metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Bromo-2-fluoro­benz­yl)pyridinium bis­­(2-thioxo-1,3-di­thiole-4,5-di­thiol­ato)nickelate(III)

aInstitute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011, People's Republic of China
*Correspondence e-mail: meichongzhen@163.com

(Received 14 September 2010; accepted 1 October 2010; online 9 October 2010)

The title compound, (C12H10BrFN)[Ni(C3S5)2], is an ion-pair complex consisting of N-(2-fluoro-4-bromo­benz­yl)pyridinium cations and [Ni(dmit)2] anions (dmit = 2-thioxo-1,3-dithiole-4,5-dithiol­ate). In the anion, the NiIII ion exhibits a square-planar coordination involving four S atoms from two dmit ligands. In the crystal structure, weak S⋯S [3.474 (3), 3.478 (3) and 3.547 (3) Å] and S⋯π [S⋯centroid distances = 3.360 (3), 3.378 (2), 3.537 (2) and 3.681 (3) Å] inter­actions and C—H⋯F hydrogen bonds lead to a three-dimensional supra­molecular network.

Related literature

For general background to the network topologies and applications of bis­(dithiol­ate)–metal complexes, see: Cassoux (1999[Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.]). For the synthesis, structures and properties of related complexes containing dmit ligands, see: Akutagawa & Nakamura (2000[Akutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297-311.]); Li et al. (2006[Li, J., Yao, L., Su, Y. & Tao, R. (2006). Acta Cryst. E62, m1990-m1991.]); Zang et al. (2006[Zang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004-m1005.], 2009[Zang, S.-Q., Ren, X.-M., Su, Y., Song, Y., Tong, W.-J., Ni, Z.-P., Zhao, H.-H., Gao, S. & Meng, Q.-J. (2009). Inorg. Chem. 48, 9623-9630.]). For lone-pair⋯π inter­actions, see: Egli & Sarkhel (2007[Egli, M. & Sarkhel, S. J. (2007). Acc. Chem. Res. 40, 197-205.]). For the synthesis, see: Wang et al. (1998[Wang, C., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615-1618.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H10BrFN)[Ni(C3S5)2]

  • Mr = 718.56

  • Triclinic, P 1

  • a = 6.2952 (15) Å

  • b = 9.716 (2) Å

  • c = 11.482 (3) Å

  • α = 65.953 (4)°

  • β = 77.592 (4)°

  • γ = 88.498 (4)°

  • V = 624.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 296 K

  • 0.19 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.579, Tmax = 0.643

  • 3111 measured reflections

  • 2619 independent reflections

  • 2434 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.086

  • S = 1.03

  • 2619 reflections

  • 290 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); 456 Friedel pairs

  • Flack parameter: 0.364 (16)

Table 1
Selected bond lengths (Å)

Ni1—S4 2.163 (3)
Ni1—S5 2.150 (2)
Ni1—S6 2.157 (2)
Ni1—S7 2.169 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯F1i 0.93 2.60 3.476 (11) 156
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Extensive research has been focused on the synthesis and characterization of bis(dithiolate)–metal complexes and their analogues, due to their properties and potential applications as conducting, magnetic and non-linear optical (NLO) materials (Cassoux, 1999). 2-Thioxo-1,3-dithiole-4,5-dithiolate (dmit) metal complex also is excellent building block employed for the construction of molecular magnetic materials (Li et al., 2006; Zang et al., 2006, 2009) apart from its well known electric conductivity as molecular conductors (Akutagawa & Nakamura, 2000). We report herein the synthesis and crystal structure of the title compound, a new ion-pair complex.

The title compound comprises [NiIII(dmit)2]- anions and N-(2-fluoro-4-bromobenzyl)pyridinium cations (Fig. 1). The NiIII ion adopts a square-planar geometry coordinated by four S atoms from two dmit ligands, with Ni—S bond lengths ranging from 2.150 (2) to 2.169 (3) Å (Table 1). The [NiIII(dmit)2]- anions are in a parallel arrangement, with S···S interactions ranging from 3.474 (3) to 3.547 (3) Å. Two neighbouring anions are parallel in a head-to-tail inversion arrangement so that lone-pair (lp)···π (Egli & Sarkhel, 2007) interactions form between one terminal S atom of the anion and the other terminal π system of adjacent anion [S1···Cg1i = 3.378 (2) and S10i···Cg2 = 3.537 (2) Å. Cg1 and Cg2 are the centroids of C4–C6, S8, S9 ring and C1–C3, S2, S3 ring, respectively. Symmetry code: (i) x, -1+y, 1+z]. The anion and the neighbouring cation are also associated together through lp···π interactions between two terminal S atoms of the anion and the pyridine rings of two different cations [S1···Cg3ii = 3.360 (3) and S10···Cg3iii = 3.681 (3) Å. Cg3 is the centroid of C14–C18, N1 ring. Symmetry codes: (ii) 1+x, -1+y, z; (iii) x, 1+y, -1+z]. The weak S···S and S(lp)···π interactions lead to a three-dimensional supramolecular structure. In addition, the cations adopt a parallel arrangement, and the shortest distance between H14 from the pyridine ring of a cation and F1 atom from the neighbouring cation is 2.60 Å, indicating the existence of a C—H···F hydrogen bond (Table 2), which stabilizes the three-dimensional structure (Fig. 2).

Related literature top

For general background to the network topologies and applications of bis(dithiolate)–metal complexes, see: Cassoux (1999). For the synthesis, structures and properties of related complexes containing dmit ligands, see: Akutagawa & Nakamura (2000); Li et al. (2006); Zang et al. (2006, 2009). For lone-pair···π interactions, see: Egli & Sarkhel (2007). For the synthesis, see: Wang et al. (1998).

Experimental top

4,5-Bis(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2.0 mmol) (Wang et al., 1998) was suspended in dry methanol (20 ml) and sodium (92 mg, 4.0 mmol) was added under a nitrogen atmosphere at room temperature to give a bright-red solution. NiCl2.6H2O (238 mg, 1 mmol) was then added, followed successively by addition of I2 (127 mg, 0.5 mmol) and a solution of N-(2-fluoro-4-bromobenzyl)pyridinium bromide (346 mg, 1 mmol) in methanol at an interval of approximately 20 min. The solution was stirred for a further 30 min and the resulting solid was collected by filtration. Single crystals of the title compound were obtained by evaporation of a dilute acetone solution over 1–2 weeks at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93(aromatic) and 0.97(CH2) Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Extensive research has been focused on the synthesis and characterization of bis(dithiolate)–metal complexes and their analogues, due to their properties and potential applications as conducting, magnetic and non-linear optical (NLO) materials (Cassoux, 1999). 2-Thioxo-1,3-dithiole-4,5-dithiolate (dmit) metal complex also is excellent building block employed for the construction of molecular magnetic materials (Li et al., 2006; Zang et al., 2006, 2009) apart from its well known electric conductivity as molecular conductors (Akutagawa & Nakamura, 2000). We report herein the synthesis and crystal structure of the title compound, a new ion-pair complex.

The title compound comprises [NiIII(dmit)2]- anions and N-(2-fluoro-4-bromobenzyl)pyridinium cations (Fig. 1). The NiIII ion adopts a square-planar geometry coordinated by four S atoms from two dmit ligands, with Ni—S bond lengths ranging from 2.150 (2) to 2.169 (3) Å (Table 1). The [NiIII(dmit)2]- anions are in a parallel arrangement, with S···S interactions ranging from 3.474 (3) to 3.547 (3) Å. Two neighbouring anions are parallel in a head-to-tail inversion arrangement so that lone-pair (lp)···π (Egli & Sarkhel, 2007) interactions form between one terminal S atom of the anion and the other terminal π system of adjacent anion [S1···Cg1i = 3.378 (2) and S10i···Cg2 = 3.537 (2) Å. Cg1 and Cg2 are the centroids of C4–C6, S8, S9 ring and C1–C3, S2, S3 ring, respectively. Symmetry code: (i) x, -1+y, 1+z]. The anion and the neighbouring cation are also associated together through lp···π interactions between two terminal S atoms of the anion and the pyridine rings of two different cations [S1···Cg3ii = 3.360 (3) and S10···Cg3iii = 3.681 (3) Å. Cg3 is the centroid of C14–C18, N1 ring. Symmetry codes: (ii) 1+x, -1+y, z; (iii) x, 1+y, -1+z]. The weak S···S and S(lp)···π interactions lead to a three-dimensional supramolecular structure. In addition, the cations adopt a parallel arrangement, and the shortest distance between H14 from the pyridine ring of a cation and F1 atom from the neighbouring cation is 2.60 Å, indicating the existence of a C—H···F hydrogen bond (Table 2), which stabilizes the three-dimensional structure (Fig. 2).

For general background to the network topologies and applications of bis(dithiolate)–metal complexes, see: Cassoux (1999). For the synthesis, structures and properties of related complexes containing dmit ligands, see: Akutagawa & Nakamura (2000); Li et al. (2006); Zang et al. (2006, 2009). For lone-pair···π interactions, see: Egli & Sarkhel (2007). For the synthesis, see: Wang et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structures of the cation and anion in the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Three-dimensional supramolecular structure of the title compound. H atoms have been omitted for clarity. Dashed lines indicate weak S···S, S···π and C—H···F interactions.
1-(4-Bromo-2-fluorobenzyl)pyridinium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)nickelate(III) top
Crystal data top
(C12H10BrFN)[Ni(C3S5)2]Z = 1
Mr = 718.56F(000) = 357
Triclinic, P1Dx = 1.909 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2952 (15) ÅCell parameters from 617 reflections
b = 9.716 (2) Åθ = 3.5–25.2°
c = 11.482 (3) ŵ = 3.23 mm1
α = 65.953 (4)°T = 296 K
β = 77.592 (4)°Block, black
γ = 88.498 (4)°0.19 × 0.16 × 0.15 mm
V = 624.9 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2619 independent reflections
Radiation source: fine-focus sealed tube2434 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 67
Tmin = 0.579, Tmax = 0.643k = 1111
3111 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0398P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2619 reflectionsΔρmax = 0.47 e Å3
290 parametersΔρmin = 0.52 e Å3
3 restraintsAbsolute structure: Flack (1983); 456 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.364 (16)
Crystal data top
(C12H10BrFN)[Ni(C3S5)2]γ = 88.498 (4)°
Mr = 718.56V = 624.9 (3) Å3
Triclinic, P1Z = 1
a = 6.2952 (15) ÅMo Kα radiation
b = 9.716 (2) ŵ = 3.23 mm1
c = 11.482 (3) ÅT = 296 K
α = 65.953 (4)°0.19 × 0.16 × 0.15 mm
β = 77.592 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2619 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2434 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.643Rint = 0.022
3111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.47 e Å3
S = 1.03Δρmin = 0.52 e Å3
2619 reflectionsAbsolute structure: Flack (1983); 456 Friedel pairs
290 parametersAbsolute structure parameter: 0.364 (16)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.82342 (18)0.80439 (11)0.41205 (10)0.0318 (2)
C10.9321 (14)0.2595 (8)0.7954 (7)0.039 (2)
C20.7858 (16)0.4827 (8)0.6172 (7)0.037 (2)
C30.9769 (16)0.5382 (9)0.6182 (8)0.036 (2)
C40.6622 (16)1.0780 (9)0.2125 (7)0.036 (2)
C50.8601 (15)1.1313 (9)0.2140 (8)0.035 (2)
C60.7024 (15)1.3601 (8)0.0500 (8)0.040 (2)
C70.3261 (16)1.2596 (10)0.4477 (7)0.055 (2)
C80.5284 (16)1.2057 (10)0.4587 (8)0.057 (2)
H80.65391.26560.40520.068*
C90.5428 (14)1.0646 (10)0.5484 (8)0.053 (2)
H90.68021.02880.55480.064*
C100.3607 (14)0.9712 (9)0.6311 (7)0.046 (2)
C110.1592 (13)1.0304 (9)0.6158 (8)0.0470 (19)
C120.1398 (16)1.1716 (10)0.5272 (8)0.053 (2)
H120.00311.20830.52030.063*
C130.3711 (18)0.8139 (10)0.7295 (9)0.053 (2)
H13A0.26700.74690.72300.064*
H13B0.51550.78000.71030.064*
C140.4625 (15)0.8705 (9)0.9011 (8)0.049 (2)
H140.59090.92000.84190.059*
C150.4212 (16)0.8663 (9)1.0238 (9)0.054 (2)
H150.52140.91051.04930.065*
C160.229 (2)0.7954 (11)1.1092 (10)0.063 (3)
H160.19650.79281.19300.076*
C170.0853 (17)0.7290 (10)1.0716 (10)0.067 (3)
H170.04530.68121.12920.080*
C180.1351 (16)0.7331 (9)0.9473 (9)0.055 (2)
H180.03950.68620.92100.066*
S10.9660 (4)0.0969 (2)0.9092 (2)0.0527 (6)
S20.7008 (4)0.2974 (2)0.7299 (2)0.0454 (6)
S31.1216 (4)0.4113 (2)0.7263 (2)0.0470 (6)
S40.6256 (4)0.5934 (2)0.5149 (2)0.0457 (6)
S51.0756 (4)0.7183 (2)0.5178 (2)0.0418 (5)
S60.5691 (4)0.8923 (2)0.30748 (19)0.0407 (5)
S71.0202 (3)1.0169 (2)0.31248 (19)0.0386 (5)
S80.5130 (3)1.2069 (2)0.11229 (19)0.0412 (5)
S90.9310 (3)1.3204 (2)0.1136 (2)0.0447 (6)
S100.6629 (4)1.5263 (2)0.0602 (2)0.0577 (6)
N10.3225 (10)0.8051 (6)0.8643 (6)0.0399 (14)
F10.0228 (8)0.9428 (6)0.6944 (5)0.0695 (14)
Br10.3003 (3)1.45136 (15)0.31995 (14)0.0902 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0314 (4)0.0287 (4)0.0289 (4)0.0020 (3)0.0081 (3)0.0049 (3)
C10.041 (5)0.034 (4)0.038 (4)0.012 (4)0.012 (4)0.009 (4)
C20.043 (6)0.027 (4)0.029 (4)0.000 (4)0.012 (4)0.003 (3)
C30.043 (6)0.028 (4)0.031 (4)0.002 (4)0.011 (4)0.004 (4)
C40.035 (6)0.034 (5)0.032 (4)0.006 (4)0.006 (4)0.008 (4)
C50.032 (5)0.031 (4)0.038 (4)0.003 (4)0.005 (4)0.012 (4)
C60.047 (6)0.025 (4)0.039 (5)0.002 (4)0.002 (4)0.009 (3)
C70.080 (7)0.068 (6)0.026 (5)0.028 (6)0.021 (5)0.024 (4)
C80.060 (6)0.069 (6)0.041 (5)0.001 (5)0.013 (4)0.020 (5)
C90.047 (5)0.070 (6)0.048 (5)0.018 (4)0.020 (4)0.026 (5)
C100.061 (5)0.050 (5)0.035 (4)0.025 (4)0.022 (4)0.020 (4)
C110.048 (5)0.059 (5)0.039 (4)0.004 (4)0.015 (4)0.022 (4)
C120.063 (6)0.062 (5)0.046 (5)0.022 (4)0.024 (4)0.029 (4)
C130.072 (7)0.050 (5)0.057 (5)0.015 (5)0.032 (5)0.033 (5)
C140.048 (5)0.041 (4)0.061 (5)0.007 (4)0.022 (4)0.019 (4)
C150.072 (6)0.046 (5)0.057 (6)0.010 (4)0.028 (5)0.027 (4)
C160.092 (9)0.048 (6)0.037 (5)0.027 (6)0.008 (5)0.010 (4)
C170.055 (6)0.052 (5)0.063 (7)0.008 (4)0.004 (5)0.002 (5)
C180.055 (6)0.029 (4)0.071 (6)0.002 (4)0.026 (5)0.006 (4)
S10.0627 (17)0.0352 (11)0.0467 (12)0.0142 (10)0.0127 (11)0.0037 (9)
S20.0468 (15)0.0308 (11)0.0462 (12)0.0004 (9)0.0130 (10)0.0021 (9)
S30.0410 (15)0.0434 (12)0.0439 (12)0.0082 (10)0.0157 (10)0.0027 (10)
S40.0414 (15)0.0337 (11)0.0515 (13)0.0021 (9)0.0221 (11)0.0010 (9)
S50.0361 (14)0.0358 (11)0.0437 (12)0.0010 (9)0.0170 (10)0.0025 (9)
S60.0377 (14)0.0321 (11)0.0419 (12)0.0024 (9)0.0169 (10)0.0006 (9)
S70.0319 (13)0.0338 (10)0.0416 (11)0.0001 (9)0.0131 (9)0.0043 (9)
S80.0336 (14)0.0343 (10)0.0454 (12)0.0032 (9)0.0144 (10)0.0035 (9)
S90.0417 (14)0.0301 (11)0.0534 (13)0.0006 (9)0.0154 (10)0.0060 (9)
S100.0582 (16)0.0325 (11)0.0651 (14)0.0106 (11)0.0203 (12)0.0001 (10)
N10.045 (4)0.035 (3)0.045 (4)0.015 (3)0.020 (3)0.017 (3)
F10.054 (3)0.080 (4)0.071 (3)0.004 (3)0.016 (3)0.027 (3)
Br10.1427 (12)0.0616 (6)0.0614 (6)0.0258 (6)0.0418 (7)0.0123 (5)
Geometric parameters (Å, º) top
Ni1—S42.163 (3)C8—C91.353 (12)
Ni1—S52.150 (2)C8—H80.9300
Ni1—S62.157 (2)C9—C101.387 (13)
Ni1—S72.169 (3)C9—H90.9300
C1—S11.634 (7)C10—C111.395 (11)
C1—S31.720 (9)C10—C131.496 (11)
C1—S21.743 (8)C11—F11.354 (10)
C2—C31.335 (12)C11—C121.356 (11)
C2—S41.725 (8)C12—H120.9300
C2—S21.748 (8)C13—N11.479 (10)
C3—S51.698 (8)C13—H13A0.9700
C3—S31.752 (8)C13—H13B0.9700
C4—C51.368 (12)C14—N11.329 (10)
C4—S61.722 (9)C14—C151.360 (11)
C4—S81.733 (8)C14—H140.9300
C5—S71.714 (8)C15—C161.374 (14)
C5—S91.732 (8)C15—H150.9300
C6—S101.649 (7)C16—C171.357 (15)
C6—S91.716 (9)C16—H160.9300
C6—S81.734 (9)C17—C181.378 (13)
C7—C81.376 (12)C17—H170.9300
C7—C121.377 (14)C18—N11.344 (11)
C7—Br11.873 (9)C18—H180.9300
S5—Ni1—S6179.27 (12)F1—C11—C10118.0 (8)
S5—Ni1—S492.78 (9)C12—C11—C10122.6 (9)
S6—Ni1—S487.41 (10)C11—C12—C7118.8 (8)
S5—Ni1—S786.86 (10)C11—C12—H12120.6
S6—Ni1—S792.94 (8)C7—C12—H12120.6
S4—Ni1—S7178.83 (12)N1—C13—C10111.6 (6)
S1—C1—S3123.7 (5)N1—C13—H13A109.3
S1—C1—S2123.6 (6)C10—C13—H13A109.3
S3—C1—S2112.7 (4)N1—C13—H13B109.3
C3—C2—S4121.0 (6)C10—C13—H13B109.3
C3—C2—S2116.9 (6)H13A—C13—H13B108.0
S4—C2—S2122.1 (6)N1—C14—C15121.2 (9)
C2—C3—S5122.0 (6)N1—C14—H14119.4
C2—C3—S3115.6 (6)C15—C14—H14119.4
S5—C3—S3122.4 (6)C14—C15—C16118.7 (9)
C5—C4—S6120.8 (6)C14—C15—H15120.7
C5—C4—S8116.5 (6)C16—C15—H15120.7
S6—C4—S8122.7 (6)C17—C16—C15120.2 (10)
C4—C5—S7121.2 (6)C17—C16—H16119.9
C4—C5—S9115.4 (6)C15—C16—H16119.9
S7—C5—S9123.4 (6)C16—C17—C18119.4 (10)
S10—C6—S9124.2 (5)C16—C17—H17120.3
S10—C6—S8122.3 (5)C18—C17—H17120.3
S9—C6—S8113.5 (4)N1—C18—C17119.6 (9)
C8—C7—C12120.6 (8)N1—C18—H18120.2
C8—C7—Br1120.3 (8)C17—C18—H18120.2
C12—C7—Br1119.1 (7)C1—S2—C296.9 (4)
C9—C8—C7119.3 (9)C1—S3—C397.9 (4)
C9—C8—H8120.4C2—S4—Ni1101.8 (3)
C7—C8—H8120.4C3—S5—Ni1102.5 (3)
C8—C9—C10122.6 (8)C4—S6—Ni1102.6 (3)
C8—C9—H9118.7C5—S7—Ni1102.4 (3)
C10—C9—H9118.7C4—S8—C696.8 (4)
C9—C10—C11116.1 (7)C6—S9—C597.8 (4)
C9—C10—C13123.8 (8)C14—N1—C18120.9 (7)
C11—C10—C13120.1 (9)C14—N1—C13119.7 (8)
F1—C11—C12119.4 (7)C18—N1—C13119.4 (8)
S4—C2—C3—S51.1 (11)C2—C3—S3—C12.7 (8)
S2—C2—C3—S5177.9 (5)S5—C3—S3—C1179.0 (5)
S4—C2—C3—S3179.4 (5)C3—C2—S4—Ni11.2 (8)
S2—C2—C3—S33.8 (9)S2—C2—S4—Ni1177.8 (5)
S6—C4—C5—S71.2 (10)S5—Ni1—S4—C20.7 (3)
S8—C4—C5—S7178.1 (4)S6—Ni1—S4—C2180.0 (3)
S6—C4—C5—S9179.9 (4)C2—C3—S5—Ni10.4 (8)
S8—C4—C5—S90.5 (9)S3—C3—S5—Ni1178.6 (5)
C12—C7—C8—C90.3 (12)S4—Ni1—S5—C30.3 (3)
Br1—C7—C8—C9177.5 (6)S7—Ni1—S5—C3179.2 (3)
C7—C8—C9—C100.5 (12)C5—C4—S6—Ni12.5 (7)
C8—C9—C10—C110.8 (12)S8—C4—S6—Ni1176.8 (4)
C8—C9—C10—C13178.9 (8)S4—Ni1—S6—C4176.6 (3)
C9—C10—C11—F1179.8 (7)S7—Ni1—S6—C42.2 (3)
C13—C10—C11—F11.7 (11)C4—C5—S7—Ni10.7 (7)
C9—C10—C11—C121.1 (11)S9—C5—S7—Ni1177.8 (4)
C13—C10—C11—C12179.2 (7)S5—Ni1—S7—C5177.5 (3)
F1—C11—C12—C7179.9 (7)S6—Ni1—S7—C51.8 (3)
C10—C11—C12—C71.0 (11)C5—C4—S8—C61.3 (7)
C8—C7—C12—C110.6 (12)S6—C4—S8—C6179.4 (5)
Br1—C7—C12—C11177.3 (5)S10—C6—S8—C4178.1 (5)
C9—C10—C13—N1106.1 (9)S9—C6—S8—C41.6 (5)
C11—C10—C13—N175.9 (10)S10—C6—S9—C5178.3 (5)
N1—C14—C15—C161.3 (12)S8—C6—S9—C51.4 (5)
C14—C15—C16—C171.1 (13)C4—C5—S9—C60.5 (7)
C15—C16—C17—C180.2 (13)S7—C5—S9—C6179.1 (5)
C16—C17—C18—N11.3 (12)C15—C14—N1—C180.2 (11)
S1—C1—S2—C2178.6 (5)C15—C14—N1—C13179.1 (7)
S3—C1—S2—C20.9 (5)C17—C18—N1—C141.1 (11)
C3—C2—S2—C12.9 (8)C17—C18—N1—C13177.8 (7)
S4—C2—S2—C1179.6 (5)C10—C13—N1—C1468.7 (10)
S1—C1—S3—C3179.8 (5)C10—C13—N1—C18110.3 (9)
S2—C1—S3—C30.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···F1i0.932.603.476 (11)156
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C12H10BrFN)[Ni(C3S5)2]
Mr718.56
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.2952 (15), 9.716 (2), 11.482 (3)
α, β, γ (°)65.953 (4), 77.592 (4), 88.498 (4)
V3)624.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.19 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.579, 0.643
No. of measured, independent and
observed [I > 2σ(I)] reflections
3111, 2619, 2434
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.03
No. of reflections2619
No. of parameters290
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.52
Absolute structureFlack (1983); 456 Friedel pairs
Absolute structure parameter0.364 (16)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—S42.163 (3)Ni1—S62.157 (2)
Ni1—S52.150 (2)Ni1—S72.169 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···F1i0.932.603.476 (11)156
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported financially by the North China University of Water Conservancy and Electric Power, China.

References

First citationAkutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297–311.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassoux, P. (1999). Coord. Chem. Rev. 185–186, 213–232.  Web of Science CrossRef CAS Google Scholar
First citationEgli, M. & Sarkhel, S. J. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J., Yao, L., Su, Y. & Tao, R. (2006). Acta Cryst. E62, m1990–m1991.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.  CSD CrossRef Google Scholar
First citationZang, S.-Q., Ren, X.-M., Su, Y., Song, Y., Tong, W.-J., Ni, Z.-P., Zhao, H.-H., Gao, S. & Meng, Q.-J. (2009). Inorg. Chem. 48, 9623–9630.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZang, S.-Q., Su, Y. & Tao, R.-J. (2006). Acta Cryst. E62, m1004–m1005.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds