organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-N-[3-(Phenyl­sulfon­yl)thia­zolidin-2-yl­­idene]cyanamide

aScience and Technology of Marine Corrosion and Protection Laboratory, Luoyang Ship Material Research Institute, Qingdao 266101, People's Republic of China
*Correspondence e-mail: houjian@sunrui.net

(Received 10 October 2010; accepted 14 October 2010; online 20 October 2010)

In the title compound, C10H9N3O2S2, the dihedral angle between the benzene and thia­zolidine rings is 79.8 (2)°. Inter­molecular C—H⋯N and C—H⋯O inter­actions help to stabilize the crystal structure.

Related literature

For related structures, see: Wang et al. (2008[Wang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321.]); Liu & Li (2009[Liu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645.]); Xie & Li (2010[Xie, Y.-M. & Li, Y.-M. (2010). Acta Cryst. E66, o1158.]). For details of the corrosion inhibition activity of thia­zolidine-containing compounds, see: Trabanelli (1991[Trabanelli, G. (1991). Corrosion, 47, 410-419.]); Jardy et al. (1992[Jardy, A., Legal Lasalle-Molin, A., Keddam, M. & Takenouti, H. (1992). Electrochim. Acta, 37, 2195-2201.]); Sarawy et al. (2008[Sarawy, A. A., Fouda, A. S. & Shehab, W. A. (2008). Desalination, 229, 279-293.]); Vastag et al. (2001[Vastag, G., Szőcs, E., Shaban, A., Bertóti, I., Popov-Pergal, K. & Kálmán, E. (2001). Solid State Ionics, 141, 87-91.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3O2S2

  • Mr = 267.32

  • Tetragonal, I 41 /a

  • a = 15.186 (2) Å

  • c = 19.858 (4) Å

  • V = 4579.7 (13) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 173 K

  • 0.60 × 0.50 × 0.40 mm

Data collection
  • Rigaku Mercury CCD/AFC diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.771, Tmax = 0.838

  • 8388 measured reflections

  • 2020 independent reflections

  • 1968 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.143

  • S = 1.26

  • 2020 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2C⋯N3i 0.93 2.60 3.349 (4) 138
C4—H4A⋯O1ii 0.93 2.58 3.290 (4) 133
C7—H7B⋯O2iii 0.97 2.60 3.169 (4) 118
C7—H7A⋯O2iv 0.97 2.55 3.506 (4) 168
C8—H8A⋯O1v 0.97 2.56 3.283 (4) 131
C8—H8B⋯N3vi 0.97 2.58 3.299 (5) 131
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}]; (iii) [-y+{\script{3\over 4}}, x+{\script{3\over 4}}, -z-{\script{1\over 4}}]; (iv) [-x, -y+{\script{3\over 2}}, z]; (v) [x, y+{\script{1\over 2}}, -z]; (vi) [-y+{\script{5\over 4}}, x+{\script{3\over 4}}, z-{\script{1\over 4}}].

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolidine is an important kind of group in organic chemistry. The molecular structure of thiazole contains N and S atoms, which are easily able to bridge with other molecules or metals (Trabanelli, 1991; Jardy et al., 1992). And many researchers have been focused on the corrosion inhibition performance of the thiazole. Sarawy (Sarawy et al., 2008) used the weight loss and electrochemical polarization methods studied some thiazole derivatives as corrosion inhibitors for carbon steel in acidic medium. Vastag (Vastag et al., 2001) investigated the inhibition characteristics of some thiazole derivatives against copper corrosion in acidic sulfate containing media. In order to search for new thiazole compounds with higher corrosion inhibition, we synthesized the (Z)—N-(3-(phenylsulfonyl) thiazolidin-2-ylidene)cyanamide and describe its structure here.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009; Xie & Li, 2010). The dihedral angle between benzene (C1—C6) and thiazolidine (C7—C9/N1/S2) rings is 79.8 (2) °. The intermolecular C—H···N and C—H···O hydrogen bonds stabilize the structure.

Related literature top

For related structures, see: Wang et al. (2008); Liu & Li (2009); Xie & Li (2010). For details of the corrosion inhibition activity of thiazolidine-containing compounds, see: Trabanelli (1991); Jardy et al. (1992); Sarawy et al. (2008); Vastag et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of N-cyanoiminothiazolidine 10 mmol (1.27 g), benzenesulfonyl chloride (1.77 g, 10 mmol) and (1.01 g, 10 mmol) triethylamine is refluxed in absolute acetone (25 ml) for 3 h. On cooling, the product crystallizes and is filtered, and recrystallized from absolute EtOH, yield 2.38 g (89.3%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetonitrile at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Thiazolidine is an important kind of group in organic chemistry. The molecular structure of thiazole contains N and S atoms, which are easily able to bridge with other molecules or metals (Trabanelli, 1991; Jardy et al., 1992). And many researchers have been focused on the corrosion inhibition performance of the thiazole. Sarawy (Sarawy et al., 2008) used the weight loss and electrochemical polarization methods studied some thiazole derivatives as corrosion inhibitors for carbon steel in acidic medium. Vastag (Vastag et al., 2001) investigated the inhibition characteristics of some thiazole derivatives against copper corrosion in acidic sulfate containing media. In order to search for new thiazole compounds with higher corrosion inhibition, we synthesized the (Z)—N-(3-(phenylsulfonyl) thiazolidin-2-ylidene)cyanamide and describe its structure here.

In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009; Xie & Li, 2010). The dihedral angle between benzene (C1—C6) and thiazolidine (C7—C9/N1/S2) rings is 79.8 (2) °. The intermolecular C—H···N and C—H···O hydrogen bonds stabilize the structure.

For related structures, see: Wang et al. (2008); Liu & Li (2009); Xie & Li (2010). For details of the corrosion inhibition activity of thiazolidine-containing compounds, see: Trabanelli (1991); Jardy et al. (1992); Sarawy et al. (2008); Vastag et al. (2001). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
(Z)-N-[3-(Phenylsulfonyl)thiazolidin-2-ylidene]cyanamide top
Crystal data top
C10H9N3O2S2Dx = 1.551 Mg m3
Mr = 267.32Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 7269 reflections
Hall symbol: -I 4adθ = 1.7–27.5°
a = 15.186 (2) ŵ = 0.46 mm1
c = 19.858 (4) ÅT = 173 K
V = 4579.7 (13) Å3Block, colorless
Z = 160.60 × 0.50 × 0.40 mm
F(000) = 2208
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
2020 independent reflections
Radiation source: Sealed Tube1968 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.043
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
h = 1816
Tmin = 0.771, Tmax = 0.838k = 1817
8388 measured reflectionsl = 2316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0646P)2 + 5.9285P]
where P = (Fo2 + 2Fc2)/3
2020 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C10H9N3O2S2Z = 16
Mr = 267.32Mo Kα radiation
Tetragonal, I41/aµ = 0.46 mm1
a = 15.186 (2) ÅT = 173 K
c = 19.858 (4) Å0.60 × 0.50 × 0.40 mm
V = 4579.7 (13) Å3
Data collection top
Rigaku Mercury CCD/AFC
diffractometer
2020 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
1968 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.838Rint = 0.043
8388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.26Δρmax = 0.27 e Å3
2020 reflectionsΔρmin = 0.38 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13963 (5)0.70489 (5)0.01490 (4)0.0282 (3)
S20.12354 (6)0.97377 (5)0.06596 (4)0.0357 (3)
O10.08728 (14)0.66766 (13)0.06712 (11)0.0350 (5)
O20.11758 (15)0.68682 (15)0.05369 (11)0.0383 (6)
N10.13300 (16)0.81530 (16)0.01935 (11)0.0274 (6)
N20.15682 (17)0.82265 (16)0.13475 (12)0.0311 (6)
N30.1687 (2)0.9108 (2)0.23973 (14)0.0486 (8)
C10.2804 (2)0.65169 (19)0.09004 (15)0.0314 (7)
H1B0.24170.64580.12600.038*
C20.3685 (2)0.6318 (2)0.09725 (16)0.0381 (8)
H2C0.38950.61170.13850.046*
C30.4257 (2)0.6414 (2)0.04396 (17)0.0411 (8)
H3A0.48510.62830.04980.049*
C40.3960 (2)0.6701 (2)0.01812 (17)0.0413 (8)
H4A0.43500.67600.05390.050*
C50.3083 (2)0.6900 (2)0.02651 (15)0.0339 (7)
H5A0.28750.70950.06800.041*
C60.25123 (19)0.68082 (18)0.02760 (14)0.0276 (6)
C70.1061 (2)0.8673 (2)0.04017 (16)0.0356 (7)
H7A0.04360.86020.04850.043*
H7B0.13810.84790.07980.043*
C80.1273 (2)0.9626 (2)0.02480 (16)0.0364 (8)
H8A0.08441.00120.04580.044*
H8B0.18530.97760.04160.044*
C90.13968 (18)0.86106 (19)0.07808 (15)0.0275 (6)
C100.1631 (2)0.8732 (2)0.18980 (16)0.0348 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0299 (4)0.0242 (4)0.0305 (4)0.0001 (3)0.0031 (3)0.0052 (3)
S20.0449 (5)0.0228 (4)0.0395 (5)0.0024 (3)0.0046 (3)0.0008 (3)
O10.0346 (12)0.0276 (11)0.0428 (13)0.0057 (9)0.0050 (10)0.0013 (9)
O20.0412 (13)0.0409 (13)0.0328 (12)0.0012 (10)0.0095 (10)0.0112 (10)
N10.0305 (13)0.0254 (13)0.0262 (13)0.0041 (10)0.0030 (10)0.0001 (10)
N20.0413 (15)0.0238 (12)0.0281 (13)0.0008 (11)0.0007 (11)0.0005 (10)
N30.067 (2)0.0454 (17)0.0333 (16)0.0070 (15)0.0045 (14)0.0071 (14)
C10.0399 (17)0.0268 (15)0.0277 (15)0.0030 (12)0.0015 (13)0.0041 (12)
C20.0449 (19)0.0376 (18)0.0318 (17)0.0078 (14)0.0072 (14)0.0011 (14)
C30.0357 (17)0.048 (2)0.0398 (18)0.0104 (15)0.0061 (14)0.0054 (15)
C40.0365 (18)0.052 (2)0.0357 (18)0.0059 (15)0.0070 (14)0.0040 (15)
C50.0373 (17)0.0362 (17)0.0283 (15)0.0017 (13)0.0008 (13)0.0003 (13)
C60.0310 (15)0.0237 (14)0.0279 (15)0.0023 (12)0.0017 (12)0.0035 (12)
C70.0359 (17)0.0409 (18)0.0301 (16)0.0042 (14)0.0023 (13)0.0076 (14)
C80.0397 (18)0.0315 (17)0.0379 (18)0.0055 (14)0.0016 (14)0.0107 (13)
C90.0253 (14)0.0265 (15)0.0308 (15)0.0003 (11)0.0023 (12)0.0023 (12)
C100.0464 (19)0.0285 (16)0.0295 (17)0.0021 (14)0.0017 (14)0.0012 (13)
Geometric parameters (Å, º) top
S1—O11.424 (2)C2—C31.376 (5)
S1—O21.429 (2)C2—H2C0.9300
S1—N11.682 (2)C3—C41.384 (5)
S1—C61.752 (3)C3—H3A0.9300
S2—C91.746 (3)C4—C51.376 (4)
S2—C81.811 (3)C4—H4A0.9300
N1—C91.361 (4)C5—C61.387 (4)
N1—C71.479 (4)C5—H5A0.9300
N2—C91.294 (4)C7—C81.513 (4)
N2—C101.339 (4)C7—H7A0.9700
N3—C101.148 (4)C7—H7B0.9700
C1—C21.379 (4)C8—H8A0.9700
C1—C61.389 (4)C8—H8B0.9700
C1—H1B0.9300
O1—S1—O2119.15 (14)C4—C5—C6119.3 (3)
O1—S1—N1108.91 (12)C4—C5—H5A120.4
O2—S1—N1103.14 (12)C6—C5—H5A120.4
O1—S1—C6110.64 (14)C5—C6—C1121.6 (3)
O2—S1—C6108.89 (14)C5—C6—S1118.1 (2)
N1—S1—C6104.97 (13)C1—C6—S1120.3 (2)
C9—S2—C892.33 (14)N1—C7—C8106.9 (3)
C9—N1—C7115.7 (2)N1—C7—H7A110.3
C9—N1—S1123.3 (2)C8—C7—H7A110.3
C7—N1—S1120.4 (2)N1—C7—H7B110.3
C9—N2—C10117.8 (3)C8—C7—H7B110.3
C2—C1—C6118.2 (3)H7A—C7—H7B108.6
C2—C1—H1B120.9C7—C8—S2106.5 (2)
C6—C1—H1B120.9C7—C8—H8A110.4
C3—C2—C1120.6 (3)S2—C8—H8A110.4
C3—C2—H2C119.7C7—C8—H8B110.4
C1—C2—H2C119.7S2—C8—H8B110.4
C2—C3—C4120.8 (3)H8A—C8—H8B108.6
C2—C3—H3A119.6N2—C9—N1122.0 (3)
C4—C3—H3A119.6N2—C9—S2126.2 (2)
C5—C4—C3119.5 (3)N1—C9—S2111.8 (2)
C5—C4—H4A120.2N3—C10—N2174.9 (3)
C3—C4—H4A120.2
O1—S1—N1—C945.1 (3)O1—S1—C6—C116.3 (3)
O2—S1—N1—C9172.6 (2)O2—S1—C6—C1149.1 (2)
C6—S1—N1—C973.4 (3)N1—S1—C6—C1101.0 (2)
O1—S1—N1—C7125.7 (2)C9—N1—C7—C821.5 (4)
O2—S1—N1—C71.8 (3)S1—N1—C7—C8167.0 (2)
C6—S1—N1—C7115.8 (2)N1—C7—C8—S226.8 (3)
C6—C1—C2—C30.5 (5)C9—S2—C8—C721.5 (2)
C1—C2—C3—C40.8 (5)C10—N2—C9—N1179.3 (3)
C2—C3—C4—C50.5 (5)C10—N2—C9—S20.1 (4)
C3—C4—C5—C60.0 (5)C7—N1—C9—N2175.3 (3)
C4—C5—C6—C10.2 (5)S1—N1—C9—N24.1 (4)
C4—C5—C6—S1178.9 (2)C7—N1—C9—S25.3 (3)
C2—C1—C6—C50.1 (4)S1—N1—C9—S2176.48 (15)
C2—C1—C6—S1178.6 (2)C8—S2—C9—N2169.3 (3)
O1—S1—C6—C5162.4 (2)C8—S2—C9—N110.1 (2)
O2—S1—C6—C529.6 (3)C9—N2—C10—N3171 (4)
N1—S1—C6—C580.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···N3i0.932.603.349 (4)138
C4—H4A···O1ii0.932.583.290 (4)133
C7—H7B···O2iii0.972.603.169 (4)118
C7—H7A···O2iv0.972.553.506 (4)168
C8—H8A···O1v0.972.563.283 (4)131
C8—H8B···N3vi0.972.583.299 (5)131
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) y1/4, x+3/4, z1/4; (iii) y+3/4, x+3/4, z1/4; (iv) x, y+3/2, z; (v) x, y+1/2, z; (vi) y+5/4, x+3/4, z1/4.

Experimental details

Crystal data
Chemical formulaC10H9N3O2S2
Mr267.32
Crystal system, space groupTetragonal, I41/a
Temperature (K)173
a, c (Å)15.186 (2), 19.858 (4)
V3)4579.7 (13)
Z16
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.60 × 0.50 × 0.40
Data collection
DiffractometerRigaku Mercury CCD/AFC
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.771, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
8388, 2020, 1968
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 1.26
No. of reflections2020
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.38

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···N3i0.932.603.349 (4)138.3
C4—H4A···O1ii0.932.583.290 (4)133.3
C7—H7B···O2iii0.972.603.169 (4)117.9
C7—H7A···O2iv0.972.553.506 (4)167.7
C8—H8A···O1v0.972.563.283 (4)131.0
C8—H8B···N3vi0.972.583.299 (5)131.2
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) y1/4, x+3/4, z1/4; (iii) y+3/4, x+3/4, z1/4; (iv) x, y+3/2, z; (v) x, y+1/2, z; (vi) y+5/4, x+3/4, z1/4.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationJardy, A., Legal Lasalle-Molin, A., Keddam, M. & Takenouti, H. (1992). Electrochim. Acta, 37, 2195–2201.  CrossRef CAS Web of Science Google Scholar
First citationLiu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSarawy, A. A., Fouda, A. S. & Shehab, W. A. (2008). Desalination, 229, 279–293.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrabanelli, G. (1991). Corrosion, 47, 410–419.  CrossRef CAS Google Scholar
First citationVastag, G., Szőcs, E., Shaban, A., Bertóti, I., Popov-Pergal, K. & Kálmán, E. (2001). Solid State Ionics, 141, 87–91.  Web of Science CrossRef Google Scholar
First citationWang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y.-M. & Li, Y.-M. (2010). Acta Cryst. E66, o1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds