metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{[6-meth­­oxy-2-(4-methyl­phen­yl)iminiometh­yl]phenolate-κ2O,O′}tris­­(nitrato-κ2O,O′)europium(III)

aJinhua College of Vocation and Technology, Jinhua, Zhejiang 321017, People's Republic of China
*Correspondence e-mail: guohm8282@sina.com

(Received 12 October 2010; accepted 18 October 2010; online 23 October 2010)

The crystal structure of title compound, [Eu(NO3)3(C15H15NO2)2], contains two Schiff base 6-meth­oxy-2-[(4-methyl­phen­yl)imino­meth­yl]phenolate (L) ligands and three independent nitrate ions that chelate to the europium(III) ion via the O atoms. The coordination number of the EuIII ion is ten. The L ligands chelate with a strong Eu—O(deprotonated phenolate) bond and a weak Eu—O(meth­oxy) contact, the latter can be inter­preted as the apices of the bicapped square-anti­prismatic EuIII polyhedron. Intra­molecular N—H⋯O hydrogen bonds occur.

Related literature

For Schiff base ligands derived from o-vanillin and aniline and their rare earth complexes, see: Burrows & Bailar (1966[Burrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150-4152.]); Li et al. (2008[Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593-m1594.]); Liu et al. (2009[Liu, J.-F., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1385-m1386.]); Xian et al. (2008[Xian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.]); Zhao et al. (2005[Zhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421-424.], 2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(NO3)3(C15H15NO2)2]

  • Mr = 820.55

  • Triclinic, [P \overline 1]

  • a = 9.7603 (7) Å

  • b = 10.0250 (7) Å

  • c = 18.4227 (16) Å

  • α = 98.165 (6)°

  • β = 101.665 (6)°

  • γ = 106.681 (4)°

  • V = 1652.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 296 K

  • 0.18 × 0.09 × 0.06 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.801, Tmax = 0.892

  • 26273 measured reflections

  • 7610 independent reflections

  • 5570 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.094

  • S = 0.99

  • 7610 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.95 2.634 (4) 136
N2—H2A⋯O3 0.86 1.86 2.569 (4) 139

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has well been confirmed that Schiff bases are important in multiple fields such as chemistry and biochemistry owing to their biological activities (Zhao et al., 2005). Schiff base complexes prepared by ligands from substituted o-vanillin have been absorbed considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis (Burrows & Bailar, 1966). Interested in this field, we have been engaged in a major effort directed toward the development of syntheses of new analogous Schiff bases derived from o-vanillin and their rare metal complexes. In a few of articles we have reported our partial research results (Zhao et al., 2007; Xian et al. 2008; Li et al. 2008; Liu et al. 2009). Herein, we describe a new EuIII complex.

The structure of the title complex is shown in Fig.1, and the coordination environment of EuIII is shown in Fig. 2. In this complex the EuIII is eight-coordinated by O atoms, six of which come from three nitrate ions and two come from the Schiff base ligands (HL). The HL ligands coordinate to the EuIII ion using oxygen atoms from deprotonated phenolic hydroxyl groups. The ten Eu—O bond distances are listed in Table 1 (including weak Eu—O interactions). The distances between EuIII and methoxyl O atoms (2.743Å and 2.748Å for Eu—O2 and Eu—O4) are similar with reported complexe (Zhao et al., 2007).

The hydrogen bonds and π···π weak non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 3. There is π···π interactions exist in the crystal between symmetry-related molecules. In HL ligands, the proton of the phenolic hydroxyl group is considered to have transferred to N-imine atom, which involving in an intramolecular hydrogen bond (Table 2).

Related literature top

For Schiff base ligands derived from o-vanillin and aniline and their rare earth complexes, see: Burrows & Bailar (1966); Li et al. (2008); Liu et al. (2009); Xian et al. (2008); Zhao et al. (2005, 2007).

Experimental top

Reagents and solvents used were of commercially available quality and without purified before using. The Schiff base ligand 2-[(4- methylphenyl)iminomethyl]-6-methoxy-phenol was prepared by condensation of o-vanillin and p-methylaniline with a high yield and which was purified by recrystallization in ethanol. The compound (1) was obtained by adding Eu(NO3)3 (1 mmol, dissolved in ethanol) to N-salicylidene-p-toluidine (2 mmol) in ethanol solution. The mixture solution was stirred at room temperature for 8 h to obtain a purplish red solution. At last, the deposit was filtered out and the solution was kept for evaporating. The red crystal was formed after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.5Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2Ueq(C)) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Structure description top

It has well been confirmed that Schiff bases are important in multiple fields such as chemistry and biochemistry owing to their biological activities (Zhao et al., 2005). Schiff base complexes prepared by ligands from substituted o-vanillin have been absorbed considerable attention in the past decades due to the intriguing biological activities of o-vanillin and the convenience in Schiff bases synthesis (Burrows & Bailar, 1966). Interested in this field, we have been engaged in a major effort directed toward the development of syntheses of new analogous Schiff bases derived from o-vanillin and their rare metal complexes. In a few of articles we have reported our partial research results (Zhao et al., 2007; Xian et al. 2008; Li et al. 2008; Liu et al. 2009). Herein, we describe a new EuIII complex.

The structure of the title complex is shown in Fig.1, and the coordination environment of EuIII is shown in Fig. 2. In this complex the EuIII is eight-coordinated by O atoms, six of which come from three nitrate ions and two come from the Schiff base ligands (HL). The HL ligands coordinate to the EuIII ion using oxygen atoms from deprotonated phenolic hydroxyl groups. The ten Eu—O bond distances are listed in Table 1 (including weak Eu—O interactions). The distances between EuIII and methoxyl O atoms (2.743Å and 2.748Å for Eu—O2 and Eu—O4) are similar with reported complexe (Zhao et al., 2007).

The hydrogen bonds and π···π weak non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 3. There is π···π interactions exist in the crystal between symmetry-related molecules. In HL ligands, the proton of the phenolic hydroxyl group is considered to have transferred to N-imine atom, which involving in an intramolecular hydrogen bond (Table 2).

For Schiff base ligands derived from o-vanillin and aniline and their rare earth complexes, see: Burrows & Bailar (1966); Li et al. (2008); Liu et al. (2009); Xian et al. (2008); Zhao et al. (2005, 2007).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The coordination environment of the Europium(III) atom, showing the bicapped square antiprism.
[Figure 3] Fig. 3. The stacking plot of the title compound, showing H-bond interactions (dashed lines) and π···π stacking interactions.
Bis{[6-methoxy-2-(4-methylphenyl)iminiomethyl]phenolate- κ2O,O'}tris(nitrato-κ2O,O')europium(III) top
Crystal data top
[Eu(NO3)3(C15H15NO2)2]Z = 2
Mr = 820.55F(000) = 824
Triclinic, P1Dx = 1.649 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7603 (7) ÅCell parameters from 4647 reflections
b = 10.0250 (7) Åθ = 1.2–27.7°
c = 18.4227 (16) ŵ = 1.97 mm1
α = 98.165 (6)°T = 296 K
β = 101.665 (6)°Block, red
γ = 106.681 (4)°0.18 × 0.09 × 0.06 mm
V = 1652.2 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
7610 independent reflections
Radiation source: fine-focus sealed tube5570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
phi and ω scansθmax = 27.7°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.801, Tmax = 0.892k = 1213
26273 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
7610 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Eu(NO3)3(C15H15NO2)2]γ = 106.681 (4)°
Mr = 820.55V = 1652.2 (2) Å3
Triclinic, P1Z = 2
a = 9.7603 (7) ÅMo Kα radiation
b = 10.0250 (7) ŵ = 1.97 mm1
c = 18.4227 (16) ÅT = 296 K
α = 98.165 (6)°0.18 × 0.09 × 0.06 mm
β = 101.665 (6)°
Data collection top
Bruker APEXII area-detector
diffractometer
7610 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5570 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.892Rint = 0.051
26273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.99Δρmax = 0.85 e Å3
7610 reflectionsΔρmin = 0.69 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu0.96447 (2)0.31215 (2)0.252484 (12)0.04432 (9)
N10.5030 (4)0.0343 (4)0.2208 (2)0.0516 (9)
H1A0.59160.01210.22030.062*
N21.4594 (4)0.5536 (4)0.27769 (19)0.0507 (9)
H2A1.37070.51950.28210.061*
N30.9483 (6)0.5918 (5)0.2364 (3)0.0750 (13)
N40.8421 (5)0.2288 (4)0.0886 (2)0.0586 (10)
N51.1222 (4)0.2644 (5)0.3940 (2)0.0631 (10)
O10.7425 (3)0.1902 (3)0.27686 (16)0.0535 (7)
O20.8756 (3)0.4409 (3)0.36760 (17)0.0578 (8)
O31.2074 (3)0.3557 (3)0.24344 (16)0.0523 (7)
O41.0359 (3)0.0995 (3)0.17308 (18)0.0579 (8)
O50.8301 (4)0.4845 (4)0.2152 (2)0.0757 (10)
O61.0654 (4)0.5683 (3)0.2656 (2)0.0643 (9)
O70.9460 (6)0.7099 (5)0.2303 (3)0.1282 (19)
O80.9612 (4)0.3321 (3)0.11866 (17)0.0602 (8)
O90.7730 (3)0.1730 (3)0.13420 (18)0.0615 (8)
O100.7985 (5)0.1845 (4)0.0214 (2)0.0947 (13)
O111.0396 (4)0.1640 (4)0.3384 (2)0.0691 (9)
O121.1413 (4)0.3890 (4)0.38578 (18)0.0634 (8)
O131.1807 (4)0.2359 (4)0.4530 (2)0.0827 (11)
C10.5234 (4)0.1554 (5)0.3210 (2)0.0496 (10)
C20.6699 (4)0.2369 (4)0.3215 (2)0.0448 (10)
C30.7328 (5)0.3710 (5)0.3714 (2)0.0483 (10)
C40.6600 (6)0.4224 (5)0.4186 (3)0.0622 (12)
H4A0.70530.51120.45130.075*
C50.5163 (6)0.3401 (6)0.4177 (3)0.0732 (15)
H5A0.46570.37510.44930.088*
C60.4511 (5)0.2102 (6)0.3708 (3)0.0690 (14)
H6A0.35660.15600.37140.083*
C70.4493 (5)0.0238 (5)0.2709 (3)0.0531 (11)
H7A0.35470.02570.27360.064*
C80.9493 (6)0.5808 (5)0.4148 (3)0.0651 (13)
H8A0.89360.59880.45020.098*
H8B0.95720.65050.38380.098*
H8C1.04650.58670.44200.098*
C90.4335 (5)0.1648 (5)0.1669 (2)0.0511 (11)
C100.3006 (5)0.2604 (5)0.1683 (3)0.0601 (12)
H10A0.25450.24060.20610.072*
C110.2364 (5)0.3845 (5)0.1140 (3)0.0642 (13)
H11A0.14600.44670.11530.077*
C120.3016 (6)0.4197 (5)0.0579 (3)0.0631 (12)
C130.4352 (6)0.3230 (6)0.0580 (3)0.0758 (15)
H13A0.48200.34360.02070.091*
C140.5010 (5)0.1980 (5)0.1110 (3)0.0680 (14)
H14A0.59100.13550.10950.082*
C150.2269 (7)0.5540 (6)0.0017 (3)0.0884 (18)
H15A0.13590.60610.00830.133*
H15B0.29060.61140.00090.133*
H15C0.20620.53070.05060.133*
C161.4000 (4)0.3414 (4)0.1847 (2)0.0459 (10)
C171.2577 (4)0.2845 (4)0.1960 (2)0.0429 (9)
C181.1705 (5)0.1454 (4)0.1551 (2)0.0486 (10)
C191.2195 (5)0.0708 (5)0.1046 (3)0.0569 (11)
H19A1.15920.01970.07760.068*
C201.3599 (5)0.1289 (5)0.0929 (3)0.0610 (12)
H20A1.39250.07710.05800.073*
C211.4479 (5)0.2602 (5)0.1323 (3)0.0561 (11)
H21A1.54160.29770.12480.067*
C221.4960 (5)0.4756 (5)0.2272 (2)0.0506 (10)
H22A1.58950.51000.21890.061*
C230.9464 (6)0.0471 (5)0.1409 (4)0.0907 (19)
H23A1.00220.09540.11650.136*
H23B0.85940.05060.10430.136*
H23C0.91790.09290.18040.136*
C241.5452 (5)0.6864 (4)0.3263 (2)0.0493 (10)
C251.6818 (5)0.7649 (5)0.3177 (3)0.0595 (12)
H25A1.71870.73180.27860.071*
C261.7611 (6)0.8923 (5)0.3679 (3)0.0680 (14)
H26A1.85240.94490.36240.082*
C271.7085 (6)0.9442 (5)0.4266 (3)0.0659 (13)
C281.5720 (6)0.8642 (5)0.4324 (3)0.0755 (15)
H28A1.53370.89750.47090.091*
C291.4908 (5)0.7368 (5)0.3831 (3)0.0654 (13)
H29A1.39900.68500.38840.078*
C301.7989 (7)1.0827 (5)0.4829 (3)0.0893 (18)
H30A1.74541.10120.51940.134*
H30B1.81701.15930.45640.134*
H30C1.89151.07520.50840.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu0.03130 (12)0.04488 (13)0.05244 (14)0.00468 (9)0.01419 (9)0.00783 (9)
N10.0319 (18)0.057 (2)0.061 (2)0.0053 (17)0.0129 (17)0.0180 (18)
N20.0349 (19)0.054 (2)0.057 (2)0.0092 (17)0.0097 (16)0.0059 (17)
N30.100 (4)0.069 (3)0.087 (3)0.041 (3)0.059 (3)0.034 (3)
N40.063 (3)0.060 (2)0.053 (3)0.027 (2)0.009 (2)0.007 (2)
N50.052 (2)0.089 (3)0.057 (3)0.028 (2)0.022 (2)0.021 (2)
O10.0402 (16)0.0565 (18)0.0618 (18)0.0086 (14)0.0225 (14)0.0078 (14)
O20.0434 (17)0.0566 (18)0.066 (2)0.0057 (15)0.0238 (15)0.0005 (15)
O30.0370 (16)0.0557 (17)0.0576 (18)0.0094 (14)0.0150 (13)0.0007 (14)
O40.0417 (17)0.0518 (18)0.072 (2)0.0033 (14)0.0157 (15)0.0111 (15)
O50.065 (2)0.096 (3)0.087 (3)0.044 (2)0.032 (2)0.034 (2)
O60.058 (2)0.0508 (19)0.091 (2)0.0152 (16)0.0378 (19)0.0172 (17)
O70.181 (5)0.090 (3)0.186 (5)0.085 (3)0.108 (4)0.083 (3)
O80.059 (2)0.0570 (19)0.0600 (19)0.0094 (17)0.0190 (16)0.0112 (15)
O90.0416 (17)0.068 (2)0.063 (2)0.0055 (15)0.0131 (15)0.0037 (16)
O100.120 (3)0.095 (3)0.052 (2)0.032 (3)0.002 (2)0.003 (2)
O110.062 (2)0.063 (2)0.072 (2)0.0077 (18)0.0094 (18)0.0177 (18)
O120.068 (2)0.065 (2)0.0555 (19)0.0254 (18)0.0107 (16)0.0045 (16)
O130.078 (3)0.123 (3)0.063 (2)0.047 (2)0.0180 (19)0.037 (2)
C10.036 (2)0.058 (3)0.060 (3)0.015 (2)0.019 (2)0.020 (2)
C20.040 (2)0.056 (3)0.047 (2)0.018 (2)0.0197 (19)0.022 (2)
C30.041 (2)0.053 (3)0.053 (3)0.014 (2)0.016 (2)0.016 (2)
C40.064 (3)0.067 (3)0.058 (3)0.024 (3)0.021 (2)0.008 (2)
C50.065 (3)0.080 (4)0.086 (4)0.027 (3)0.043 (3)0.011 (3)
C60.048 (3)0.079 (4)0.089 (4)0.018 (3)0.037 (3)0.024 (3)
C70.037 (2)0.060 (3)0.067 (3)0.011 (2)0.023 (2)0.023 (2)
C80.062 (3)0.051 (3)0.070 (3)0.008 (2)0.016 (2)0.003 (2)
C90.043 (2)0.051 (3)0.059 (3)0.014 (2)0.009 (2)0.019 (2)
C100.046 (3)0.064 (3)0.066 (3)0.003 (2)0.022 (2)0.019 (2)
C110.055 (3)0.060 (3)0.069 (3)0.003 (2)0.014 (3)0.024 (3)
C120.055 (3)0.061 (3)0.064 (3)0.012 (2)0.006 (2)0.011 (2)
C130.060 (3)0.089 (4)0.077 (4)0.025 (3)0.022 (3)0.004 (3)
C140.047 (3)0.071 (3)0.076 (3)0.006 (2)0.020 (3)0.004 (3)
C150.085 (4)0.079 (4)0.081 (4)0.018 (3)0.004 (3)0.002 (3)
C160.037 (2)0.050 (2)0.053 (2)0.0172 (19)0.0125 (19)0.012 (2)
C170.036 (2)0.048 (2)0.045 (2)0.0147 (19)0.0102 (18)0.0102 (18)
C180.043 (2)0.049 (2)0.053 (3)0.013 (2)0.012 (2)0.013 (2)
C190.057 (3)0.052 (3)0.060 (3)0.021 (2)0.010 (2)0.007 (2)
C200.063 (3)0.069 (3)0.061 (3)0.033 (3)0.026 (2)0.006 (2)
C210.045 (3)0.069 (3)0.063 (3)0.024 (2)0.024 (2)0.017 (2)
C220.038 (2)0.061 (3)0.056 (3)0.018 (2)0.014 (2)0.015 (2)
C230.064 (4)0.052 (3)0.150 (6)0.006 (3)0.026 (4)0.029 (3)
C240.041 (2)0.045 (2)0.054 (3)0.009 (2)0.005 (2)0.009 (2)
C250.045 (3)0.059 (3)0.067 (3)0.006 (2)0.016 (2)0.011 (2)
C260.050 (3)0.056 (3)0.088 (4)0.004 (2)0.011 (3)0.024 (3)
C270.064 (3)0.047 (3)0.071 (3)0.009 (2)0.001 (3)0.011 (2)
C280.076 (4)0.062 (3)0.077 (4)0.010 (3)0.024 (3)0.001 (3)
C290.053 (3)0.055 (3)0.080 (3)0.005 (2)0.023 (3)0.004 (2)
C300.086 (4)0.062 (3)0.089 (4)0.004 (3)0.004 (3)0.002 (3)
Geometric parameters (Å, º) top
Eu—O12.328 (3)C8—H8B0.9600
Eu—O32.329 (3)C8—H8C0.9600
Eu—O62.429 (3)C9—C141.381 (6)
Eu—O112.464 (3)C9—C101.381 (6)
Eu—O92.486 (3)C10—C111.373 (6)
Eu—O82.496 (3)C10—H10A0.9300
Eu—O52.540 (3)C11—C121.374 (7)
Eu—O122.567 (3)C11—H11A0.9300
Eu—O22.743 (3)C12—C131.384 (7)
Eu—O42.748 (3)C12—C151.498 (7)
Eu—N32.906 (5)C13—C141.369 (7)
Eu—N42.914 (4)C13—H13A0.9300
N1—C71.297 (5)C14—H14A0.9300
N1—C91.416 (5)C15—H15A0.9600
N1—H1A0.8600C15—H15B0.9600
N2—C221.300 (5)C15—H15C0.9600
N2—C241.412 (5)C16—C221.408 (6)
N2—H2A0.8600C16—C211.411 (6)
N3—O71.210 (5)C16—C171.413 (5)
N3—O61.262 (6)C17—C181.413 (6)
N3—O51.275 (6)C18—C191.356 (6)
N4—O101.197 (5)C19—C201.401 (7)
N4—O81.271 (5)C19—H19A0.9300
N4—O91.273 (5)C20—C211.351 (6)
N5—O131.232 (5)C20—H20A0.9300
N5—O121.245 (5)C21—H21A0.9300
N5—O111.273 (5)C22—H22A0.9300
O1—C21.310 (5)C23—H23A0.9600
O2—C31.390 (5)C23—H23B0.9600
O2—C81.436 (5)C23—H23C0.9600
O3—C171.308 (5)C24—C291.364 (6)
O4—C181.385 (5)C24—C251.392 (6)
O4—C231.443 (6)C25—C261.376 (7)
C1—C71.397 (6)C25—H25A0.9300
C1—C61.407 (6)C26—C271.386 (7)
C1—C21.427 (5)C26—H26A0.9300
C2—C31.405 (6)C27—C281.378 (7)
C3—C41.365 (6)C27—C301.516 (7)
C4—C51.403 (7)C28—C291.372 (7)
C4—H4A0.9300C28—H28A0.9300
C5—C61.353 (7)C29—H29A0.9300
C5—H5A0.9300C30—H30A0.9600
C6—H6A0.9300C30—H30B0.9600
C7—H7A0.9300C30—H30C0.9600
C8—H8A0.9600
O1—Eu—O3156.86 (11)N5—O12—Eu93.7 (3)
O1—Eu—O6126.05 (10)C7—C1—C6119.5 (4)
O3—Eu—O674.56 (11)C7—C1—C2121.2 (4)
O1—Eu—O1177.22 (11)C6—C1—C2119.3 (4)
O3—Eu—O1181.19 (11)O1—C2—C3121.2 (4)
O6—Eu—O11128.28 (12)O1—C2—C1121.7 (4)
O1—Eu—O967.89 (10)C3—C2—C1117.1 (4)
O3—Eu—O9114.59 (10)C4—C3—O2125.1 (4)
O6—Eu—O9117.74 (12)C4—C3—C2122.5 (4)
O11—Eu—O9113.83 (11)O2—C3—C2112.4 (4)
O1—Eu—O8117.54 (10)C3—C4—C5119.5 (4)
O3—Eu—O873.74 (10)C3—C4—H4A120.2
O6—Eu—O878.23 (11)C5—C4—H4A120.2
O11—Eu—O8136.58 (11)C6—C5—C4120.2 (5)
O9—Eu—O851.36 (10)C6—C5—H5A119.9
O1—Eu—O583.97 (12)C4—C5—H5A119.9
O3—Eu—O5119.17 (12)C5—C6—C1121.3 (4)
O6—Eu—O551.38 (12)C5—C6—H6A119.3
O11—Eu—O5152.48 (12)C1—C6—H6A119.3
O9—Eu—O576.25 (12)N1—C7—C1124.8 (4)
O8—Eu—O570.27 (11)N1—C7—H7A117.6
O1—Eu—O12101.56 (11)C1—C7—H7A117.6
O3—Eu—O1270.19 (10)O2—C8—H8A109.5
O6—Eu—O1278.08 (12)O2—C8—H8B109.5
O11—Eu—O1250.66 (11)H8A—C8—H8B109.5
O9—Eu—O12164.00 (11)O2—C8—H8C109.5
O8—Eu—O12140.88 (11)H8A—C8—H8C109.5
O5—Eu—O12115.65 (12)H8B—C8—H8C109.5
O1—Eu—O261.53 (9)C14—C9—C10118.7 (4)
O3—Eu—O2126.07 (9)C14—C9—N1118.9 (4)
O6—Eu—O272.06 (10)C10—C9—N1122.3 (4)
O11—Eu—O287.61 (11)C11—C10—C9120.2 (5)
O9—Eu—O2118.15 (10)C11—C10—H10A119.9
O8—Eu—O2135.78 (10)C9—C10—H10A119.9
O5—Eu—O265.64 (11)C10—C11—C12122.1 (5)
O12—Eu—O262.36 (10)C10—C11—H11A119.0
O1—Eu—O4103.23 (9)C12—C11—H11A119.0
O3—Eu—O461.07 (9)C11—C12—C13116.8 (5)
O6—Eu—O4128.88 (10)C11—C12—C15120.8 (5)
O11—Eu—O470.39 (11)C13—C12—C15122.4 (5)
O9—Eu—O465.81 (10)C14—C13—C12122.3 (5)
O8—Eu—O466.53 (10)C14—C13—H13A118.8
O5—Eu—O4134.37 (11)C12—C13—H13A118.8
O12—Eu—O4106.99 (10)C13—C14—C9119.9 (5)
O2—Eu—O4156.14 (10)C13—C14—H14A120.0
O1—Eu—N3106.12 (13)C9—C14—H14A120.0
O3—Eu—N396.52 (13)C12—C15—H15A109.5
O6—Eu—N325.40 (13)C12—C15—H15B109.5
O11—Eu—N3147.00 (13)H15A—C15—H15B109.5
O9—Eu—N397.17 (13)C12—C15—H15C109.5
O8—Eu—N371.99 (11)H15A—C15—H15C109.5
O5—Eu—N325.98 (12)H15B—C15—H15C109.5
O12—Eu—N397.38 (13)C22—C16—C21119.9 (4)
O2—Eu—N367.05 (10)C22—C16—C17120.6 (4)
O4—Eu—N3136.81 (10)C21—C16—C17119.5 (4)
O1—Eu—N493.14 (11)O3—C17—C16121.9 (4)
O3—Eu—N493.38 (11)O3—C17—C18120.3 (4)
O6—Eu—N499.32 (12)C16—C17—C18117.7 (4)
O11—Eu—N4127.44 (11)C19—C18—O4126.4 (4)
O9—Eu—N425.74 (10)C19—C18—C17121.3 (4)
O8—Eu—N425.71 (10)O4—C18—C17112.3 (4)
O5—Eu—N472.97 (11)C18—C19—C20120.6 (4)
O12—Eu—N4163.52 (11)C18—C19—H19A119.7
O2—Eu—N4132.72 (10)C20—C19—H19A119.7
O4—Eu—N461.78 (10)C21—C20—C19119.8 (4)
N3—Eu—N485.49 (12)C21—C20—H20A120.1
C7—N1—C9128.0 (4)C19—C20—H20A120.1
C7—N1—H1A116.0C20—C21—C16121.1 (4)
C9—N1—H1A116.0C20—C21—H21A119.5
C22—N2—C24128.9 (4)C16—C21—H21A119.5
C22—N2—H2A115.5N2—C22—C16122.7 (4)
C24—N2—H2A115.5N2—C22—H22A118.7
O7—N3—O6122.5 (6)C16—C22—H22A118.7
O7—N3—O5121.1 (6)O4—C23—H23A109.5
O6—N3—O5116.4 (4)O4—C23—H23B109.5
O7—N3—Eu178.1 (5)H23A—C23—H23B109.5
O6—N3—Eu55.6 (2)O4—C23—H23C109.5
O5—N3—Eu60.8 (2)H23A—C23—H23C109.5
O10—N4—O8122.2 (4)H23B—C23—H23C109.5
O10—N4—O9121.7 (4)C29—C24—C25120.2 (4)
O8—N4—O9116.2 (4)C29—C24—N2117.9 (4)
O10—N4—Eu173.5 (3)C25—C24—N2121.9 (4)
O8—N4—Eu58.5 (2)C26—C25—C24118.9 (5)
O9—N4—Eu58.0 (2)C26—C25—H25A120.5
O13—N5—O12122.7 (5)C24—C25—H25A120.5
O13—N5—O11119.7 (5)C25—C26—C27121.7 (5)
O12—N5—O11117.6 (4)C25—C26—H26A119.1
O13—N5—Eu175.6 (4)C27—C26—H26A119.1
O12—N5—Eu61.1 (2)C28—C27—C26117.5 (5)
O11—N5—Eu56.5 (2)C28—C27—C30121.3 (5)
C2—O1—Eu128.8 (3)C26—C27—C30121.2 (5)
C3—O2—C8117.2 (3)C29—C28—C27122.0 (5)
C3—O2—Eu114.8 (2)C29—C28—H28A119.0
C8—O2—Eu127.1 (3)C27—C28—H28A119.0
C17—O3—Eu128.5 (2)C24—C29—C28119.8 (5)
C18—O4—C23116.4 (4)C24—C29—H29A120.1
C18—O4—Eu114.2 (2)C28—C29—H29A120.1
C23—O4—Eu128.9 (3)C27—C30—H30A109.5
N3—O5—Eu93.3 (3)C27—C30—H30B109.5
N3—O6—Eu99.0 (3)H30A—C30—H30B109.5
N4—O8—Eu95.8 (2)C27—C30—H30C109.5
N4—O9—Eu96.3 (2)H30A—C30—H30C109.5
N5—O11—Eu97.9 (3)H30B—C30—H30C109.5
O1—Eu—N3—O6145.0 (3)O12—Eu—O5—N348.7 (3)
O3—Eu—N3—O630.1 (3)O2—Eu—O5—N387.2 (3)
O11—Eu—N3—O653.7 (4)O4—Eu—O5—N3108.7 (3)
O9—Eu—N3—O6146.0 (3)N4—Eu—O5—N3116.2 (3)
O8—Eu—N3—O6100.6 (3)O7—N3—O6—Eu179.6 (4)
O5—Eu—N3—O6177.6 (4)O5—N3—O6—Eu2.3 (4)
O12—Eu—N3—O640.7 (3)O1—Eu—O6—N342.9 (3)
O2—Eu—N3—O696.4 (3)O3—Eu—O6—N3148.9 (3)
O4—Eu—N3—O684.0 (3)O11—Eu—O6—N3146.0 (3)
N4—Eu—N3—O6123.0 (3)O9—Eu—O6—N338.8 (3)
O1—Eu—N3—O532.6 (3)O8—Eu—O6—N372.7 (3)
O3—Eu—N3—O5152.3 (3)O5—Eu—O6—N31.3 (2)
O6—Eu—N3—O5177.6 (4)O12—Eu—O6—N3138.6 (3)
O11—Eu—N3—O5123.8 (3)O2—Eu—O6—N374.1 (3)
O9—Eu—N3—O536.4 (3)O4—Eu—O6—N3119.0 (3)
O8—Eu—N3—O581.8 (3)N4—Eu—O6—N357.9 (3)
O12—Eu—N3—O5136.9 (3)O10—N4—O8—Eu172.4 (4)
O2—Eu—N3—O581.2 (3)O9—N4—O8—Eu6.2 (4)
O4—Eu—N3—O598.4 (3)O1—Eu—O8—N419.8 (3)
N4—Eu—N3—O559.4 (3)O3—Eu—O8—N4138.3 (3)
O1—Eu—N4—O8162.5 (2)O6—Eu—O8—N4144.5 (3)
O3—Eu—N4—O839.7 (2)O11—Eu—O8—N481.0 (3)
O6—Eu—N4—O835.2 (3)O9—Eu—O8—N43.7 (2)
O11—Eu—N4—O8121.2 (2)O5—Eu—O8—N491.6 (3)
O9—Eu—N4—O8173.4 (4)O12—Eu—O8—N4161.7 (2)
O5—Eu—N4—O879.8 (2)O2—Eu—O8—N496.2 (3)
O12—Eu—N4—O844.3 (5)O4—Eu—O8—N473.4 (2)
O2—Eu—N4—O8109.3 (3)N3—Eu—O8—N4119.0 (3)
O4—Eu—N4—O894.2 (3)O10—N4—O9—Eu172.4 (4)
N3—Eu—N4—O856.5 (3)O8—N4—O9—Eu6.3 (4)
O1—Eu—N4—O910.9 (2)O1—Eu—O9—N4168.2 (3)
O3—Eu—N4—O9146.9 (2)O3—Eu—O9—N436.9 (3)
O6—Eu—N4—O9138.2 (2)O6—Eu—O9—N448.0 (3)
O11—Eu—N4—O965.4 (3)O11—Eu—O9—N4127.9 (2)
O8—Eu—N4—O9173.4 (4)O8—Eu—O9—N43.7 (2)
O5—Eu—N4—O993.6 (3)O5—Eu—O9—N479.2 (2)
O12—Eu—N4—O9142.3 (4)O12—Eu—O9—N4141.0 (4)
O2—Eu—N4—O964.1 (3)O2—Eu—O9—N4131.5 (2)
O4—Eu—N4—O992.4 (2)O4—Eu—O9—N474.8 (2)
N3—Eu—N4—O9116.9 (3)N3—Eu—O9—N463.7 (3)
O1—Eu—N5—O12121.2 (3)O13—N5—O11—Eu177.2 (3)
O3—Eu—N5—O1275.4 (2)O12—N5—O11—Eu3.4 (4)
O6—Eu—N5—O125.6 (3)O1—Eu—O11—N5115.0 (3)
O11—Eu—N5—O12176.6 (4)O3—Eu—O11—N573.4 (2)
O9—Eu—N5—O12174.3 (2)O6—Eu—O11—N511.2 (3)
O8—Eu—N5—O1294.1 (3)O9—Eu—O11—N5173.5 (2)
O5—Eu—N5—O1241.3 (3)O8—Eu—O11—N5128.3 (2)
O2—Eu—N5—O1260.7 (2)O5—Eu—O11—N566.9 (4)
O4—Eu—N5—O12135.5 (2)O12—Eu—O11—N51.9 (2)
N3—Eu—N5—O1213.0 (3)O2—Eu—O11—N553.7 (2)
N4—Eu—N5—O12144.6 (3)O4—Eu—O11—N5135.7 (3)
O1—Eu—N5—O1162.2 (3)N3—Eu—O11—N515.0 (4)
O3—Eu—N5—O11101.2 (3)N4—Eu—O11—N5160.9 (2)
O6—Eu—N5—O11171.0 (2)O13—N5—O12—Eu177.4 (4)
O9—Eu—N5—O119.1 (3)O11—N5—O12—Eu3.2 (4)
O8—Eu—N5—O1182.5 (3)O1—Eu—O12—N560.7 (3)
O5—Eu—N5—O11142.1 (3)O3—Eu—O12—N596.8 (3)
O12—Eu—N5—O11176.6 (4)O6—Eu—O12—N5174.4 (3)
O2—Eu—N5—O11122.7 (3)O11—Eu—O12—N51.9 (2)
O4—Eu—N5—O1141.1 (3)O9—Eu—O12—N513.6 (5)
N3—Eu—N5—O11170.4 (2)O8—Eu—O12—N5120.6 (3)
N4—Eu—N5—O1132.0 (4)O5—Eu—O12—N5149.6 (2)
O3—Eu—O1—C2125.4 (3)O2—Eu—O12—N5109.7 (3)
O6—Eu—O1—C224.5 (4)O4—Eu—O12—N547.1 (3)
O11—Eu—O1—C2103.9 (3)N3—Eu—O12—N5168.9 (3)
O9—Eu—O1—C2133.5 (4)N4—Eu—O12—N591.9 (5)
O8—Eu—O1—C2119.9 (3)Eu—O1—C2—C39.3 (6)
O5—Eu—O1—C255.9 (3)Eu—O1—C2—C1169.7 (3)
O12—Eu—O1—C259.1 (3)C7—C1—C2—O12.1 (6)
O2—Eu—O1—C29.6 (3)C6—C1—C2—O1179.4 (4)
O4—Eu—O1—C2169.9 (3)C7—C1—C2—C3177.0 (4)
N3—Eu—O1—C242.2 (4)C6—C1—C2—C31.5 (6)
N4—Eu—O1—C2128.4 (3)C8—O2—C3—C43.0 (6)
O1—Eu—O2—C39.0 (3)Eu—O2—C3—C4173.0 (4)
O3—Eu—O2—C3163.0 (2)C8—O2—C3—C2178.4 (4)
O6—Eu—O2—C3142.6 (3)Eu—O2—C3—C28.4 (4)
O11—Eu—O2—C385.8 (3)O1—C2—C3—C4179.9 (4)
O9—Eu—O2—C330.1 (3)C1—C2—C3—C41.1 (6)
O8—Eu—O2—C392.4 (3)O1—C2—C3—O21.2 (6)
O5—Eu—O2—C387.6 (3)C1—C2—C3—O2179.7 (4)
O12—Eu—O2—C3131.8 (3)O2—C3—C4—C5179.1 (4)
O4—Eu—O2—C363.4 (4)C2—C3—C4—C50.7 (7)
N3—Eu—O2—C3115.9 (3)C3—C4—C5—C60.7 (8)
N4—Eu—O2—C356.4 (3)C4—C5—C6—C11.3 (8)
O1—Eu—O2—C8177.9 (4)C7—C1—C6—C5176.8 (5)
O3—Eu—O2—C828.1 (4)C2—C1—C6—C51.7 (7)
O6—Eu—O2—C826.3 (3)C9—N1—C7—C1178.1 (4)
O11—Eu—O2—C8105.4 (4)C6—C1—C7—N1177.3 (4)
O9—Eu—O2—C8138.8 (3)C2—C1—C7—N11.2 (7)
O8—Eu—O2—C876.5 (4)C7—N1—C9—C14170.5 (5)
O5—Eu—O2—C881.3 (4)C7—N1—C9—C109.7 (7)
O12—Eu—O2—C859.3 (3)C14—C9—C10—C111.2 (7)
O4—Eu—O2—C8127.7 (3)N1—C9—C10—C11178.9 (4)
N3—Eu—O2—C852.9 (4)C9—C10—C11—C121.2 (8)
N4—Eu—O2—C8112.5 (3)C10—C11—C12—C130.7 (8)
O1—Eu—O3—C1767.9 (4)C10—C11—C12—C15178.4 (5)
O6—Eu—O3—C17137.0 (3)C11—C12—C13—C140.1 (8)
O11—Eu—O3—C1789.1 (3)C15—C12—C13—C14177.8 (5)
O9—Eu—O3—C1723.1 (4)C12—C13—C14—C90.1 (8)
O8—Eu—O3—C1755.0 (3)C10—C9—C14—C130.7 (7)
O5—Eu—O3—C17110.6 (3)N1—C9—C14—C13179.5 (5)
O12—Eu—O3—C17140.4 (3)Eu—O3—C17—C16164.4 (3)
O2—Eu—O3—C17169.6 (3)Eu—O3—C17—C1816.8 (5)
O4—Eu—O3—C1716.7 (3)C22—C16—C17—O32.9 (6)
N3—Eu—O3—C17124.1 (3)C21—C16—C17—O3179.5 (4)
N4—Eu—O3—C1738.2 (3)C22—C16—C17—C18175.9 (4)
O1—Eu—O4—C18176.7 (3)C21—C16—C17—C181.7 (6)
O3—Eu—O4—C1815.1 (2)C23—O4—C18—C197.1 (6)
O6—Eu—O4—C1818.2 (3)Eu—O4—C18—C19166.2 (4)
O11—Eu—O4—C18105.7 (3)C23—O4—C18—C17173.1 (4)
O9—Eu—O4—C18125.2 (3)Eu—O4—C18—C1713.6 (4)
O8—Eu—O4—C1868.7 (3)O3—C17—C18—C19178.7 (4)
O5—Eu—O4—C1888.7 (3)C16—C17—C18—C192.4 (6)
O12—Eu—O4—C1870.1 (3)O3—C17—C18—O41.1 (5)
O2—Eu—O4—C18129.5 (3)C16—C17—C18—O4177.8 (4)
N3—Eu—O4—C1851.4 (3)O4—C18—C19—C20178.7 (4)
N4—Eu—O4—C1896.8 (3)C17—C18—C19—C201.5 (7)
O1—Eu—O4—C2310.9 (4)C18—C19—C20—C210.2 (7)
O3—Eu—O4—C23172.6 (4)C19—C20—C21—C160.9 (7)
O6—Eu—O4—C23154.1 (4)C22—C16—C21—C20177.5 (4)
O11—Eu—O4—C2382.0 (4)C17—C16—C21—C200.1 (7)
O9—Eu—O4—C2347.1 (4)C24—N2—C22—C16177.3 (4)
O8—Eu—O4—C23103.6 (4)C21—C16—C22—N2178.2 (4)
O5—Eu—O4—C2383.6 (4)C17—C16—C22—N20.6 (6)
O12—Eu—O4—C23117.6 (4)C22—N2—C24—C29169.5 (5)
O2—Eu—O4—C2358.2 (5)C22—N2—C24—C2510.2 (7)
N3—Eu—O4—C23120.9 (4)C29—C24—C25—C261.0 (7)
N4—Eu—O4—C2375.5 (4)N2—C24—C25—C26178.7 (4)
O7—N3—O5—Eu179.7 (4)C24—C25—C26—C270.1 (7)
O6—N3—O5—Eu2.2 (4)C25—C26—C27—C280.8 (8)
O1—Eu—O5—N3148.7 (3)C25—C26—C27—C30178.3 (5)
O3—Eu—O5—N331.9 (3)C26—C27—C28—C290.9 (8)
O6—Eu—O5—N31.3 (2)C30—C27—C28—C29178.2 (5)
O11—Eu—O5—N3101.8 (3)C25—C24—C29—C280.9 (7)
O9—Eu—O5—N3142.7 (3)N2—C24—C29—C28178.8 (5)
O8—Eu—O5—N389.2 (3)C27—C28—C29—C240.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.952.634 (4)136
N2—H2A···O30.861.862.569 (4)139

Experimental details

Crystal data
Chemical formula[Eu(NO3)3(C15H15NO2)2]
Mr820.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7603 (7), 10.0250 (7), 18.4227 (16)
α, β, γ (°)98.165 (6), 101.665 (6), 106.681 (4)
V3)1652.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.18 × 0.09 × 0.06
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.801, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
26273, 7610, 5570
Rint0.051
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 0.99
No. of reflections7610
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.69

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.952.634 (4)136.3
N2—H2A···O30.861.862.569 (4)138.9
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150–4152.  CrossRef CAS Web of Science Google Scholar
First citationLi, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1593–m1594.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiu, J.-F., Liu, J.-L. & Zhao, G.-L. (2009). Acta Cryst. E65, m1385–m1386.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXian, H.-D., Liu, J.-F., Li, H.-Q. & Zhao, G.-L. (2008). Acta Cryst. E64, m1422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Zhang, P.-H. & Feng, Y.-L. (2005). Chin. J. Inorg. Chem. 21, 421–424.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds