C26120.12 (12)C3—C32—H32C109.00
C22—C21—C26117.80 (12)H32A—C32—H32B109.00
C21—C22—C23120.70 (13)H32A—C32—H32C109.00
C22—C23—C24120.49 (17)H32B—C32—H32C109.00
C23—C24—C25119.76 (16)C41—C42—H42120.00
C24—C25—C26120.11 (15)C43—C42—H42120.00
C21—C26—C25121.13 (13)N44—C43—H43118.00
C42—C41—C46116.93 (13)C42—C43—H43118.00
C14—C41—C42125.26 (12)N44—C45—H45118.00
C14—C41—C46117.73 (12)C46—C45—H45118.00
C41—C42—C43119.17 (14)C41—C46—H46120.00
N44—C43—C42124.22 (16)C45—C46—H46120.00
N44—C45—C46124.32 (16)C61—C62—H62120.00
C41—C46—C45119.32 (14)C63—C62—H62120.00
C6—C61—C62119.72 (12)C62—C63—H63120.00
C6—C61—C66121.71 (12)C64—C63—H63120.00
C62—C61—C66118.57 (13)C63—C64—H64120.00
C61—C62—C63120.77 (13)C65—C64—H64120.00
C62—C63—C64119.93 (15)C64—C65—H65120.00
C63—C64—C65120.03 (15)C66—C65—H65120.00
C64—C65—C66120.35 (18)C61—C66—H66120.00
C61—C66—C65120.35 (16)C65—C66—H66120.00
N1—C2—H2107.00
C6—N1—C2—C366.16 (13)N1—C6—C61—C62147.45 (14)
C6—N1—C2—C21166.56 (11)N1—C6—C61—C6632.7 (2)
C2—N1—C6—C562.66 (13)C5—C6—C61—C6291.63 (16)
C2—N1—C6—C61174.31 (11)C5—C6—C61—C6688.18 (17)
C4—N4—N5—C14175.94 (13)O14—C14—C41—C42144.04 (16)
N5—N4—C4—C3177.47 (12)O14—C14—C41—C4632.6 (2)
N5—N4—C4—C50.2 (2)N5—C14—C41—C4234.5 (2)
N4—N5—C14—O14166.63 (13)N5—C14—C41—C46148.87 (14)
N4—N5—C14—C4114.9 (2)C2—C21—C22—C23175.68 (14)
C45—N44—C43—C420.9 (3)C26—C21—C22—C230.9 (2)
C43—N44—C45—C460.6 (3)C2—C21—C26—C25176.00 (15)
N1—C2—C3—C457.28 (12)C22—C21—C26—C250.6 (2)
N1—C2—C3—C3162.09 (14)C21—C22—C23—C240.1 (3)
N1—C2—C3—C32176.68 (11)C22—C23—C24—C251.1 (3)
C21—C2—C3—C4178.86 (10)C23—C24—C25—C261.3 (3)
C21—C2—C3—C3161.77 (14)C24—C25—C26—C210.4 (3)
C21—C2—C3—C3259.46 (14)C14—C41—C42—C43177.21 (15)
N1—C2—C21—C2237.55 (17)C46—C41—C42—C430.5 (2)
N1—C2—C21—C26138.95 (13)C14—C41—C46—C45177.74 (15)
C3—C2—C21—C2286.41 (16)C42—C41—C46—C450.8 (2)
C3—C2—C21—C2697.09 (15)C41—C42—C43—N440.4 (3)
C2—C3—C4—N4124.14 (13)N44—C45—C46—C410.2 (3)
C2—C3—C4—C553.79 (14)C6—C61—C62—C63179.90 (14)
C31—C3—C4—N4114.98 (15)C66—C61—C62—C630.3 (2)
C31—C3—C4—C567.09 (16)C6—C61—C66—C65179.38 (17)
C32—C3—C4—N46.26 (18)C62—C61—C66—C650.8 (3)
C32—C3—C4—C5171.68 (12)C61—C62—C63—C640.4 (3)
N4—C4—C5—C6124.15 (15)C62—C63—C64—C650.5 (3)
C3—C4—C5—C653.51 (15)C63—C64—C65—C660.0 (3)
C4—C5—C6—N153.75 (13)C64—C65—C66—C610.7 (3)
C4—C5—C6—C61175.90 (10)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x, y, z+2; (vi) x+1, y, z+2; (vii) x1, y, z; (viii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O14i0.89 (2)2.10 (2)2.9648 (17)167.1 (17)
C5—H5A···O14i0.972.563.4376 (17)151
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H26N4O
Mr398.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2128 (1), 12.8346 (3), 15.0022 (3)
α, β, γ (°)65.293 (1), 78.823 (1), 86.948 (1)
V3)1065.62 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25613, 5420, 3821
Rint0.023
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.01
No. of reflections5420
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT-NT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O14i0.89 (2)2.10 (2)2.9648 (17)167.1 (17)
C5—H5A···O14i0.972.563.4376 (17)151
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors are grateful to Dr A. Babu Vargheese, Sophisticated Analytical Instrument Facility (SAIF), IIT-Madras, Chennai, for the data collection.

References

First citationBruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHearn, M. J. & Cynamon, M. H. (2003). Drug Des. Discov. 18, 103–108.  CrossRef PubMed CAS Google Scholar
First citationHearn, M. J., Cynamon, M. H., Chen, M. F., Coppins, R., Davis, J., Kang, H. J., Noble, A., Tu-Sekine, B., Terrot, M. S., Trombino, D., Thai, M., Webster, E. R. & Wilson, R. (2009). Eur. J. Med. Chem. 44, 4169–4178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJha, A. & Dimmock, J. R. (2006). Pharmazie, 61, 562–563.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, M., Perumal, S. & Selvaraj, S. (2006). Chem. Pharm. Bull. 54, 795–801.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds