metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[cadmium-bis­­(μ-N,N-di­methyl­di­thio­carbamato-κ3S,S′:S)]

aFaculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: lix905@126.com

(Received 19 October 2010; accepted 27 October 2010; online 31 October 2010)

In the title compound, [Cd(C3H6NS2)2]n, the CdII atom, lying on a twofold rotation axis, is coordinated by six S atoms from four different N,N-dimethyl­dithio­carbamate ligands in a distorted octa­hedral geometry. The bridging of S atoms of the ligands leads to the formation of a one-dimensional structure along [001].

Related literature

For general background to metal–organic frameworks, see: Kitagawa et al. (2006[Kitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701-707.]); Papaefstathiou & MacGillivray (2003[Papaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev. 246, 169-184.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]). For sodium, zinc and copper salts of dimethyl­dithio­carbamate, see: Einstein & Field (1974[Einstein, F. W. B. & Field, J. S. (1974). Acta Cryst. B30, 2928-2930.]); Oskarsson & Ymén (1983[Oskarsson, Å. & Ymén, I. (1983). Acta Cryst. C39, 66-68.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C3H6NS2)2]

  • Mr = 352.82

  • Orthorhombic, P c c n

  • a = 10.055 (2) Å

  • b = 14.744 (3) Å

  • c = 7.9518 (17) Å

  • V = 1178.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 296 K

  • 0.54 × 0.22 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.519, Tmax = 0.652

  • 9543 measured reflections

  • 1370 independent reflections

  • 1221 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.044

  • S = 1.07

  • 1370 reflections

  • 63 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—S1 2.6255 (7)
Cd1—S2 2.7909 (6)
Cd1—S2i 2.7194 (6)
Symmetry code: (i) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Rapid development of metal–organic frameworks has been made in recent years not only for their potential applications in materials science but also for fascinating architectures and topologies (Kitagawa et al., 2006; Papaefstathiou & MacGillivray, 2003; Yaghi et al., 1998). Dimethyldithiocarbamic acid is widely used in latex industry. Its natrium, zinc and copper salts are applied widely in antimicrobial, antisepsis and accelerant (Einstein & Field, 1974; Oskarsson & Ymén, 1983). Meanwhile, dimethyldithiocarbamic acid, possessing two S atoms, is a good candidate to coordinate metal atoms and generates rich hydrogen bonding modes. Herein we report the preparation and characterization of the first cadmium complex of dimethyldithiocarbamic acid.

In the title complex, the CdII ion is coordinated in an octahedral geometry by six S atoms from four different dimethyldithiocarbamate ligands (Fig. 1), with the Cd—S distances ranging from 2.6255 (7) to 2.7909 (6) Å (Table 1). Through the bridging of S2 atoms, the title complex forms a one-dimensional structure (Fig. 2).

Related literature top

For general background to metal–organic frameworks, see: Kitagawa et al. (2006); Papaefstathiou & MacGillivray (2003); Yaghi et al. (1998). For the natrium, zinc and copper salts of dimethyldithiocarbamate, see: Einstein & Field (1974); Oskarsson & Ymén (1983).

Experimental top

A mixture containing 0.005 mmol of Cd(NO3)2.4H2O and 0.010 mmol of dimethyldithiocarbamic acid was placed in a small vial containing MeOH (3.0 ml), DMF (1.0 ml) and H2O (0.5 ml). The vial was sealed, heated at 373 K for 2 d and allowed to cool to room temperature. Colorless crystals suitable for X-ray diffraction were collected and dried in air (yield: 50%).

Refinement top

H atoms were placed in calculated positions and treated using a riding model, with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(C).

Structure description top

Rapid development of metal–organic frameworks has been made in recent years not only for their potential applications in materials science but also for fascinating architectures and topologies (Kitagawa et al., 2006; Papaefstathiou & MacGillivray, 2003; Yaghi et al., 1998). Dimethyldithiocarbamic acid is widely used in latex industry. Its natrium, zinc and copper salts are applied widely in antimicrobial, antisepsis and accelerant (Einstein & Field, 1974; Oskarsson & Ymén, 1983). Meanwhile, dimethyldithiocarbamic acid, possessing two S atoms, is a good candidate to coordinate metal atoms and generates rich hydrogen bonding modes. Herein we report the preparation and characterization of the first cadmium complex of dimethyldithiocarbamic acid.

In the title complex, the CdII ion is coordinated in an octahedral geometry by six S atoms from four different dimethyldithiocarbamate ligands (Fig. 1), with the Cd—S distances ranging from 2.6255 (7) to 2.7909 (6) Å (Table 1). Through the bridging of S2 atoms, the title complex forms a one-dimensional structure (Fig. 2).

For general background to metal–organic frameworks, see: Kitagawa et al. (2006); Papaefstathiou & MacGillivray (2003); Yaghi et al. (1998). For the natrium, zinc and copper salts of dimethyldithiocarbamate, see: Einstein & Field (1974); Oskarsson & Ymén (1983).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the Cd coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 3/2-x, y, 1/2+z; (ii) 3/2-x, 1/2-y, z; (iii) x, 1/2-y, 1/2+z.]
[Figure 2] Fig. 2. One-dimensional chain in the title complex. H atoms have been omitted for clarity.
catena-Poly[cadmium-bis(µ-N,N- dimethyldithiocarbamato-κ3S,S':S)] top
Crystal data top
[Cd(C3H6NS2)2]F(000) = 696
Mr = 352.82Dx = 1.988 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4468 reflections
a = 10.055 (2) Åθ = 2.5–27.6°
b = 14.744 (3) ŵ = 2.52 mm1
c = 7.9518 (17) ÅT = 296 K
V = 1178.9 (4) Å3Block, colorless
Z = 40.54 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
1370 independent reflections
Radiation source: fine-focus sealed tube1221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.519, Tmax = 0.652k = 1619
9543 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0174P)2 + 0.6307P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
1370 reflectionsΔρmax = 0.29 e Å3
63 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (3)
Crystal data top
[Cd(C3H6NS2)2]V = 1178.9 (4) Å3
Mr = 352.82Z = 4
Orthorhombic, PccnMo Kα radiation
a = 10.055 (2) ŵ = 2.52 mm1
b = 14.744 (3) ÅT = 296 K
c = 7.9518 (17) Å0.54 × 0.22 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
1370 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1221 reflections with I > 2σ(I)
Tmin = 0.519, Tmax = 0.652Rint = 0.030
9543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
1370 reflectionsΔρmin = 0.34 e Å3
63 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.75000.25000.17288 (2)0.03178 (9)
S10.49818 (5)0.28596 (4)0.11658 (7)0.04016 (14)
S20.71139 (5)0.37665 (3)0.08336 (6)0.03093 (12)
N10.45119 (16)0.39753 (11)0.1396 (2)0.0335 (4)
C10.54274 (18)0.35704 (12)0.0449 (2)0.0279 (4)
C20.3088 (2)0.38157 (18)0.1150 (3)0.0473 (5)
H2A0.29520.34650.01180.071*
H2B0.27340.34770.21120.071*
H2C0.26260.43990.10570.071*
C30.4855 (2)0.45777 (16)0.2802 (3)0.0481 (5)
H3A0.55490.50030.24460.072*
H3B0.40630.49170.31510.072*
H3C0.51810.42150.37490.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02789 (12)0.04207 (14)0.02537 (12)0.00462 (8)0.0000.000
S10.0295 (2)0.0507 (3)0.0403 (3)0.0030 (2)0.0035 (2)0.0156 (2)
S20.0294 (2)0.0340 (2)0.0294 (2)0.00350 (18)0.00062 (18)0.00097 (18)
N10.0323 (8)0.0348 (9)0.0333 (8)0.0051 (7)0.0036 (7)0.0015 (7)
C10.0298 (9)0.0284 (9)0.0256 (9)0.0017 (7)0.0001 (7)0.0039 (7)
C20.0331 (11)0.0580 (14)0.0509 (13)0.0091 (10)0.0074 (10)0.0033 (11)
C30.0544 (13)0.0434 (12)0.0466 (12)0.0058 (10)0.0070 (11)0.0154 (10)
Geometric parameters (Å, º) top
Cd1—S12.6255 (7)N1—C31.469 (3)
Cd1—S22.7909 (6)C2—H2A0.9800
Cd1—S2i2.7194 (6)C2—H2B0.9800
S1—C11.7169 (19)C2—H2C0.9800
S2—C11.7473 (19)C3—H3A0.9800
S2—Cd1ii2.7194 (6)C3—H3B0.9800
N1—C11.331 (2)C3—H3C0.9800
N1—C21.464 (3)
S1—Cd1—S1iii160.37 (3)C1—N1—C2121.94 (18)
S1—Cd1—S2i96.922 (18)C1—N1—C3122.66 (17)
S1iii—Cd1—S2i97.039 (16)C2—N1—C3115.34 (17)
S1—Cd1—S2iv97.039 (16)N1—C1—S1121.09 (14)
S1iii—Cd1—S2iv96.922 (18)N1—C1—S2119.88 (14)
S2i—Cd1—S2iv89.07 (3)S1—C1—S2119.03 (10)
S1—Cd1—S2iii98.326 (18)N1—C2—H2A109.5
S1iii—Cd1—S2iii66.812 (15)N1—C2—H2B109.5
S2i—Cd1—S2iii163.74 (2)H2A—C2—H2B109.5
S2iv—Cd1—S2iii94.63 (2)N1—C2—H2C109.5
S1—Cd1—S266.812 (15)H2A—C2—H2C109.5
S1iii—Cd1—S298.326 (18)H2B—C2—H2C109.5
S2i—Cd1—S294.63 (2)N1—C3—H3A109.5
S2iv—Cd1—S2163.74 (2)N1—C3—H3B109.5
S2iii—Cd1—S286.22 (3)H3A—C3—H3B109.5
C1—S1—Cd189.95 (6)N1—C3—H3C109.5
C1—S2—Cd1ii98.61 (6)H3A—C3—H3C109.5
C1—S2—Cd184.06 (6)H3B—C3—H3C109.5
Cd1ii—S2—Cd192.35 (2)
Symmetry codes: (i) x+3/2, y, z+1/2; (ii) x+3/2, y, z1/2; (iii) x+3/2, y+1/2, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C3H6NS2)2]
Mr352.82
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)296
a, b, c (Å)10.055 (2), 14.744 (3), 7.9518 (17)
V3)1178.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.52
Crystal size (mm)0.54 × 0.22 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.519, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
9543, 1370, 1221
Rint0.030
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 1.07
No. of reflections1370
No. of parameters63
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—S12.6255 (7)Cd1—S2i2.7194 (6)
Cd1—S22.7909 (6)
Symmetry code: (i) x+3/2, y, z+1/2.
 

Acknowledgements

This work was supported by the Ningbo Natural Science Foundation (grant No. 2010 A610060), the `Qianjiang Talent' Projects of Zhejiang Province (grant No. 2009R10032), the Program for Innovative Research Team of Ningbo Novel Photoelectric Materials and Devices (grant No. 2009B21007), and the K. C. Wong Magna Fund of Ningbo University.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEinstein, F. W. B. & Field, J. S. (1974). Acta Cryst. B30, 2928–2930.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701–707.  Web of Science CrossRef Google Scholar
First citationOskarsson, Å. & Ymén, I. (1983). Acta Cryst. C39, 66–68.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPapaefstathiou, G. S. & MacGillivray, L. R. (2003). Coord. Chem. Rev. 246, 169–184.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds