metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(4-bromo­benzoato-κO)bis­­(1,10-phenanthroline-κ2N,N′)zinc(II) 4-bromo­benzoate 1.5-hydrate

aCollege of Materials Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China, and bMunicipal Key Laboratory of Inorganic Materials Chemistry, Institute for Solid State Chemistry, Ninbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: zbs_jy@163.com

(Received 15 September 2010; accepted 27 September 2010; online 2 October 2010)

In the title compound, [Zn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·1.5H2O, the ZnII atom is coordinated by four N atoms from two chelating 1,10-phenanthroline (phen) ligands, one O atom from a 4-bromo­benzoate ligand and one water mol­ecule, completing a distorted ZnN4O2 octa­hedral geometry. The two phen ligands exhibit nearly perfect coplanarity (r.m.s. deviations = 0.027 and 0.031 Å), making a dihedral angle of 85.7 (1)°. The mean inter­planar distances of 3.36 (2) and 3.41 (3) Å between adjacent phen ligands indicate ππ stacking inter­actions. The uncoordinated water mol­ecules are partly occupied. One carboxyl­ate O atom and two Br atoms are each disordered over two sites, with occupancy factors of 0.60 and 0.40. In the crystal structure, O—H⋯O and C—H⋯O hydrogen bonds and ππ stacking inter­actions link the complex cations, uncoordinated 4-bromo­benzoate anions and water mol­ecules into a three-dimensional supra­molecular network. An intra­molecular O—H⋯·O hydrogen bond is observed in the cation.

Related literature

For related zinc(II) complexes with 1,10-phenanthroline ligand, see: Aghabozorg et al. (2005[Aghabozorg, H., Nakhjavan, B., Zabihi, F., Ramezanipour, F. & Aghabozorg, H. R. (2005). Acta Cryst. E61, m2664-m2666.]); Chen et al. (2006[Chen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). Huaxue Shiji, 28, 478-480.]); Liu et al. (1998[Liu, C.-M., You, X.-Z. & Chen, W. (1998). J. Coord. Chem. 46, 233-243.]); Wei et al. (2002[Wei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005-2012.], 2004[Wei, Y., Yuan, C. & Yang, P. (2004). Acta Cryst. E60, m1686-m1688.]); Ye & Zhang (2010[Ye, S.-F. & Zhang, B.-S. (2010). Acta Cryst. E66, m474.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·1.5H2O

  • Mr = 870.84

  • Triclinic, [P \overline 1]

  • a = 10.170 (2) Å

  • b = 13.527 (3) Å

  • c = 15.908 (3) Å

  • α = 111.96 (3)°

  • β = 99.26 (3)°

  • γ = 102.25 (3)°

  • V = 1912.5 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.78 mm−1

  • T = 290 K

  • 0.28 × 0.21 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.500, Tmax = 0.717

  • 14823 measured reflections

  • 6627 independent reflections

  • 3645 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.307

  • S = 1.10

  • 6627 reflections

  • 497 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.82 1.88 2.676 (9) 163
O5—H5B⋯O2 0.82 1.87 2.639 (9) 155
O6—H6A⋯O2 0.82 1.87 2.672 (6) 168
O6—H6B⋯O3i 0.82 1.99 2.715 (5) 147
O6—H6B⋯O3′i 0.82 2.05 2.842 (5) 161
O7—H7A⋯O3ii 0.82 2.10 2.916 (11) 178
O7—H7A⋯O3′ii 0.82 1.71 2.513 (8) 168
O7—H7B⋯O6iii 0.82 2.01 2.823 (10) 172
O8—H8A⋯O6iv 0.82 2.08 2.808 (2) 148
O8—H8B⋯O9v 0.82 1.88 2.685 (2) 168
O9—H9A⋯O7 0.82 1.89 2.705 (6) 172
O9—H9B⋯O3v 0.82 2.08 2.876 (5) 164
C29—H29⋯O2vi 0.93 2.52 3.300 (14) 141
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y-1, z; (iii) x, y-1, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Zinc ion with 1,10-phenanthroline (phen) ligand can form tris(phen)zinc(II) (Aghabozorg et al., 2005; Chen et al., 2006; Liu et al., 1998; Wei, Yuan et al., 2004; Wei, Zheng et al., 2002; Ye & Zhang, 2010). In this paper, we report the synthesis and structure of the title complex.

The title compound consists of [Zn(phen)2(C7H4BrO2)(H2O)]+ complex cations, 4-bromobenzoate anions and uncoordinated water molecules (Fig. 1). In the cation, the ZnII atom is coordinated by four N atoms from two bidentate chelating phen ligands and one O atom from a 4-bromobenzoate anion and one water molecule, completing a distorted ZnN4O2 octahedral geometry. The Zn—N bond lengths are in the range of 2.137 (6)–2.217 (6)Å, and the Zn—O bond lengths are 2.101 (5) and 2.108 (5) Å. The two chelating phen ligands exhibit nearly perfect coplanarity, with a dihedral angle between the two phen ligands of 85.7 (1)°. The mean interplanar distances of 3.36 (2) and 3.41 (3)Å between adjacent phen ligands indicate ππ stacking interactions (Fig. 2). The complex cations, 4-bromobenzoate anions and uncoordinated water molecules are connected via ππ stacking interactions and O—H···O and C—H···O hydrogen bonds (Table 1) into a three-dimensional supramolecular network.

Related literature top

For related zinc(II) complexes with 1,10-phenanthroline ligand, see: Aghabozorg et al. (2005); Chen et al. (2006); Liu et al. (1998); Wei, Yuan et al. (2004); Wei, Zheng et al. (2002); Ye & Zhang (2010).

Experimental top

ZnCl2 (0.068 g, 0.50 mmol) was dissolved in appropriate amount of water, and then 1M Na2CO3 solution was added. ZnCO3 was obtained by filtration, which was then washed with distilled water for 5 times. The freshly prepared ZnCO3, 1,10-phenanthroline (phen.H2O) (0.049 g, 0.25 mmol) and 4-bromobenzoic acid (0.052 g, 0.25 mmol) in CH3OH/H2O (v/v = 1:2, 15 ml) were mixed and stirred for 2 h. Subsequently, the resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 5800 min. After the autoclave was cooled to room temperature in 2600 min, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 2 months afforded colorless block single crystals.

Refinement top

C-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water molecules were located in a difference Fourier map and refined as riding, with O—H distance restraints of 0.82 Å and Uiso(H) = 1.5Ueq(O). One carboxylate O atom (O3) and two Br atoms (Br1, Br2) are each disordered over two sites, with occupancy factors of 0.60 and 0.40. Two water molecules (O7, O9) are half-occupied and two water molecules (O6, O8) are quarter-occupied.

Structure description top

Zinc ion with 1,10-phenanthroline (phen) ligand can form tris(phen)zinc(II) (Aghabozorg et al., 2005; Chen et al., 2006; Liu et al., 1998; Wei, Yuan et al., 2004; Wei, Zheng et al., 2002; Ye & Zhang, 2010). In this paper, we report the synthesis and structure of the title complex.

The title compound consists of [Zn(phen)2(C7H4BrO2)(H2O)]+ complex cations, 4-bromobenzoate anions and uncoordinated water molecules (Fig. 1). In the cation, the ZnII atom is coordinated by four N atoms from two bidentate chelating phen ligands and one O atom from a 4-bromobenzoate anion and one water molecule, completing a distorted ZnN4O2 octahedral geometry. The Zn—N bond lengths are in the range of 2.137 (6)–2.217 (6)Å, and the Zn—O bond lengths are 2.101 (5) and 2.108 (5) Å. The two chelating phen ligands exhibit nearly perfect coplanarity, with a dihedral angle between the two phen ligands of 85.7 (1)°. The mean interplanar distances of 3.36 (2) and 3.41 (3)Å between adjacent phen ligands indicate ππ stacking interactions (Fig. 2). The complex cations, 4-bromobenzoate anions and uncoordinated water molecules are connected via ππ stacking interactions and O—H···O and C—H···O hydrogen bonds (Table 1) into a three-dimensional supramolecular network.

For related zinc(II) complexes with 1,10-phenanthroline ligand, see: Aghabozorg et al. (2005); Chen et al. (2006); Liu et al. (1998); Wei, Yuan et al. (2004); Wei, Zheng et al. (2002); Ye & Zhang (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The uncoordinated water molecules are omitted for clarity.
[Figure 2] Fig. 2. The ππ packing interactions (dashed double arrows), with a mean interplanar distance of 3.36 (2)Å.
Aqua(4-bromobenzoato-κO)bis(1,10-phenanthroline- κ2N,N')zinc(II) 4-bromobenzoate 1.5-hydrate top
Crystal data top
[Zn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·1.5H2OZ = 2
Mr = 870.84F(000) = 874
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.170 (2) ÅCell parameters from 9256 reflections
b = 13.527 (3) Åθ = 3.1–25.0°
c = 15.908 (3) ŵ = 2.78 mm1
α = 111.96 (3)°T = 290 K
β = 99.26 (3)°Block, colorless
γ = 102.25 (3)°0.28 × 0.21 × 0.12 mm
V = 1912.5 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6627 independent reflections
Radiation source: rotation anode3645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.500, Tmax = 0.717k = 1416
14823 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.307 w = 1/[σ2(Fo2) + (0.1855P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
6627 reflectionsΔρmax = 0.99 e Å3
497 parametersΔρmin = 0.75 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Crystal data top
[Zn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·1.5H2Oγ = 102.25 (3)°
Mr = 870.84V = 1912.5 (10) Å3
Triclinic, P1Z = 2
a = 10.170 (2) ÅMo Kα radiation
b = 13.527 (3) ŵ = 2.78 mm1
c = 15.908 (3) ÅT = 290 K
α = 111.96 (3)°0.28 × 0.21 × 0.12 mm
β = 99.26 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6627 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3645 reflections with I > 2σ(I)
Tmin = 0.500, Tmax = 0.717Rint = 0.048
14823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0836 restraints
wR(F2) = 0.307H-atom parameters constrained
S = 1.10Δρmax = 0.99 e Å3
6627 reflectionsΔρmin = 0.75 e Å3
497 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.32315 (9)0.60478 (7)0.26375 (6)0.0578 (4)
N10.4071 (7)0.7042 (5)0.4116 (4)0.0631 (16)
N20.3030 (6)0.4787 (5)0.3223 (5)0.0645 (17)
N30.5190 (7)0.5826 (6)0.2337 (4)0.0618 (16)
N40.2573 (8)0.4811 (6)0.1215 (5)0.0688 (17)
Br10.4506 (10)1.1711 (9)0.0925 (10)0.129 (3)0.60
Br20.8604 (8)1.2210 (4)0.0948 (4)0.1240 (12)0.60
O30.9222 (16)1.1945 (19)0.524 (2)0.094 (5)0.60
Br1'0.3985 (18)1.1522 (15)0.0753 (15)0.129 (3)0.40
Br2'0.8813 (14)1.1856 (8)0.0960 (7)0.1240 (12)0.40
O3'0.983 (3)1.217 (3)0.531 (4)0.094 (5)0.40
O10.3511 (6)0.7407 (5)0.2275 (4)0.0757 (16)
O20.1453 (7)0.7695 (6)0.2255 (5)0.095 (2)
O40.9347 (7)1.3775 (6)0.5657 (5)0.0898 (19)
O50.1155 (5)0.5971 (4)0.2686 (4)0.0648 (13)
H5A0.10160.59200.31640.097*
H5B0.10270.65090.26030.097*
O60.047 (2)0.9020 (12)0.3554 (12)0.056 (6)0.25
H6A0.07460.85490.31920.083*0.25
H6B0.02320.87400.39030.083*0.25
O70.1680 (12)0.1288 (10)0.4825 (11)0.101 (5)0.50
H7A0.09990.14900.49390.151*0.50
H7B0.13700.06140.44950.151*0.50
O80.770 (2)0.8729 (11)0.2674 (12)0.052 (5)0.25
H8A0.85340.87990.27260.078*0.25
H8B0.75310.91350.31480.078*0.25
O90.2873 (13)0.0195 (12)0.5695 (12)0.111 (5)0.50
H9A0.25140.04790.53820.166*0.50
H9B0.24090.04650.54490.166*0.50
C10.4586 (11)0.8132 (7)0.4504 (7)0.088 (3)
H10.47030.85140.41280.106*
C20.4966 (13)0.8729 (10)0.5491 (8)0.115 (4)
H20.53550.95000.57680.137*
C30.4754 (13)0.8154 (11)0.6053 (8)0.111 (4)
H30.49720.85420.67030.133*
C40.4222 (10)0.7012 (10)0.5635 (6)0.086 (3)
C50.4006 (12)0.6413 (14)0.6147 (8)0.110 (4)
H50.42030.67750.67980.132*
C60.3493 (12)0.5263 (14)0.5696 (9)0.108 (4)
H60.33510.48640.60570.130*
C70.3171 (9)0.4659 (10)0.4699 (7)0.080 (3)
C80.2664 (11)0.3491 (11)0.4196 (10)0.098 (4)
H80.25200.30520.45230.118*
C90.2384 (10)0.2998 (9)0.3258 (10)0.098 (3)
H90.20780.22250.29330.118*
C100.2569 (8)0.3694 (7)0.2769 (7)0.076 (2)
H100.23590.33650.21160.091*
C110.3352 (8)0.5271 (7)0.4181 (6)0.063 (2)
C120.3869 (8)0.6451 (7)0.4647 (6)0.066 (2)
C130.3092 (10)0.8828 (6)0.1863 (6)0.067 (2)
C140.4391 (11)0.9167 (7)0.1788 (6)0.078 (2)
H140.50450.88310.19380.094*
C150.4792 (13)1.0015 (8)0.1490 (8)0.099 (3)
H150.56951.02430.14420.119*
C160.3790 (14)1.0504 (8)0.1268 (7)0.094 (3)
C170.2486 (13)1.0202 (8)0.1351 (7)0.088 (3)
H170.18451.05510.12060.106*
C180.2091 (11)0.9364 (8)0.1656 (7)0.086 (3)
H180.11950.91590.17230.103*
C190.2657 (9)0.7919 (7)0.2155 (6)0.065 (2)
C210.6460 (9)0.6319 (8)0.2868 (7)0.075 (2)
H210.65940.69020.34500.090*
C220.7646 (10)0.6040 (10)0.2633 (9)0.088 (3)
H220.85300.64210.30460.106*
C230.7458 (13)0.5192 (11)0.1779 (10)0.106 (4)
H230.82190.49760.16060.128*
C240.6103 (13)0.4636 (9)0.1153 (8)0.087 (3)
C250.5783 (17)0.3763 (10)0.0221 (10)0.105 (4)
H250.65030.35170.00050.126*
C260.4516 (19)0.3304 (9)0.0335 (8)0.110 (4)
H260.43700.27540.09360.132*
C270.3335 (14)0.3622 (8)0.0046 (7)0.089 (3)
C280.1928 (17)0.3188 (8)0.0591 (7)0.106 (4)
H280.16950.26540.12080.128*
C290.0939 (14)0.3544 (10)0.0220 (8)0.108 (3)
H290.00130.32450.05740.129*
C300.1286 (11)0.4347 (9)0.0678 (6)0.088 (3)
H300.05770.45780.09230.106*
C310.3609 (10)0.4455 (6)0.0874 (6)0.068 (2)
C320.5005 (9)0.4985 (7)0.1489 (6)0.068 (2)
C330.9135 (8)1.2651 (7)0.4085 (6)0.068 (2)
C340.9238 (9)1.3530 (7)0.3822 (6)0.071 (2)
H340.94001.42490.42790.085*
C350.9104 (10)1.3356 (9)0.2890 (7)0.082 (3)
H350.92011.39560.27290.099*
C360.8833 (11)1.2317 (9)0.2224 (8)0.097 (3)
C370.8712 (12)1.1411 (8)0.2434 (8)0.107 (4)
H370.85211.07000.19580.129*
C380.8876 (11)1.1564 (8)0.3362 (7)0.090 (3)
H380.88181.09560.35120.107*
C390.9305 (9)1.2826 (8)0.5071 (7)0.075 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0629 (6)0.0564 (6)0.0544 (6)0.0179 (4)0.0156 (4)0.0236 (4)
N10.066 (4)0.061 (4)0.056 (4)0.016 (3)0.013 (3)0.021 (3)
N20.056 (4)0.064 (4)0.075 (5)0.018 (3)0.014 (3)0.032 (4)
N30.056 (4)0.071 (4)0.054 (4)0.017 (3)0.009 (3)0.026 (3)
N40.075 (5)0.064 (4)0.060 (4)0.010 (4)0.013 (4)0.026 (3)
Br10.205 (8)0.078 (4)0.117 (5)0.024 (4)0.062 (5)0.060 (4)
Br20.174 (3)0.123 (4)0.0702 (9)0.047 (2)0.0305 (13)0.035 (2)
O30.101 (15)0.106 (11)0.113 (8)0.042 (13)0.051 (16)0.070 (10)
Br1'0.205 (8)0.078 (4)0.117 (5)0.024 (4)0.062 (5)0.060 (4)
Br2'0.174 (3)0.123 (4)0.0702 (9)0.047 (2)0.0305 (13)0.035 (2)
O3'0.101 (15)0.106 (11)0.113 (8)0.042 (13)0.051 (16)0.070 (10)
O10.082 (4)0.074 (4)0.084 (4)0.028 (3)0.021 (3)0.044 (3)
O20.081 (4)0.098 (5)0.132 (6)0.030 (4)0.017 (4)0.079 (5)
O40.104 (5)0.104 (5)0.076 (4)0.040 (4)0.040 (4)0.042 (4)
O50.062 (3)0.068 (3)0.066 (4)0.016 (3)0.017 (3)0.032 (3)
O60.128 (16)0.034 (8)0.059 (11)0.056 (11)0.079 (12)0.038 (9)
O70.077 (8)0.072 (8)0.198 (16)0.037 (7)0.057 (9)0.087 (10)
O80.082 (13)0.011 (7)0.039 (10)0.005 (8)0.001 (9)0.003 (7)
O90.081 (9)0.097 (10)0.175 (16)0.025 (8)0.024 (9)0.084 (11)
C10.106 (7)0.056 (5)0.085 (7)0.017 (5)0.020 (6)0.018 (5)
C20.133 (10)0.089 (8)0.078 (8)0.043 (7)0.003 (7)0.003 (6)
C30.128 (10)0.114 (9)0.068 (7)0.064 (8)0.010 (7)0.004 (7)
C40.092 (7)0.145 (10)0.040 (5)0.067 (7)0.031 (5)0.037 (6)
C50.094 (8)0.181 (13)0.073 (8)0.064 (10)0.034 (6)0.056 (9)
C60.087 (7)0.210 (14)0.110 (10)0.079 (9)0.059 (7)0.123 (11)
C70.069 (5)0.125 (8)0.097 (7)0.045 (6)0.045 (5)0.083 (7)
C80.080 (7)0.114 (9)0.159 (12)0.039 (7)0.056 (8)0.104 (9)
C90.068 (6)0.081 (7)0.162 (12)0.020 (5)0.031 (7)0.071 (8)
C100.061 (5)0.071 (6)0.098 (7)0.014 (4)0.018 (5)0.042 (5)
C110.050 (4)0.087 (6)0.071 (6)0.029 (4)0.022 (4)0.047 (5)
C120.060 (5)0.077 (5)0.067 (5)0.036 (4)0.019 (4)0.028 (5)
C130.093 (6)0.055 (5)0.055 (5)0.019 (5)0.014 (4)0.028 (4)
C140.106 (7)0.064 (5)0.067 (6)0.026 (5)0.036 (5)0.026 (4)
C150.133 (9)0.063 (6)0.104 (8)0.023 (6)0.058 (7)0.030 (6)
C160.139 (10)0.063 (6)0.076 (7)0.020 (7)0.033 (7)0.029 (5)
C170.137 (9)0.064 (5)0.066 (6)0.034 (6)0.014 (6)0.034 (5)
C180.092 (7)0.083 (6)0.081 (7)0.022 (6)0.012 (5)0.039 (5)
C190.067 (5)0.066 (5)0.052 (5)0.013 (5)0.007 (4)0.023 (4)
C210.075 (6)0.080 (6)0.082 (6)0.021 (5)0.019 (5)0.050 (5)
C220.062 (5)0.113 (8)0.123 (9)0.034 (6)0.036 (6)0.075 (8)
C230.110 (9)0.130 (10)0.162 (13)0.070 (9)0.091 (9)0.109 (10)
C240.118 (9)0.098 (7)0.109 (8)0.066 (7)0.075 (7)0.076 (7)
C250.169 (12)0.094 (8)0.116 (10)0.076 (9)0.100 (10)0.066 (8)
C260.214 (15)0.064 (6)0.077 (8)0.059 (9)0.076 (9)0.033 (6)
C270.160 (10)0.061 (5)0.063 (6)0.036 (7)0.056 (7)0.032 (5)
C280.187 (13)0.056 (6)0.048 (6)0.007 (7)0.014 (8)0.015 (5)
C290.129 (10)0.101 (8)0.063 (7)0.012 (8)0.006 (7)0.023 (6)
C300.098 (7)0.093 (7)0.054 (6)0.012 (6)0.010 (5)0.025 (5)
C310.097 (6)0.054 (4)0.068 (6)0.026 (5)0.037 (5)0.034 (4)
C320.084 (6)0.068 (5)0.085 (6)0.033 (5)0.039 (5)0.054 (5)
C330.058 (5)0.071 (5)0.076 (6)0.019 (4)0.029 (4)0.029 (5)
C340.073 (5)0.065 (5)0.074 (6)0.022 (4)0.027 (5)0.025 (4)
C350.084 (6)0.094 (7)0.083 (7)0.032 (6)0.028 (5)0.047 (6)
C360.086 (7)0.084 (7)0.094 (8)0.003 (6)0.023 (6)0.023 (6)
C370.121 (9)0.061 (6)0.097 (9)0.000 (6)0.039 (7)0.002 (6)
C380.109 (8)0.063 (5)0.085 (7)0.009 (5)0.035 (6)0.024 (5)
C390.083 (6)0.083 (6)0.079 (6)0.039 (5)0.044 (5)0.040 (5)
Geometric parameters (Å, º) top
Zn1—O12.101 (5)C8—H80.9300
Zn1—O52.108 (5)C9—C101.429 (13)
Zn1—N12.137 (6)C9—H90.9300
Zn1—N42.138 (7)C10—H100.9300
Zn1—N32.177 (6)C11—C121.416 (12)
Zn1—N22.217 (6)C13—C141.343 (13)
N1—C11.310 (11)C13—C181.433 (12)
N1—C121.374 (10)C13—C191.479 (11)
N2—C101.314 (11)C14—C151.406 (13)
N2—C111.365 (10)C14—H140.9300
N3—C211.299 (10)C15—C161.394 (15)
N3—C321.352 (10)C15—H150.9300
N4—C301.314 (11)C16—C171.345 (15)
N4—C311.357 (10)C17—C181.401 (12)
Br1—C161.946 (15)C17—H170.9300
Br2—C361.952 (13)C18—H180.9300
O3—C391.301 (14)C21—C221.404 (12)
Br1'—C161.84 (2)C21—H210.9300
Br2'—C361.864 (15)C22—C231.362 (16)
O3'—C391.266 (18)C22—H220.9300
O1—C191.254 (9)C23—C241.419 (16)
O2—C191.248 (10)C23—H230.9300
O4—C391.260 (10)C24—C321.408 (12)
O5—H5A0.8200C24—C251.439 (16)
O5—H5B0.8200C25—C261.307 (16)
O6—H6A0.8200C25—H250.9300
O6—H6B0.8200C26—C271.445 (17)
O7—H7A0.8200C26—H260.9300
O7—H7B0.8200C27—C311.411 (12)
O8—H8A0.8200C27—C281.416 (16)
O8—H8B0.8200C28—C291.332 (17)
O9—H9A0.8200C28—H280.9300
O9—H9B0.8200C29—C301.364 (14)
C1—C21.411 (14)C29—H290.9300
C1—H10.9300C30—H300.9300
C2—C31.401 (17)C31—C321.444 (13)
C2—H20.9300C33—C341.389 (11)
C3—C41.371 (16)C33—C381.424 (12)
C3—H30.9300C33—C391.472 (12)
C4—C51.358 (16)C34—C351.390 (12)
C4—C121.410 (11)C34—H340.9300
C5—C61.381 (18)C35—C361.342 (14)
C5—H50.9300C35—H350.9300
C6—C71.428 (16)C36—C371.372 (15)
C6—H60.9300C37—C381.389 (13)
C7—C111.375 (11)C37—H370.9300
C7—C81.406 (15)C38—H380.9300
C8—C91.338 (15)
O1—Zn1—O593.7 (2)C16—C15—H15121.1
O1—Zn1—N195.2 (2)C14—C15—H15121.1
O5—Zn1—N193.8 (2)C17—C16—C15121.9 (9)
O1—Zn1—N494.6 (2)C17—C16—Br1'111.3 (10)
O5—Zn1—N491.9 (2)C15—C16—Br1'126.6 (11)
N1—Zn1—N4168.3 (2)C17—C16—Br1124.4 (9)
O1—Zn1—N389.9 (2)C15—C16—Br1113.5 (10)
O5—Zn1—N3168.8 (2)C16—C17—C18120.2 (9)
N1—Zn1—N396.5 (2)C16—C17—H17119.9
N4—Zn1—N377.1 (3)C18—C17—H17119.9
O1—Zn1—N2172.2 (2)C17—C18—C13118.8 (10)
O5—Zn1—N286.1 (2)C17—C18—H18120.6
N1—Zn1—N277.0 (3)C13—C18—H18120.6
N4—Zn1—N293.2 (3)O2—C19—O1123.8 (8)
N3—Zn1—N291.8 (2)O2—C19—C13118.0 (8)
C1—N1—C12121.6 (8)O1—C19—C13118.2 (8)
C1—N1—Zn1124.2 (6)N3—C21—C22125.1 (10)
C12—N1—Zn1113.7 (5)N3—C21—H21117.4
C10—N2—C11119.4 (8)C22—C21—H21117.4
C10—N2—Zn1128.5 (6)C23—C22—C21117.7 (10)
C11—N2—Zn1111.9 (5)C23—C22—H22121.2
C21—N3—C32117.1 (7)C21—C22—H22121.2
C21—N3—Zn1129.8 (6)C22—C23—C24120.2 (9)
C32—N3—Zn1112.9 (5)C22—C23—H23119.9
C30—N4—C31118.7 (8)C24—C23—H23119.9
C30—N4—Zn1126.5 (6)C32—C24—C23116.0 (10)
C31—N4—Zn1114.7 (6)C32—C24—C25118.7 (12)
C19—O1—Zn1128.5 (6)C23—C24—C25125.2 (10)
Zn1—O5—H5A111.0C26—C25—C24122.4 (11)
Zn1—O5—H5B104.8C26—C25—H25118.8
H5A—O5—H5B117.6C24—C25—H25118.8
H6A—O6—H6B103.1C25—C26—C27122.2 (11)
H7A—O7—H7B105.2C25—C26—H26118.9
H8A—O8—H8B113.9C27—C26—H26118.9
H9A—O9—H9B105.3C31—C27—C28116.4 (10)
N1—C1—C2120.1 (10)C31—C27—C26116.7 (12)
N1—C1—H1119.9C28—C27—C26126.9 (11)
C2—C1—H1119.9C29—C28—C27120.2 (10)
C3—C2—C1119.7 (11)C29—C28—H28119.9
C3—C2—H2120.1C27—C28—H28119.9
C1—C2—H2120.1C28—C29—C30119.9 (12)
C4—C3—C2119.3 (10)C28—C29—H29120.0
C4—C3—H3120.3C30—C29—H29120.0
C2—C3—H3120.3N4—C30—C29123.3 (11)
C5—C4—C3121.7 (11)N4—C30—H30118.4
C5—C4—C12119.3 (12)C29—C30—H30118.4
C3—C4—C12118.9 (10)N4—C31—C27121.4 (9)
C4—C5—C6119.7 (11)N4—C31—C32116.8 (7)
C4—C5—H5120.2C27—C31—C32121.7 (9)
C6—C5—H5120.2N3—C32—C24123.8 (9)
C5—C6—C7122.7 (10)N3—C32—C31118.0 (7)
C5—C6—H6118.6C24—C32—C31118.1 (9)
C7—C6—H6118.6C34—C33—C38117.6 (8)
C11—C7—C8116.9 (10)C34—C33—C39121.9 (8)
C11—C7—C6117.4 (11)C38—C33—C39120.5 (8)
C8—C7—C6125.7 (10)C33—C34—C35121.2 (8)
C9—C8—C7121.5 (9)C33—C34—H34119.4
C9—C8—H8119.2C35—C34—H34119.4
C7—C8—H8119.2C36—C35—C34119.7 (10)
C8—C9—C10118.2 (10)C36—C35—H35120.2
C8—C9—H9120.9C34—C35—H35120.2
C10—C9—H9120.9C35—C36—C37122.0 (11)
N2—C10—C9121.4 (10)C35—C36—Br2'129.0 (9)
N2—C10—H10119.3C37—C36—Br2'108.4 (9)
C9—C10—H10119.3C35—C36—Br2114.5 (9)
N2—C11—C7122.5 (9)C37—C36—Br2123.4 (9)
N2—C11—C12117.8 (7)C36—C37—C38119.6 (9)
C7—C11—C12119.7 (9)C36—C37—H37120.2
N1—C12—C4120.2 (9)C38—C37—H37120.2
N1—C12—C11118.6 (7)C37—C38—C33119.9 (9)
C4—C12—C11121.2 (9)C37—C38—H38120.1
C14—C13—C18119.1 (8)C33—C38—H38120.1
C14—C13—C19122.2 (8)O4—C39—O3'122 (3)
C18—C13—C19118.7 (8)O4—C39—O3125.6 (16)
C13—C14—C15122.0 (9)O4—C39—C33117.3 (7)
C13—C14—H14119.0O3'—C39—C33117 (3)
C15—C14—H14119.0O3—C39—C33116.5 (16)
C16—C15—C14117.8 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.821.882.676 (9)163
O5—H5B···O20.821.872.639 (9)155
O6—H6A···O20.821.872.672 (6)168
O6—H6B···O3i0.821.992.715 (5)147
O6—H6B···O3i0.822.052.842 (5)161
O7—H7A···O3ii0.822.102.916 (11)178
O7—H7A···O3ii0.821.712.513 (8)168
O7—H7B···O6iii0.822.012.823 (10)172
O8—H8A···O6iv0.822.082.808 (2)148
O8—H8B···O9v0.821.882.685 (2)168
O9—H9A···O70.821.892.705 (6)172
O9—H9B···O3v0.822.082.876 (5)164
C29—H29···O2vi0.932.523.300 (14)141
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H4BrO2)(C12H8N2)2(H2O)](C7H4BrO2)·1.5H2O
Mr870.84
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)10.170 (2), 13.527 (3), 15.908 (3)
α, β, γ (°)111.96 (3), 99.26 (3), 102.25 (3)
V3)1912.5 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.28 × 0.21 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.500, 0.717
No. of measured, independent and
observed [I > 2σ(I)] reflections
14823, 6627, 3645
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.307, 1.10
No. of reflections6627
No. of parameters497
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.99, 0.75

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.821.882.676 (9)163
O5—H5B···O20.821.872.639 (9)155
O6—H6A···O20.821.872.672 (6)168
O6—H6B···O3i0.821.992.715 (5)147
O6—H6B···O3'i0.822.052.842 (5)161
O7—H7A···O3ii0.822.102.916 (11)178
O7—H7A···O3'ii0.821.712.513 (8)168
O7—H7B···O6iii0.822.012.823 (10)172
O8—H8A···O6iv0.822.082.808 (2)148
O8—H8B···O9v0.821.882.685 (2)168
O9—H9A···O70.821.892.705 (6)172
O9—H9B···O3v0.822.082.876 (5)164
C29—H29···O2vi0.932.523.300 (14)141
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge financial support by the Scientific Research Fund of Ningbo University (grant No. XKL09078).

References

First citationAghabozorg, H., Nakhjavan, B., Zabihi, F., Ramezanipour, F. & Aghabozorg, H. R. (2005). Acta Cryst. E61, m2664–m2666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). Huaxue Shiji, 28, 478–480.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, C.-M., You, X.-Z. & Chen, W. (1998). J. Coord. Chem. 46, 233–243.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y., Yuan, C. & Yang, P. (2004). Acta Cryst. E60, m1686–m1688.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005–2012.  CrossRef CAS Google Scholar
First citationYe, S.-F. & Zhang, B.-S. (2010). Acta Cryst. E66, m474.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds