organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[(E)-(5-chloro-2-thienyl)methyl­­idene]ethane-1,2-di­amine

aChemistry Group, BITS, Pilani – K. K. Birla Goa Campus, Goa, India 403 726, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 14 October 2010; accepted 15 October 2010; online 23 October 2010)

The full mol­ecule of the title compound, C12H10Cl2N2S2, is generated by the application of a centre of inversion. The thio­phene and imine residues are co-planar [the N—C—C—S torsion angle is −2.5 (4)°] and the conformation about the imine bond [1.268 (4) Å] is E. Supra­molecular arrays are formed in the bc plane via C—Cl⋯π inter­actions and these stack along the a axis.

Related literature

For background to 2-substituted thio­phenes, see: Campaigne (1984[Campaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863-934. Oxford: Pergamon.]); Kleemann et al. (2006[Kleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.]). For related structures, see: Wang et al. (2007[Wang, D.-Q., Wang, Q. & Xiao, L.-J. (2007). Acta Cryst. E63, o4865.]); Wardell et al. (2010[Wardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271-o272.]); Prasath et al. (2010[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2884.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10Cl2N2S2

  • Mr = 317.24

  • Monoclinic, P 21 /c

  • a = 14.682 (2) Å

  • b = 4.7016 (7) Å

  • c = 10.6607 (15) Å

  • β = 109.439 (2)°

  • V = 693.92 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.835, Tmax = 0.963

  • 5721 measured reflections

  • 1576 independent reflections

  • 1270 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.117

  • S = 1.01

  • 1576 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S3,C3–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—Cl1⋯Cg1i 1.71 (1) 3.52 (1) 3.994 (3) 93 (1)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in their putative biological activity (Wardell et al., 2010) motivates studies of 2-substituted thiophene rings (Campaigne, 1984; Kleemann et al., 2006), including on-going crystallographic investigations (Wardell et al. 2010; Prasath et al., 2010).

The asymmetric unit of (I), Fig. 1, comprises half a molecule with the full molecule generated by a crystallographic centre of inversion. The thiophene residue is co-planar with the imine group as seen in the value of the N1—C2—C3—S1 torsion angle of -2.5 (4) °. The conformation about the imine N1—C2 [1.268 (4) Å] bond is E. The observed conformation matches closely those found for related compounds (Wang et al., 2007; Prasath et al., 2010).

The most prominent contacts in the crystal packing are of the type C—Cl···π, Table 1. These serve to connect molecules into a 2-D array in the bc plane, Fig. 2, which stack along the a axis, Fig. 3, with the chlorido atoms facing each other. Concerning the latter, the closest interlayer Cl···Cl contact is 3.3831 (11) Å [symmetry operation: 2 - x, -1/2 + y, 3/2 - z].

Related literature top

For background to 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For related structures, see: Wang et al. (2007); Wardell et al. (2010); Prasath et al. (2010).

Experimental top

A mixture of 5-chloro-2-thiophenecarboxaldehyde (0.43 ml, 0.004 M) and ethylenediamine (0.13 ml, 0.002 M) was stirred in dichloromethane for 3 h at room temperature. The solvent from the reaction mixture was removed under reduced pressure. The resulting solid was dried and purified by column chromatography using a 1:3 mixture of ethyl acetate and hexane. Recrystallization was by slow evaporation of a dichloromethane solution of (I) which yielded colourless needles (yield: 73%). M. pt. 353–355 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). In the final refinement a low angle reflection evidently effected by the beam stop was omitted, i.e. (100).

Structure description top

Interest in their putative biological activity (Wardell et al., 2010) motivates studies of 2-substituted thiophene rings (Campaigne, 1984; Kleemann et al., 2006), including on-going crystallographic investigations (Wardell et al. 2010; Prasath et al., 2010).

The asymmetric unit of (I), Fig. 1, comprises half a molecule with the full molecule generated by a crystallographic centre of inversion. The thiophene residue is co-planar with the imine group as seen in the value of the N1—C2—C3—S1 torsion angle of -2.5 (4) °. The conformation about the imine N1—C2 [1.268 (4) Å] bond is E. The observed conformation matches closely those found for related compounds (Wang et al., 2007; Prasath et al., 2010).

The most prominent contacts in the crystal packing are of the type C—Cl···π, Table 1. These serve to connect molecules into a 2-D array in the bc plane, Fig. 2, which stack along the a axis, Fig. 3, with the chlorido atoms facing each other. Concerning the latter, the closest interlayer Cl···Cl contact is 3.3831 (11) Å [symmetry operation: 2 - x, -1/2 + y, 3/2 - z].

For background to 2-substituted thiophenes, see: Campaigne (1984); Kleemann et al. (2006). For related structures, see: Wang et al. (2007); Wardell et al. (2010); Prasath et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Symmetry operation i: 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. A view of the supramolecular 2-D array in the bc plane mediated by C—Cl···π interactions (purple dashed lines).
[Figure 3] Fig. 3. Stacking of layers along the a axis in the crystal structure of (I). The C—Cl···π interactions are shown as purple dashed lines.
N,N'-Bis[(E)-(5-chloro-2-thienyl)methylidene]ethane- 1,2-diamine top
Crystal data top
C12H10Cl2N2S2F(000) = 324
Mr = 317.24Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2363 reflections
a = 14.682 (2) Åθ = 3.0–28.0°
b = 4.7016 (7) ŵ = 0.75 mm1
c = 10.6607 (15) ÅT = 100 K
β = 109.439 (2)°Prism, colourless
V = 693.92 (17) Å30.25 × 0.15 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
1576 independent reflections
Radiation source: fine-focus sealed tube1270 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.835, Tmax = 0.963k = 66
5721 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.3727P]
where P = (Fo2 + 2Fc2)/3
1576 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C12H10Cl2N2S2V = 693.92 (17) Å3
Mr = 317.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.682 (2) ŵ = 0.75 mm1
b = 4.7016 (7) ÅT = 100 K
c = 10.6607 (15) Å0.25 × 0.15 × 0.05 mm
β = 109.439 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1576 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1270 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.963Rint = 0.058
5721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
1576 reflectionsΔρmin = 0.48 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.94014 (5)1.46904 (14)0.80609 (6)0.0258 (2)
S10.76180 (5)1.12742 (14)0.69149 (6)0.0220 (2)
N10.58522 (16)0.7601 (5)0.6104 (2)0.0286 (5)
C10.4988 (2)0.5840 (6)0.5603 (3)0.0333 (7)
H1A0.44060.70620.53550.040*
H1B0.49550.45140.63080.040*
C20.63515 (19)0.7367 (6)0.7325 (3)0.0267 (6)
H20.61510.60770.78680.032*
C30.72211 (19)0.9026 (5)0.7907 (3)0.0238 (6)
C40.7822 (2)0.9074 (6)0.9193 (3)0.0282 (6)
H40.77160.79700.98790.034*
C50.8620 (2)1.0934 (6)0.9411 (3)0.0271 (6)
H50.91091.12201.02470.033*
C60.85924 (19)1.2254 (6)0.8263 (2)0.0220 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0284 (4)0.0242 (4)0.0285 (3)0.0067 (2)0.0141 (3)0.0066 (2)
S10.0249 (4)0.0199 (4)0.0230 (3)0.0031 (2)0.0104 (3)0.0007 (2)
N10.0241 (12)0.0212 (12)0.0432 (14)0.0047 (9)0.0149 (10)0.0032 (10)
C10.0288 (15)0.0285 (15)0.0463 (18)0.0089 (12)0.0173 (13)0.0043 (13)
C20.0302 (14)0.0184 (13)0.0402 (16)0.0028 (11)0.0232 (12)0.0029 (11)
C30.0287 (14)0.0169 (13)0.0323 (14)0.0025 (10)0.0187 (12)0.0013 (10)
C40.0416 (17)0.0220 (14)0.0274 (13)0.0028 (12)0.0202 (12)0.0001 (10)
C50.0353 (15)0.0261 (15)0.0219 (12)0.0025 (11)0.0122 (11)0.0033 (10)
C60.0259 (13)0.0188 (13)0.0241 (12)0.0002 (10)0.0122 (10)0.0050 (9)
Geometric parameters (Å, º) top
Cl1—C61.714 (3)C2—C31.448 (4)
S1—C61.719 (3)C2—H20.9500
S1—C31.728 (3)C3—C41.362 (4)
N1—C21.268 (4)C4—C51.419 (4)
N1—C11.459 (3)C4—H40.9500
C1—C1i1.519 (6)C5—C61.361 (4)
C1—H1A0.9900C5—H50.9500
C1—H1B0.9900
C6—S1—C390.50 (13)C4—C3—S1111.7 (2)
C2—N1—C1117.5 (2)C2—C3—S1119.7 (2)
N1—C1—C1i110.1 (3)C3—C4—C5113.4 (2)
N1—C1—H1A109.6C3—C4—H4123.3
C1i—C1—H1A109.6C5—C4—H4123.3
N1—C1—H1B109.6C6—C5—C4111.0 (3)
C1i—C1—H1B109.6C6—C5—H5124.5
H1A—C1—H1B108.2C4—C5—H5124.5
N1—C2—C3121.3 (2)C5—C6—Cl1127.1 (2)
N1—C2—H2119.4C5—C6—S1113.4 (2)
C3—C2—H2119.4Cl1—C6—S1119.53 (15)
C4—C3—C2128.6 (2)
C2—N1—C1—C1i126.6 (3)S1—C3—C4—C50.0 (3)
C1—N1—C2—C3179.9 (2)C3—C4—C5—C60.2 (4)
N1—C2—C3—C4178.4 (3)C4—C5—C6—Cl1179.4 (2)
N1—C2—C3—S12.5 (4)C4—C5—C6—S10.3 (3)
C6—S1—C3—C40.1 (2)C3—S1—C6—C50.3 (2)
C6—S1—C3—C2179.4 (2)C3—S1—C6—Cl1179.49 (17)
C2—C3—C4—C5179.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S3,C3–C6 ring.
D—H···AD—HH···AD···AD—H···A
C6—Cl1···Cg1ii1.71 (1)3.52 (1)3.994 (3)93 (1)
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H10Cl2N2S2
Mr317.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.682 (2), 4.7016 (7), 10.6607 (15)
β (°) 109.439 (2)
V3)693.92 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.835, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
5721, 1576, 1270
Rint0.058
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.117, 1.01
No. of reflections1576
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.48

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S3,C3–C6 ring.
D—H···AD—HH···AD···AD—H···A
C6—Cl1···Cg1i1.714 (3)3.5182 (14)3.994 (3)93.01 (10)
Symmetry code: (i) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: juliebhavana@gmail.com.

Acknowledgements

PB acknowledges the Department of Science and Technology (DST), India, for a research grant (SR/FTP/CS-57/2007). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampaigne, E. (1984). Comprehensive Heterocyclic Chemistry, Vol. 4, edited by A. R. Katritzky & C. W. Rees, pp. 863–934. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKleemann, A., Engel, J. B., Kutscher, B. & Reichert, D. (2006). Pharmaceutical Substances. New York, Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D.-Q., Wang, Q. & Xiao, L.-J. (2007). Acta Cryst. E63, o4865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Lima, G. M., Tiekink, E. R. T. & Wardell, J. L. (2010). Acta Cryst. E66, o271–o272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds