organic compounds
(Z)-N-[3-(Phenylsulfonyl)thiazolidin-2-ylidene]cyanamide
aScience and Technology of Marine Corrosion and Protection Laboratory, Luoyang Ship Material Research Institute, Qingdao 266101, People's Republic of China
*Correspondence e-mail: houjian@sunrui.net
In the title compound, C10H9N3O2S2, the dihedral angle between the benzene and thiazolidine rings is 79.8 (2)°. Intermolecular C—H⋯N and C—H⋯O interactions help to stabilize the crystal structure.
Related literature
For related structures, see: Wang et al. (2008); Liu & Li (2009); Xie & Li (2010). For details of the corrosion inhibition activity of thiazolidine-containing compounds, see: Trabanelli (1991); Jardy et al. (1992); Sarawy et al. (2008); Vastag et al. (2001). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810041371/hg2727sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810041371/hg2727Isup2.hkl
A mixture of N-cyanoiminothiazolidine 10 mmol (1.27 g), benzenesulfonyl chloride (1.77 g, 10 mmol) and (1.01 g, 10 mmol) triethylamine is refluxed in absolute acetone (25 ml) for 3 h. On cooling, the product crystallizes and is filtered, and recrystallized from absolute EtOH, yield 2.38 g (89.3%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetonitrile at room temperature.
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).
Thiazolidine is an important kind of group in organic chemistry. The molecular structure of thiazole contains N and S atoms, which are easily able to bridge with other molecules or metals (Trabanelli, 1991; Jardy et al., 1992). And many researchers have been focused on the corrosion inhibition performance of the thiazole. Sarawy (Sarawy et al., 2008) used the weight loss and electrochemical polarization methods studied some thiazole derivatives as corrosion inhibitors for carbon steel in acidic medium. Vastag (Vastag et al., 2001) investigated the inhibition characteristics of some thiazole derivatives against copper corrosion in acidic sulfate containing media. In order to search for new thiazole compounds with higher corrosion inhibition, we synthesized the (Z)—N-(3-(phenylsulfonyl) thiazolidin-2-ylidene)cyanamide and describe its structure here.
In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009; Xie & Li, 2010). The dihedral angle between benzene (C1—C6) and thiazolidine (C7—C9/N1/S2) rings is 79.8 (2) °. The intermolecular C—H···N and C—H···O hydrogen bonds stabilize the structure.
For related structures, see: Wang et al. (2008); Liu & Li (2009); Xie & Li (2010). For details of the corrosion inhibition activity of thiazolidine-containing compounds, see: Trabanelli (1991); Jardy et al. (1992); Sarawy et al. (2008); Vastag et al. (2001). For bond-length data, see: Allen et al. (1987).
Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms. |
C10H9N3O2S2 | Dx = 1.551 Mg m−3 |
Mr = 267.32 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41/a | Cell parameters from 7269 reflections |
Hall symbol: -I 4ad | θ = 1.7–27.5° |
a = 15.186 (2) Å | µ = 0.46 mm−1 |
c = 19.858 (4) Å | T = 173 K |
V = 4579.7 (13) Å3 | Block, colorless |
Z = 16 | 0.60 × 0.50 × 0.40 mm |
F(000) = 2208 |
Rigaku Mercury CCD/AFC diffractometer | 2020 independent reflections |
Radiation source: Sealed Tube | 1968 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.043 |
φ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) | h = −18→16 |
Tmin = 0.771, Tmax = 0.838 | k = −18→17 |
8388 measured reflections | l = −23→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.26 | w = 1/[σ2(Fo2) + (0.0646P)2 + 5.9285P] where P = (Fo2 + 2Fc2)/3 |
2020 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
C10H9N3O2S2 | Z = 16 |
Mr = 267.32 | Mo Kα radiation |
Tetragonal, I41/a | µ = 0.46 mm−1 |
a = 15.186 (2) Å | T = 173 K |
c = 19.858 (4) Å | 0.60 × 0.50 × 0.40 mm |
V = 4579.7 (13) Å3 |
Rigaku Mercury CCD/AFC diffractometer | 2020 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2007) | 1968 reflections with I > 2σ(I) |
Tmin = 0.771, Tmax = 0.838 | Rint = 0.043 |
8388 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.26 | Δρmax = 0.27 e Å−3 |
2020 reflections | Δρmin = −0.38 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.13963 (5) | 0.70489 (5) | 0.01490 (4) | 0.0282 (3) | |
S2 | 0.12354 (6) | 0.97377 (5) | 0.06596 (4) | 0.0357 (3) | |
O1 | 0.08728 (14) | 0.66766 (13) | 0.06712 (11) | 0.0350 (5) | |
O2 | 0.11758 (15) | 0.68682 (15) | −0.05369 (11) | 0.0383 (6) | |
N1 | 0.13300 (16) | 0.81530 (16) | 0.01935 (11) | 0.0274 (6) | |
N2 | 0.15682 (17) | 0.82265 (16) | 0.13475 (12) | 0.0311 (6) | |
N3 | 0.1687 (2) | 0.9108 (2) | 0.23973 (14) | 0.0486 (8) | |
C1 | 0.2804 (2) | 0.65169 (19) | 0.09004 (15) | 0.0314 (7) | |
H1B | 0.2417 | 0.6458 | 0.1260 | 0.038* | |
C2 | 0.3685 (2) | 0.6318 (2) | 0.09725 (16) | 0.0381 (8) | |
H2C | 0.3895 | 0.6117 | 0.1385 | 0.046* | |
C3 | 0.4257 (2) | 0.6414 (2) | 0.04396 (17) | 0.0411 (8) | |
H3A | 0.4851 | 0.6283 | 0.0498 | 0.049* | |
C4 | 0.3960 (2) | 0.6701 (2) | −0.01812 (17) | 0.0413 (8) | |
H4A | 0.4350 | 0.6760 | −0.0539 | 0.050* | |
C5 | 0.3083 (2) | 0.6900 (2) | −0.02651 (15) | 0.0339 (7) | |
H5A | 0.2875 | 0.7095 | −0.0680 | 0.041* | |
C6 | 0.25123 (19) | 0.68082 (18) | 0.02760 (14) | 0.0276 (6) | |
C7 | 0.1061 (2) | 0.8673 (2) | −0.04017 (16) | 0.0356 (7) | |
H7A | 0.0436 | 0.8602 | −0.0485 | 0.043* | |
H7B | 0.1381 | 0.8479 | −0.0798 | 0.043* | |
C8 | 0.1273 (2) | 0.9626 (2) | −0.02480 (16) | 0.0364 (8) | |
H8A | 0.0844 | 1.0012 | −0.0458 | 0.044* | |
H8B | 0.1853 | 0.9776 | −0.0416 | 0.044* | |
C9 | 0.13968 (18) | 0.86106 (19) | 0.07808 (15) | 0.0275 (6) | |
C10 | 0.1631 (2) | 0.8732 (2) | 0.18980 (16) | 0.0348 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0299 (4) | 0.0242 (4) | 0.0305 (4) | 0.0001 (3) | −0.0031 (3) | −0.0052 (3) |
S2 | 0.0449 (5) | 0.0228 (4) | 0.0395 (5) | 0.0024 (3) | 0.0046 (3) | 0.0008 (3) |
O1 | 0.0346 (12) | 0.0276 (11) | 0.0428 (13) | −0.0057 (9) | 0.0050 (10) | −0.0013 (9) |
O2 | 0.0412 (13) | 0.0409 (13) | 0.0328 (12) | 0.0012 (10) | −0.0095 (10) | −0.0112 (10) |
N1 | 0.0305 (13) | 0.0254 (13) | 0.0262 (13) | 0.0041 (10) | −0.0030 (10) | −0.0001 (10) |
N2 | 0.0413 (15) | 0.0238 (12) | 0.0281 (13) | 0.0008 (11) | −0.0007 (11) | −0.0005 (10) |
N3 | 0.067 (2) | 0.0454 (17) | 0.0333 (16) | −0.0070 (15) | 0.0045 (14) | −0.0071 (14) |
C1 | 0.0399 (17) | 0.0268 (15) | 0.0277 (15) | 0.0030 (12) | 0.0015 (13) | −0.0041 (12) |
C2 | 0.0449 (19) | 0.0376 (18) | 0.0318 (17) | 0.0078 (14) | −0.0072 (14) | −0.0011 (14) |
C3 | 0.0357 (17) | 0.048 (2) | 0.0398 (18) | 0.0104 (15) | −0.0061 (14) | −0.0054 (15) |
C4 | 0.0365 (18) | 0.052 (2) | 0.0357 (18) | 0.0059 (15) | 0.0070 (14) | −0.0040 (15) |
C5 | 0.0373 (17) | 0.0362 (17) | 0.0283 (15) | 0.0017 (13) | 0.0008 (13) | −0.0003 (13) |
C6 | 0.0310 (15) | 0.0237 (14) | 0.0279 (15) | 0.0023 (12) | −0.0017 (12) | −0.0035 (12) |
C7 | 0.0359 (17) | 0.0409 (18) | 0.0301 (16) | −0.0042 (14) | −0.0023 (13) | 0.0076 (14) |
C8 | 0.0397 (18) | 0.0315 (17) | 0.0379 (18) | 0.0055 (14) | 0.0016 (14) | 0.0107 (13) |
C9 | 0.0253 (14) | 0.0265 (15) | 0.0308 (15) | 0.0003 (11) | 0.0023 (12) | −0.0023 (12) |
C10 | 0.0464 (19) | 0.0285 (16) | 0.0295 (17) | −0.0021 (14) | 0.0017 (14) | 0.0012 (13) |
S1—O1 | 1.424 (2) | C2—C3 | 1.376 (5) |
S1—O2 | 1.429 (2) | C2—H2C | 0.9300 |
S1—N1 | 1.682 (2) | C3—C4 | 1.384 (5) |
S1—C6 | 1.752 (3) | C3—H3A | 0.9300 |
S2—C9 | 1.746 (3) | C4—C5 | 1.376 (4) |
S2—C8 | 1.811 (3) | C4—H4A | 0.9300 |
N1—C9 | 1.361 (4) | C5—C6 | 1.387 (4) |
N1—C7 | 1.479 (4) | C5—H5A | 0.9300 |
N2—C9 | 1.294 (4) | C7—C8 | 1.513 (4) |
N2—C10 | 1.339 (4) | C7—H7A | 0.9700 |
N3—C10 | 1.148 (4) | C7—H7B | 0.9700 |
C1—C2 | 1.379 (4) | C8—H8A | 0.9700 |
C1—C6 | 1.389 (4) | C8—H8B | 0.9700 |
C1—H1B | 0.9300 | ||
O1—S1—O2 | 119.15 (14) | C4—C5—C6 | 119.3 (3) |
O1—S1—N1 | 108.91 (12) | C4—C5—H5A | 120.4 |
O2—S1—N1 | 103.14 (12) | C6—C5—H5A | 120.4 |
O1—S1—C6 | 110.64 (14) | C5—C6—C1 | 121.6 (3) |
O2—S1—C6 | 108.89 (14) | C5—C6—S1 | 118.1 (2) |
N1—S1—C6 | 104.97 (13) | C1—C6—S1 | 120.3 (2) |
C9—S2—C8 | 92.33 (14) | N1—C7—C8 | 106.9 (3) |
C9—N1—C7 | 115.7 (2) | N1—C7—H7A | 110.3 |
C9—N1—S1 | 123.3 (2) | C8—C7—H7A | 110.3 |
C7—N1—S1 | 120.4 (2) | N1—C7—H7B | 110.3 |
C9—N2—C10 | 117.8 (3) | C8—C7—H7B | 110.3 |
C2—C1—C6 | 118.2 (3) | H7A—C7—H7B | 108.6 |
C2—C1—H1B | 120.9 | C7—C8—S2 | 106.5 (2) |
C6—C1—H1B | 120.9 | C7—C8—H8A | 110.4 |
C3—C2—C1 | 120.6 (3) | S2—C8—H8A | 110.4 |
C3—C2—H2C | 119.7 | C7—C8—H8B | 110.4 |
C1—C2—H2C | 119.7 | S2—C8—H8B | 110.4 |
C2—C3—C4 | 120.8 (3) | H8A—C8—H8B | 108.6 |
C2—C3—H3A | 119.6 | N2—C9—N1 | 122.0 (3) |
C4—C3—H3A | 119.6 | N2—C9—S2 | 126.2 (2) |
C5—C4—C3 | 119.5 (3) | N1—C9—S2 | 111.8 (2) |
C5—C4—H4A | 120.2 | N3—C10—N2 | 174.9 (3) |
C3—C4—H4A | 120.2 | ||
O1—S1—N1—C9 | 45.1 (3) | O1—S1—C6—C1 | −16.3 (3) |
O2—S1—N1—C9 | 172.6 (2) | O2—S1—C6—C1 | −149.1 (2) |
C6—S1—N1—C9 | −73.4 (3) | N1—S1—C6—C1 | 101.0 (2) |
O1—S1—N1—C7 | −125.7 (2) | C9—N1—C7—C8 | 21.5 (4) |
O2—S1—N1—C7 | 1.8 (3) | S1—N1—C7—C8 | −167.0 (2) |
C6—S1—N1—C7 | 115.8 (2) | N1—C7—C8—S2 | −26.8 (3) |
C6—C1—C2—C3 | 0.5 (5) | C9—S2—C8—C7 | 21.5 (2) |
C1—C2—C3—C4 | −0.8 (5) | C10—N2—C9—N1 | 179.3 (3) |
C2—C3—C4—C5 | 0.5 (5) | C10—N2—C9—S2 | −0.1 (4) |
C3—C4—C5—C6 | 0.0 (5) | C7—N1—C9—N2 | 175.3 (3) |
C4—C5—C6—C1 | −0.2 (5) | S1—N1—C9—N2 | 4.1 (4) |
C4—C5—C6—S1 | −178.9 (2) | C7—N1—C9—S2 | −5.3 (3) |
C2—C1—C6—C5 | −0.1 (4) | S1—N1—C9—S2 | −176.48 (15) |
C2—C1—C6—S1 | 178.6 (2) | C8—S2—C9—N2 | 169.3 (3) |
O1—S1—C6—C5 | 162.4 (2) | C8—S2—C9—N1 | −10.1 (2) |
O2—S1—C6—C5 | 29.6 (3) | C9—N2—C10—N3 | 171 (4) |
N1—S1—C6—C5 | −80.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···N3i | 0.93 | 2.60 | 3.349 (4) | 138 |
C4—H4A···O1ii | 0.93 | 2.58 | 3.290 (4) | 133 |
C7—H7B···O2iii | 0.97 | 2.60 | 3.169 (4) | 118 |
C7—H7A···O2iv | 0.97 | 2.55 | 3.506 (4) | 168 |
C8—H8A···O1v | 0.97 | 2.56 | 3.283 (4) | 131 |
C8—H8B···N3vi | 0.97 | 2.58 | 3.299 (5) | 131 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1/2; (ii) y−1/4, −x+3/4, z−1/4; (iii) −y+3/4, x+3/4, −z−1/4; (iv) −x, −y+3/2, z; (v) x, y+1/2, −z; (vi) −y+5/4, x+3/4, z−1/4. |
Experimental details
Crystal data | |
Chemical formula | C10H9N3O2S2 |
Mr | 267.32 |
Crystal system, space group | Tetragonal, I41/a |
Temperature (K) | 173 |
a, c (Å) | 15.186 (2), 19.858 (4) |
V (Å3) | 4579.7 (13) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.60 × 0.50 × 0.40 |
Data collection | |
Diffractometer | Rigaku Mercury CCD/AFC |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2007) |
Tmin, Tmax | 0.771, 0.838 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8388, 2020, 1968 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.143, 1.26 |
No. of reflections | 2020 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.38 |
Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···N3i | 0.93 | 2.60 | 3.349 (4) | 138.3 |
C4—H4A···O1ii | 0.93 | 2.58 | 3.290 (4) | 133.3 |
C7—H7B···O2iii | 0.97 | 2.60 | 3.169 (4) | 117.9 |
C7—H7A···O2iv | 0.97 | 2.55 | 3.506 (4) | 167.7 |
C8—H8A···O1v | 0.97 | 2.56 | 3.283 (4) | 131.0 |
C8—H8B···N3vi | 0.97 | 2.58 | 3.299 (5) | 131.2 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+1/2; (ii) y−1/4, −x+3/4, z−1/4; (iii) −y+3/4, x+3/4, −z−1/4; (iv) −x, −y+3/2, z; (v) x, y+1/2, −z; (vi) −y+5/4, x+3/4, z−1/4. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Jardy, A., Legal Lasalle-Molin, A., Keddam, M. & Takenouti, H. (1992). Electrochim. Acta, 37, 2195–2201. CrossRef CAS Web of Science Google Scholar
Liu, X.-L. & Li, Y.-M. (2009). Acta Cryst. E65, o1645. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sarawy, A. A., Fouda, A. S. & Shehab, W. A. (2008). Desalination, 229, 279–293. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trabanelli, G. (1991). Corrosion, 47, 410–419. CrossRef CAS Google Scholar
Vastag, G., Szőcs, E., Shaban, A., Bertóti, I., Popov-Pergal, K. & Kálmán, E. (2001). Solid State Ionics, 141, 87–91. Web of Science CrossRef Google Scholar
Wang, J.-G., Huang, L.-H. & Jian, F.-F. (2008). Acta Cryst. E64, o2321. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xie, Y.-M. & Li, Y.-M. (2010). Acta Cryst. E66, o1158. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiazolidine is an important kind of group in organic chemistry. The molecular structure of thiazole contains N and S atoms, which are easily able to bridge with other molecules or metals (Trabanelli, 1991; Jardy et al., 1992). And many researchers have been focused on the corrosion inhibition performance of the thiazole. Sarawy (Sarawy et al., 2008) used the weight loss and electrochemical polarization methods studied some thiazole derivatives as corrosion inhibitors for carbon steel in acidic medium. Vastag (Vastag et al., 2001) investigated the inhibition characteristics of some thiazole derivatives against copper corrosion in acidic sulfate containing media. In order to search for new thiazole compounds with higher corrosion inhibition, we synthesized the (Z)—N-(3-(phenylsulfonyl) thiazolidin-2-ylidene)cyanamide and describe its structure here.
In title compound, all bond lengths in the molecular are normal (Allen et al., 1987) and in a good agreement with those reported previously (Wang et al., 2008; Liu & Li, 2009; Xie & Li, 2010). The dihedral angle between benzene (C1—C6) and thiazolidine (C7—C9/N1/S2) rings is 79.8 (2) °. The intermolecular C—H···N and C—H···O hydrogen bonds stabilize the structure.