metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-iodido-bis­{[hy­droxy(meth­oxy)bis­(2-pyridyl)methane-κ3N,O,N′]iodidocadmium(II)}

aDepartment of Chemistry, University of Urmiyeh, Urmyieh, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: m.esmhosseini@urmia.ac.ir

(Received 3 October 2010; accepted 15 October 2010; online 23 October 2010)

In the centrosymmetric dinuclear title compound, [Cd2I4(C12H12N2O2)2], two μ-I atoms bridge two CdII atoms and each CdII atom is also bonded to a terminal I atom and a hy­droxy-meth­oxy-bis­(2-pyrid­yl)methane ligand, which functions in an N,O,N′-tridentate mode, resulting in a distorted octa­hedral coordination environment. Inter­molecular O—H⋯I hydrogen bonds and ππ stacking inter­actions between the pyridine rings [centroid–centroid distance = 3.790 (2) Å] are present in the crystal structure.

Related literature

For general background to metal complexes with bis­(2-pyrid­yl)ketone or derivative ligands, see: Bandoli et al. (1994[Bandoli, G., Dolmella, A., Gerber, T. I. A., Preez, J. G. H. & Kemp, H. J. (1994). Inorg. Chim. Acta, 217, 141-147.]); Breeze et al. (1996[Breeze, S. R., Wang, S., Greedan, J. E. & Raju, N. P. (1996). Inorg. Chem. 35, 6944-6951.]); Crowder et al. (2004[Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. & Granger, R. M. (2004). Inorg. Chem. 43, 72-78.]); Hemmert et al. (1999[Hemmert, C., Renz, M., Gornitzka, H., Soulet, S. & Meunier, B. (1999). Chem. Eur. J. 5, 1766-1774.]); Katsoulakou et al. (2002[Katsoulakou, E., Lalioti, N., Raptopoulou, C. P., Terzis, A., Zoupa, E. M. & Perlepes, S. P. (2002). Inorg. Chem. Commun. 5, 719-723.]); Kavounis et al. (1996[Kavounis, C. A., Tsiamis, C., Cardin, C. J. & Zubavichus, Y. (1996). Polyhedron, 15, 385-390.]); Padhi & Sahu (2008[Padhi, S. K. & Sahu, R. (2008). Polyhedron, 27, 2662-2666.]); Papadopoulos et al. (1996[Papadopoulos, A. N., Tangoulis, V., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (1996). Inorg. Chem. 35, 559-565.]); Rattanaphani & McWhinnie (1974[Rattanaphani, V. & McWhinnie, W. R. (1974). Inorg. Chim. Acta, 9, 239-244.]); Serna et al. (2001[Serna, Z. E., Cortes, R., Urtiaga, M. K., Barandika, M. G., Lezama, L., Arriortua, M. I. & Rojo, T. (2001). Eur. J. Inorg. Chem. pp. 865-872.]); Sommerer et al. (1993[Sommerer, S. O., Baker, J. D., Jensen, W. P., Hamza, A. & Jacobson, R. A. (1993). Inorg. Chim. Acta, 210, 173-176.]); Tangoulis et al. (1997[Tangoulis, V., Raptopoulou, C. P., Paschalidou, S., Tsohos, A. E., Bakalbassis, E. G., Terzis, A., Perlepes, S. P. & Bakalbassis, E. G. (1997). Inorg. Chem. 36, 5270-5277.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2I4(C12H12N2O2)2]

  • Mr = 1164.89

  • Monoclinic, P 21 /c

  • a = 9.6684 (6) Å

  • b = 10.1083 (7) Å

  • c = 16.4970 (13) Å

  • β = 105.365 (5)°

  • V = 1554.64 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.38 mm−1

  • T = 298 K

  • 0.33 × 0.09 × 0.05 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.560, Tmax = 0.760

  • 12218 measured reflections

  • 4186 independent reflections

  • 3589 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.056

  • S = 1.08

  • 4186 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.381 (3)
Cd1—N2 2.371 (3)
Cd1—O1 2.633 (2)
Cd1—I1 2.8868 (4)
Cd1—I1i 2.9951 (4)
Cd1—I2 2.8082 (4)
Symmetry code: (i) -x+1, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯I2ii 0.82 2.73 3.509 (3) 160
Symmetry code: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Bis(2-pyridyl)ketone (bpk) is a molecule that can exhibit different modes of coordination. As a bidentate ligand, it may present an N,O-coordination giving a five-membered chelate ring or an N,N-coordination forming a three or six-membered ring (Crowder et al., 2004; Rattanaphani & McWhinnie, 1974; Sommerer et al., 1993). Frequently the coordinated bpk undergoes nucleophilic addition of water or an alcohol at the carbonylic carbon atom to form the diol or the corresponding hemiacetal, (pyridyl)2C(OR)(OH), which, deprotonated, acts as a mononegative, tridentate N,O,N-donor ligand. The three donor atoms may be coordinated to one metal atom (Bandoli et al., 1994; Crowder et al., 2004; Kavounis et al., 1996; Padhi & Sahu, 2008) or to two metal atoms in a bridging coordination (Breeze et al., 1996; Hemmert et al., 1999; Katsoulakou et al., 2002; Papadopoulos et al., 1996; Serna et al., 2001; Tangoulis et al., 1997). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound contains a half of the molecule (Fig. 1). Two µ-I atoms bridge two CdII atoms, and each CdII atom is also bonded to a terminal I atom and an organic ligand which functions in an N,O,N'-tridentate mode, resulting in a distorted octahedral coordination environment. The Cd—I, Cd—O and Cd—N bond lengths are collected in Table 1.

In the crystal structure, intermolecular O—H···I hydrogen bonds (Table 2) and ππ interactions between the pyridine rings (Fig. 2), Cg···Cgi [symmetry code: (i) -x, 2-y,-z; Cg is the centroid of the N1, C1–C5 ring], stabilize the structure, with a centroid-centroid distance of 3.790 (2) Å.

Related literature top

For general background to metal complexes with bis(2-pyridyl)ketone or derivative ligands, see: Bandoli et al. (1994); Breeze et al. (1996); Crowder et al. (2004); Hemmert et al. (1999); Katsoulakou et al. (2002); Kavounis et al. (1996); Padhi & Sahu (2008); Papadopoulos et al. (1996); Rattanaphani & McWhinnie (1974); Serna et al. (2001); Sommerer et al. (1993); Tangoulis et al. (1997).

Experimental top

For the preparation of the title compound, a solution of bis(2-pyridyl)ketone (0.15 g, 0.80 mmol) in methanol (10 ml) was added to a solution of CdI2 (0.29 g, 0.80 mmol) in methanol (5 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained by methanol diffusion into a colorless solution in DMSO. The crystals were isolated after one week (yield: 0.34 g, 72.9%).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl), O—H = 0.82 Å, and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,O).

Structure description top

Bis(2-pyridyl)ketone (bpk) is a molecule that can exhibit different modes of coordination. As a bidentate ligand, it may present an N,O-coordination giving a five-membered chelate ring or an N,N-coordination forming a three or six-membered ring (Crowder et al., 2004; Rattanaphani & McWhinnie, 1974; Sommerer et al., 1993). Frequently the coordinated bpk undergoes nucleophilic addition of water or an alcohol at the carbonylic carbon atom to form the diol or the corresponding hemiacetal, (pyridyl)2C(OR)(OH), which, deprotonated, acts as a mononegative, tridentate N,O,N-donor ligand. The three donor atoms may be coordinated to one metal atom (Bandoli et al., 1994; Crowder et al., 2004; Kavounis et al., 1996; Padhi & Sahu, 2008) or to two metal atoms in a bridging coordination (Breeze et al., 1996; Hemmert et al., 1999; Katsoulakou et al., 2002; Papadopoulos et al., 1996; Serna et al., 2001; Tangoulis et al., 1997). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound contains a half of the molecule (Fig. 1). Two µ-I atoms bridge two CdII atoms, and each CdII atom is also bonded to a terminal I atom and an organic ligand which functions in an N,O,N'-tridentate mode, resulting in a distorted octahedral coordination environment. The Cd—I, Cd—O and Cd—N bond lengths are collected in Table 1.

In the crystal structure, intermolecular O—H···I hydrogen bonds (Table 2) and ππ interactions between the pyridine rings (Fig. 2), Cg···Cgi [symmetry code: (i) -x, 2-y,-z; Cg is the centroid of the N1, C1–C5 ring], stabilize the structure, with a centroid-centroid distance of 3.790 (2) Å.

For general background to metal complexes with bis(2-pyridyl)ketone or derivative ligands, see: Bandoli et al. (1994); Breeze et al. (1996); Crowder et al. (2004); Hemmert et al. (1999); Katsoulakou et al. (2002); Kavounis et al. (1996); Padhi & Sahu (2008); Papadopoulos et al. (1996); Rattanaphani & McWhinnie (1974); Serna et al. (2001); Sommerer et al. (1993); Tangoulis et al. (1997).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (a) 1-x, 2-y, -z.]
[Figure 2] Fig. 2. Packing diagram of the title compound. Dashed lines denote hydrogen bonds.
Di-µ-iodido-bis{[hydroxy(methoxy)bis(2-pyridyl)methane- κ3N,O,N']iodidocadmium(II)} top
Crystal data top
[Cd2I4(C12H12N2O2)2]F(000) = 1072
Mr = 1164.89Dx = 2.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 998 reflections
a = 9.6684 (6) Åθ = 2.2–29.3°
b = 10.1083 (7) ŵ = 5.38 mm1
c = 16.4970 (13) ÅT = 298 K
β = 105.365 (5)°Needle, colorless
V = 1554.64 (19) Å30.33 × 0.09 × 0.05 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
4186 independent reflections
Radiation source: fine-focus sealed tube3589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 29.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.560, Tmax = 0.760k = 1313
12218 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0193P)2 + 1.4317P]
where P = (Fo2 + 2Fc2)/3
4186 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cd2I4(C12H12N2O2)2]V = 1554.64 (19) Å3
Mr = 1164.89Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6684 (6) ŵ = 5.38 mm1
b = 10.1083 (7) ÅT = 298 K
c = 16.4970 (13) Å0.33 × 0.09 × 0.05 mm
β = 105.365 (5)°
Data collection top
Bruker APEX CCD
diffractometer
4186 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3589 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.760Rint = 0.037
12218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.08Δρmax = 0.61 e Å3
4186 reflectionsΔρmin = 0.69 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1500 (4)0.9278 (4)0.0544 (2)0.0400 (8)
H10.20450.99140.07260.048*
C20.0103 (4)0.9080 (4)0.1006 (2)0.0449 (9)
H20.02890.95750.14880.054*
C30.0696 (4)0.8134 (5)0.0738 (2)0.0487 (10)
H30.16370.79700.10420.058*
C40.0093 (4)0.7425 (4)0.0012 (2)0.0429 (8)
H40.06220.67900.01820.051*
C50.1307 (3)0.7683 (3)0.0414 (2)0.0321 (6)
C60.2084 (3)0.6988 (3)0.1231 (2)0.0333 (7)
C70.3574 (5)0.5630 (4)0.0613 (3)0.0546 (10)
H7A0.33760.47870.08250.082*
H7B0.45170.56190.05250.082*
H7C0.28780.58080.00900.082*
C80.2258 (3)0.7955 (3)0.1957 (2)0.0328 (7)
C90.1399 (4)0.7896 (4)0.2505 (2)0.0425 (8)
H90.07280.72220.24620.051*
C100.1556 (4)0.8853 (5)0.3119 (2)0.0499 (10)
H100.09830.88360.34920.060*
C110.2557 (5)0.9825 (4)0.3176 (2)0.0469 (9)
H110.26841.04730.35900.056*
C120.3383 (4)0.9825 (4)0.2602 (2)0.0409 (8)
H120.40661.04870.26400.049*
N10.2106 (3)0.8594 (3)0.01554 (17)0.0330 (6)
N20.3235 (3)0.8920 (3)0.20032 (18)0.0340 (6)
O10.3501 (2)0.6642 (2)0.12090 (16)0.0373 (5)
O20.1277 (3)0.5886 (3)0.13179 (18)0.0478 (6)
H2A0.16540.55130.17630.072*
Cd10.45074 (2)0.89825 (2)0.095665 (15)0.03330 (6)
I10.46360 (3)1.17684 (2)0.059856 (16)0.03945 (6)
I20.71540 (3)0.85526 (3)0.213660 (16)0.04384 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0416 (18)0.044 (2)0.0351 (17)0.0046 (16)0.0115 (14)0.0072 (15)
C20.0449 (19)0.057 (2)0.0317 (17)0.0187 (18)0.0077 (15)0.0028 (16)
C30.0281 (16)0.075 (3)0.0395 (19)0.0080 (18)0.0027 (14)0.0097 (19)
C40.0319 (16)0.054 (2)0.0418 (18)0.0047 (16)0.0080 (14)0.0011 (17)
C50.0293 (15)0.0334 (16)0.0330 (15)0.0016 (13)0.0071 (12)0.0014 (13)
C60.0292 (14)0.0314 (16)0.0383 (17)0.0022 (13)0.0073 (13)0.0057 (14)
C70.061 (2)0.040 (2)0.061 (3)0.0116 (19)0.013 (2)0.0058 (19)
C80.0308 (15)0.0351 (17)0.0314 (15)0.0013 (13)0.0062 (12)0.0049 (13)
C90.0420 (18)0.048 (2)0.0395 (18)0.0023 (17)0.0146 (15)0.0121 (17)
C100.051 (2)0.063 (3)0.041 (2)0.002 (2)0.0227 (17)0.0076 (19)
C110.061 (2)0.048 (2)0.0345 (18)0.0048 (19)0.0166 (17)0.0008 (16)
C120.0429 (19)0.0398 (19)0.0408 (18)0.0067 (16)0.0127 (15)0.0038 (16)
N10.0308 (13)0.0369 (14)0.0311 (13)0.0025 (12)0.0080 (11)0.0040 (12)
N20.0334 (13)0.0354 (15)0.0344 (14)0.0026 (11)0.0109 (11)0.0015 (12)
O10.0343 (12)0.0350 (12)0.0400 (13)0.0055 (10)0.0054 (10)0.0005 (10)
O20.0493 (15)0.0385 (14)0.0524 (16)0.0161 (12)0.0080 (12)0.0098 (12)
Cd10.02758 (11)0.03613 (13)0.03617 (12)0.00235 (9)0.00842 (9)0.00239 (10)
I10.04378 (12)0.03060 (11)0.04923 (13)0.00043 (9)0.02155 (10)0.00408 (9)
I20.03782 (12)0.04460 (14)0.04293 (13)0.00002 (10)0.00012 (9)0.00529 (10)
Geometric parameters (Å, º) top
C1—N11.340 (4)C8—N21.346 (4)
C1—C21.378 (5)C8—C91.383 (5)
C1—H10.9300C9—C101.380 (6)
C2—C31.375 (6)C9—H90.9300
C2—H20.9300C10—C111.365 (6)
C3—C41.384 (6)C10—H100.9300
C3—H30.9300C11—C121.391 (5)
C4—C51.375 (5)C11—H110.9300
C4—H40.9300C12—N21.327 (4)
C5—N11.342 (4)C12—H120.9300
C5—C61.529 (5)Cd1—N12.381 (3)
C6—O21.389 (4)Cd1—N22.371 (3)
C6—O11.424 (4)Cd1—O12.633 (2)
C6—C81.520 (5)O2—H2A0.8200
C7—O11.433 (5)Cd1—I12.8868 (4)
C7—H7A0.9600Cd1—I1i2.9951 (4)
C7—H7B0.9600Cd1—I22.8082 (4)
C7—H7C0.9600
N1—C1—C2122.8 (4)C11—C10—H10120.2
N1—C1—H1118.6C9—C10—H10120.2
C2—C1—H1118.6C10—C11—C12118.5 (4)
C3—C2—C1118.4 (3)C10—C11—H11120.7
C3—C2—H2120.8C12—C11—H11120.7
C1—C2—H2120.8N2—C12—C11122.6 (3)
C2—C3—C4119.7 (3)N2—C12—H12118.7
C2—C3—H3120.2C11—C12—H12118.7
C4—C3—H3120.2C1—N1—C5118.1 (3)
C5—C4—C3118.5 (4)C1—N1—Cd1122.2 (2)
C5—C4—H4120.8C5—N1—Cd1119.7 (2)
C3—C4—H4120.8C12—N2—C8118.6 (3)
N1—C5—C4122.6 (3)C12—N2—Cd1123.3 (2)
N1—C5—C6114.0 (3)C8—N2—Cd1118.0 (2)
C4—C5—C6123.5 (3)C6—O1—C7114.5 (3)
O2—C6—O1112.1 (3)C6—O1—Cd1100.48 (18)
O2—C6—C8112.5 (3)C7—O1—Cd1116.5 (2)
O1—C6—C8105.7 (3)C6—O2—H2A109.5
O2—C6—C5107.5 (3)N2—Cd1—N177.41 (9)
O1—C6—C5110.0 (3)N2—Cd1—O164.93 (9)
C8—C6—C5108.9 (3)N1—Cd1—O165.95 (8)
O1—C7—H7A109.5N2—Cd1—I292.54 (7)
O1—C7—H7B109.5N1—Cd1—I2159.22 (7)
H7A—C7—H7B109.5O1—Cd1—I293.35 (5)
O1—C7—H7C109.5N2—Cd1—I1103.52 (7)
H7A—C7—H7C109.5N1—Cd1—I197.81 (7)
H7B—C7—H7C109.5O1—Cd1—I1161.21 (5)
N2—C8—C9121.9 (3)I2—Cd1—I1102.242 (11)
N2—C8—C6116.2 (3)N2—Cd1—I1i158.66 (7)
C9—C8—C6121.8 (3)N1—Cd1—I1i86.16 (7)
C10—C9—C8118.8 (4)O1—Cd1—I1i96.05 (5)
C10—C9—H9120.6I2—Cd1—I1i98.429 (11)
C8—C9—H9120.6I1—Cd1—I1i92.019 (9)
C11—C10—C9119.6 (3)Cd1—I1—Cd1i87.981 (9)
N1—C1—C2—C30.4 (6)C8—C6—O1—Cd160.1 (2)
C1—C2—C3—C41.0 (6)C5—C6—O1—Cd157.4 (3)
C2—C3—C4—C50.9 (6)C12—N2—Cd1—N1131.9 (3)
C3—C4—C5—N10.2 (5)C8—N2—Cd1—N144.4 (2)
C3—C4—C5—C6178.8 (3)C12—N2—Cd1—O1159.0 (3)
N1—C5—C6—O2166.4 (3)C8—N2—Cd1—O124.7 (2)
C4—C5—C6—O214.9 (5)C12—N2—Cd1—I266.5 (3)
N1—C5—C6—O144.1 (4)C8—N2—Cd1—I2117.2 (2)
C4—C5—C6—O1137.2 (3)C12—N2—Cd1—I136.7 (3)
N1—C5—C6—C871.4 (3)C8—N2—Cd1—I1139.5 (2)
C4—C5—C6—C8107.3 (4)C12—N2—Cd1—I1i172.4 (2)
O2—C6—C8—N2168.1 (3)C8—N2—Cd1—I1i3.9 (4)
O1—C6—C8—N245.4 (4)C1—N1—Cd1—N2133.1 (3)
C5—C6—C8—N272.7 (4)C5—N1—Cd1—N245.4 (2)
O2—C6—C8—C915.8 (4)C1—N1—Cd1—O1159.0 (3)
O1—C6—C8—C9138.5 (3)C5—N1—Cd1—O122.5 (2)
C5—C6—C8—C9103.4 (4)C1—N1—Cd1—I2164.33 (19)
N2—C8—C9—C100.2 (5)C5—N1—Cd1—I217.2 (4)
C6—C8—C9—C10176.1 (3)C1—N1—Cd1—I130.9 (3)
C8—C9—C10—C110.6 (6)C5—N1—Cd1—I1147.6 (2)
C9—C10—C11—C120.7 (6)C1—N1—Cd1—I1i60.6 (3)
C10—C11—C12—N20.0 (6)C5—N1—Cd1—I1i120.9 (2)
C2—C1—N1—C50.3 (5)C6—O1—Cd1—N245.57 (19)
C2—C1—N1—Cd1178.8 (3)C7—O1—Cd1—N2169.9 (3)
C4—C5—N1—C10.4 (5)C6—O1—Cd1—N141.29 (19)
C6—C5—N1—C1178.3 (3)C7—O1—Cd1—N183.0 (2)
C4—C5—N1—Cd1179.0 (3)C6—O1—Cd1—I2136.82 (18)
C6—C5—N1—Cd10.3 (4)C7—O1—Cd1—I298.9 (2)
C11—C12—N2—C80.8 (5)C6—O1—Cd1—I19.4 (3)
C11—C12—N2—Cd1175.4 (3)C7—O1—Cd1—I1114.9 (3)
C9—C8—N2—C120.9 (5)C6—O1—Cd1—I1i124.33 (18)
C6—C8—N2—C12177.0 (3)C7—O1—Cd1—I1i0.0 (2)
C9—C8—N2—Cd1175.5 (3)N2—Cd1—I1—Cd1i165.25 (7)
C6—C8—N2—Cd10.5 (4)N1—Cd1—I1—Cd1i86.40 (7)
O2—C6—O1—C751.3 (4)O1—Cd1—I1—Cd1i115.52 (17)
C8—C6—O1—C7174.3 (3)I2—Cd1—I1—Cd1i99.076 (12)
C5—C6—O1—C768.3 (4)I1i—Cd1—I1—Cd1i0.0
O2—C6—O1—Cd1176.9 (2)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···I2ii0.822.733.509 (3)160
Symmetry code: (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd2I4(C12H12N2O2)2]
Mr1164.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.6684 (6), 10.1083 (7), 16.4970 (13)
β (°) 105.365 (5)
V3)1554.64 (19)
Z2
Radiation typeMo Kα
µ (mm1)5.38
Crystal size (mm)0.33 × 0.09 × 0.05
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.560, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
12218, 4186, 3589
Rint0.037
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.056, 1.08
No. of reflections4186
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.69

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cd1—N12.381 (3)Cd1—I12.8868 (4)
Cd1—N22.371 (3)Cd1—I1i2.9951 (4)
Cd1—O12.633 (2)Cd1—I22.8082 (4)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···I2ii0.822.733.509 (3)160
Symmetry code: (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to the University of Urmiyeh and Shahid Beheshti University for financial support.

References

First citationBandoli, G., Dolmella, A., Gerber, T. I. A., Preez, J. G. H. & Kemp, H. J. (1994). Inorg. Chim. Acta, 217, 141–147.  CSD CrossRef CAS Web of Science Google Scholar
First citationBreeze, S. R., Wang, S., Greedan, J. E. & Raju, N. P. (1996). Inorg. Chem. 35, 6944–6951.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. & Granger, R. M. (2004). Inorg. Chem. 43, 72–78.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHemmert, C., Renz, M., Gornitzka, H., Soulet, S. & Meunier, B. (1999). Chem. Eur. J. 5, 1766–1774.  CrossRef CAS Google Scholar
First citationKatsoulakou, E., Lalioti, N., Raptopoulou, C. P., Terzis, A., Zoupa, E. M. & Perlepes, S. P. (2002). Inorg. Chem. Commun. 5, 719–723.  Web of Science CSD CrossRef CAS Google Scholar
First citationKavounis, C. A., Tsiamis, C., Cardin, C. J. & Zubavichus, Y. (1996). Polyhedron, 15, 385–390.  CSD CrossRef CAS Web of Science Google Scholar
First citationPadhi, S. K. & Sahu, R. (2008). Polyhedron, 27, 2662–2666.  Web of Science CSD CrossRef CAS Google Scholar
First citationPapadopoulos, A. N., Tangoulis, V., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (1996). Inorg. Chem. 35, 559–565.  CSD CrossRef CAS Web of Science Google Scholar
First citationRattanaphani, V. & McWhinnie, W. R. (1974). Inorg. Chim. Acta, 9, 239–244.  CrossRef CAS Web of Science Google Scholar
First citationSerna, Z. E., Cortes, R., Urtiaga, M. K., Barandika, M. G., Lezama, L., Arriortua, M. I. & Rojo, T. (2001). Eur. J. Inorg. Chem. pp. 865–872.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSommerer, S. O., Baker, J. D., Jensen, W. P., Hamza, A. & Jacobson, R. A. (1993). Inorg. Chim. Acta, 210, 173–176.  CSD CrossRef CAS Web of Science Google Scholar
First citationTangoulis, V., Raptopoulou, C. P., Paschalidou, S., Tsohos, A. E., Bakalbassis, E. G., Terzis, A., Perlepes, S. P. & Bakalbassis, E. G. (1997). Inorg. Chem. 36, 5270–5277.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds