metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyano­methyl-1,4-diazo­niabi­cyclo­[2.2.2]octane tetra­chloridomanganate(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zmmzyahfdzg@126.com

(Received 7 September 2010; accepted 9 October 2010; online 20 October 2010)

In the crystal structure of the title compound, (C8H15N3)[MnCl4], the Mn atom is coordinated by four chloride ligands in a slightly distorted tetra­hedral geometry. Each [MnCl4]2− anion is connected to the 1-cyano­methyl-1,4-diazo­niabicyclo­[2.2.2]octane dications by N—H⋯Cl hydrogen bonds, forming chains parallel to [001].

Related literature

For similar crystal structures of related compounds, see: Al-Far et al. (2008[Al-Far, R. H., Ali, B. F. & Haddad, S. F. (2008). Acta Cryst. E64, m689-m690.]); Cai (2010[Cai, Y. (2010). Acta Cryst. E66, m830.]). For the use of DABCO (1,4-diaza­bicyclo­[2.2.2]octa­ne) and its derivatives, see: Basaviah et al. (2003[Basaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-891.]); Zhang, Cheng et al. (2009[Zhang, W., Cheng, L.-Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]) and for its ferroelectric properties, see: Zhang, Ye et al. (2009[Zhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980-2997.]); Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H15N3)[MnCl4]

  • Mr = 349.97

  • Monoclinic, P 21 /c

  • a = 8.373 (3) Å

  • b = 13.713 (6) Å

  • c = 12.188 (5) Å

  • β = 93.657 (8)°

  • V = 1396.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 298 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.713, Tmax = 0.721

  • 14901 measured reflections

  • 3181 independent reflections

  • 2788 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.103

  • S = 1.11

  • 3181 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl2i 0.93 2.56 3.217 (2) 128
N1—H1C⋯Cl3ii 0.93 2.56 3.270 (2) 133
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as a effective organocatalyst for a large number of reactions because of its nucleophilicity (Basaviah et al., 2003) and some of it's derivatives are ferroelectrics (Zhang et al., 2009). This study is part of a systematic investigation of dielectric-ferroelectric materials (Ye et al., 2009; Zhang et al., 2009). The structural properties of related DABCO derivatives has been described earlier (Cai, 2010; Zhang et al., 2009).

The asymmetric unit of the title compound is composed of cationic (C8H15N3)2+ and anionic (MnCl4)2- ions (Fig 1). The Mn atoms are coordinated by four Cl atoms with very similar distances in the range of 2.366 (1) to 2.382 (1) Å. The Cl—Mn—Cl bond angles are between 101.58 (3) and 115.14 (3) ° which shows that the coordination polyhedron can be described as a slightly distorted tetrahedron. The ammonium groups of the organic cations are engaged in bifurcated hydrogen bonds to chlorine atoms of two (MnCl4)2- anions. These weak N—H···Cl interactions cause the formation of a one-dimensional chain along the [0 0 1].

Related literature top

For similar crystal structures of related compounds, see: Al-Far et al. (2008); Cai (2010). For the use of DABCO (1,4-diazabicyclo[2.2.2]octane) and its derivatives, see: Basaviah et al. (2003); Zhang, Cheng et al. (2009) and for its ferroelectric properties, see: Zhang, Ye et al. (2009); Ye et al. (2009).

Experimental top

The ligand, 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide, was prepared as previously described (Cai, 2010).

MnCl2 × 4 H2O (0.001 mol, 0.197 g) and 2 ml 36% HCl were dissolved in MeOH (20 ml) and 1-(cyanomethyl)-4-aza-1-azonia-bicyclo[2.2.2]octane bromide (0.002 mol, 0.464 g) in the same solvent was added. The resulting solution was stirred until a clear solution was obtained. After slow evaporation of the solvent, colourless block crystals suitable for X-ray analysis were obtained in about 60% yield. The title compound has no dielectric disuniform from 80 K to 400 K, (m.p. > 401 K).

Refinement top

H atoms bound to carbon and nitrogen were placed in idealized positions [C—H = 0.97 Å and N—H = 0.93 Å] and allowed to ride on their parent atoms with (Uiso(H) = 1.2 Ueq(C,N).

Structure description top

1,4-Diazabicyclo[2.2.2]octane (DABCO) is used as a effective organocatalyst for a large number of reactions because of its nucleophilicity (Basaviah et al., 2003) and some of it's derivatives are ferroelectrics (Zhang et al., 2009). This study is part of a systematic investigation of dielectric-ferroelectric materials (Ye et al., 2009; Zhang et al., 2009). The structural properties of related DABCO derivatives has been described earlier (Cai, 2010; Zhang et al., 2009).

The asymmetric unit of the title compound is composed of cationic (C8H15N3)2+ and anionic (MnCl4)2- ions (Fig 1). The Mn atoms are coordinated by four Cl atoms with very similar distances in the range of 2.366 (1) to 2.382 (1) Å. The Cl—Mn—Cl bond angles are between 101.58 (3) and 115.14 (3) ° which shows that the coordination polyhedron can be described as a slightly distorted tetrahedron. The ammonium groups of the organic cations are engaged in bifurcated hydrogen bonds to chlorine atoms of two (MnCl4)2- anions. These weak N—H···Cl interactions cause the formation of a one-dimensional chain along the [0 0 1].

For similar crystal structures of related compounds, see: Al-Far et al. (2008); Cai (2010). For the use of DABCO (1,4-diazabicyclo[2.2.2]octane) and its derivatives, see: Basaviah et al. (2003); Zhang, Cheng et al. (2009) and for its ferroelectric properties, see: Zhang, Ye et al. (2009); Ye et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Structure of a layer of [ammonium-anion] chains cross-linked by hydrogen bonds. Dotted lines indicate hydrogen bonding. View is along the a axis.
1-Cyanomethyl-1,4-diazoniabicyclo[2.2.2]octane tetrachloridomanganate(II) top
Crystal data top
(C8H15N3)[MnCl4]F(000) = 708
Mr = 349.97Dx = 1.664 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4022 reflections
a = 8.373 (3) Åθ = 2.2–27.5°
b = 13.713 (6) ŵ = 1.69 mm1
c = 12.188 (5) ÅT = 298 K
β = 93.657 (8)°PRISM, colourless
V = 1396.6 (10) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3181 independent reflections
Radiation source: fine-focus sealed tube2788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.713, Tmax = 0.721l = 1515
14901 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.061P)2 + 0.074P]
where P = (Fo2 + 2Fc2)/3
3181 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C8H15N3)[MnCl4]V = 1396.6 (10) Å3
Mr = 349.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.373 (3) ŵ = 1.69 mm1
b = 13.713 (6) ÅT = 298 K
c = 12.188 (5) Å0.2 × 0.2 × 0.2 mm
β = 93.657 (8)°
Data collection top
Rigaku Mercury CCD
diffractometer
3181 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2788 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.721Rint = 0.035
14901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.11Δρmax = 0.66 e Å3
3181 reflectionsΔρmin = 0.52 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.22628 (4)0.23007 (3)0.99138 (3)0.02877 (13)
Cl30.19440 (7)0.39665 (4)1.03991 (5)0.03248 (16)
Cl20.22006 (7)0.23950 (5)0.79599 (5)0.03590 (17)
Cl40.00249 (7)0.14312 (4)1.04423 (5)0.03416 (16)
Cl10.47527 (7)0.16000 (5)1.05057 (5)0.03580 (16)
N10.8938 (2)0.35643 (14)0.19241 (15)0.0270 (4)
H1C0.99190.33290.17180.032*
N20.6277 (2)0.42613 (13)0.23649 (14)0.0218 (4)
C80.4225 (3)0.55167 (18)0.2010 (2)0.0324 (5)
C30.9196 (3)0.45395 (19)0.2452 (2)0.0371 (6)
H3A0.96250.49910.19340.044*
H3B0.99560.44840.30830.044*
C70.4681 (3)0.46467 (17)0.26521 (19)0.0294 (5)
H7A0.38750.41460.25150.035*
H7B0.47210.48050.34290.035*
C10.7902 (3)0.36583 (19)0.08854 (19)0.0308 (5)
H1A0.76730.30180.05770.037*
H1B0.84510.40360.03520.037*
C20.6363 (3)0.4158 (2)0.11339 (18)0.0325 (5)
H2A0.54580.37800.08350.039*
H2B0.63140.47980.07930.039*
C50.8155 (3)0.28891 (18)0.2681 (2)0.0321 (5)
H5A0.87830.28510.33760.039*
H5B0.80880.22410.23630.039*
N30.3839 (3)0.61644 (16)0.1482 (2)0.0457 (6)
C60.6493 (3)0.32604 (19)0.2868 (2)0.0368 (6)
H6A0.56990.28170.25350.044*
H6B0.63470.32920.36500.044*
C40.7606 (3)0.4915 (2)0.2813 (2)0.0419 (6)
H4A0.76240.49280.36090.050*
H4B0.74270.55740.25450.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0269 (2)0.0284 (2)0.0308 (2)0.00024 (14)0.00125 (16)0.00150 (14)
Cl30.0358 (3)0.0263 (3)0.0360 (3)0.0027 (2)0.0074 (3)0.0003 (2)
Cl20.0317 (3)0.0471 (4)0.0287 (3)0.0015 (3)0.0010 (2)0.0043 (2)
Cl40.0312 (3)0.0325 (3)0.0390 (3)0.0035 (2)0.0038 (3)0.0021 (2)
Cl10.0310 (3)0.0426 (3)0.0339 (3)0.0066 (2)0.0024 (2)0.0076 (3)
N10.0216 (9)0.0309 (10)0.0289 (10)0.0021 (8)0.0046 (8)0.0022 (8)
N20.0219 (9)0.0209 (9)0.0227 (9)0.0001 (7)0.0020 (7)0.0008 (7)
C80.0296 (12)0.0288 (12)0.0384 (13)0.0062 (10)0.0013 (10)0.0090 (11)
C30.0262 (12)0.0370 (13)0.0478 (15)0.0073 (10)0.0017 (11)0.0057 (11)
C70.0247 (11)0.0304 (11)0.0337 (12)0.0037 (9)0.0068 (10)0.0017 (10)
C10.0312 (12)0.0363 (13)0.0252 (11)0.0056 (10)0.0037 (10)0.0001 (9)
C20.0284 (12)0.0468 (14)0.0223 (11)0.0065 (10)0.0012 (9)0.0013 (10)
C50.0283 (12)0.0326 (12)0.0361 (13)0.0055 (10)0.0066 (10)0.0126 (10)
N30.0541 (15)0.0317 (12)0.0498 (14)0.0123 (11)0.0081 (12)0.0093 (11)
C60.0364 (14)0.0327 (12)0.0430 (14)0.0080 (10)0.0148 (12)0.0168 (11)
C40.0290 (13)0.0350 (13)0.0605 (17)0.0022 (11)0.0067 (12)0.0192 (13)
Geometric parameters (Å, º) top
Mn1—Cl12.3661 (10)C3—H3B0.9700
Mn1—Cl32.3789 (11)C7—H7A0.9700
Mn1—Cl42.3798 (10)C7—H7B0.9700
Mn1—Cl22.3822 (12)C1—C21.507 (3)
N1—C51.488 (3)C1—H1A0.9700
N1—C31.494 (3)C1—H1B0.9700
N1—C11.494 (3)C2—H2A0.9700
N1—H1C0.9325C2—H2B0.9700
N2—C71.500 (3)C5—C61.512 (3)
N2—C41.504 (3)C5—H5A0.9700
N2—C61.509 (3)C5—H5B0.9700
N2—C21.513 (3)C6—H6A0.9700
C8—N31.132 (3)C6—H6B0.9700
C8—C71.464 (3)C4—H4A0.9700
C3—C41.518 (4)C4—H4B0.9700
C3—H3A0.9700
Cl1—Mn1—Cl3115.14 (3)N1—C1—C2109.07 (18)
Cl1—Mn1—Cl4115.01 (4)N1—C1—H1A109.9
Cl3—Mn1—Cl4107.98 (3)C2—C1—H1A109.9
Cl1—Mn1—Cl2106.83 (3)N1—C1—H1B109.9
Cl3—Mn1—Cl2101.58 (3)C2—C1—H1B109.9
Cl4—Mn1—Cl2109.34 (3)H1A—C1—H1B108.3
C5—N1—C3110.32 (19)C1—C2—N2109.67 (18)
C5—N1—C1108.90 (19)C1—C2—H2A109.7
C3—N1—C1110.36 (19)N2—C2—H2A109.7
C5—N1—H1C112.5C1—C2—H2B109.7
C3—N1—H1C108.7N2—C2—H2B109.7
C1—N1—H1C106.0H2A—C2—H2B108.2
C7—N2—C4110.81 (18)N1—C5—C6109.26 (18)
C7—N2—C6108.12 (17)N1—C5—H5A109.8
C4—N2—C6109.14 (19)C6—C5—H5A109.8
C7—N2—C2111.31 (17)N1—C5—H5B109.8
C4—N2—C2109.57 (19)C6—C5—H5B109.8
C6—N2—C2107.82 (18)H5A—C5—H5B108.3
N3—C8—C7177.1 (3)N2—C6—C5109.40 (19)
N1—C3—C4108.8 (2)N2—C6—H6A109.8
N1—C3—H3A109.9C5—C6—H6A109.8
C4—C3—H3A109.9N2—C6—H6B109.8
N1—C3—H3B109.9C5—C6—H6B109.8
C4—C3—H3B109.9H6A—C6—H6B108.2
H3A—C3—H3B108.3N2—C4—C3109.6 (2)
C8—C7—N2111.60 (19)N2—C4—H4A109.8
C8—C7—H7A109.3C3—C4—H4A109.8
N2—C7—H7A109.3N2—C4—H4B109.8
C8—C7—H7B109.3C3—C4—H4B109.8
N2—C7—H7B109.3H4A—C4—H4B108.2
H7A—C7—H7B108.0
C5—N1—C3—C454.9 (3)C3—N1—C5—C665.2 (3)
C1—N1—C3—C465.5 (3)C1—N1—C5—C656.1 (3)
C4—N2—C7—C872.5 (2)C7—N2—C6—C5174.9 (2)
C6—N2—C7—C8167.9 (2)C4—N2—C6—C554.3 (3)
C2—N2—C7—C849.7 (3)C2—N2—C6—C564.6 (3)
C5—N1—C1—C266.0 (2)N1—C5—C6—N28.3 (3)
C3—N1—C1—C255.2 (3)C7—N2—C4—C3176.7 (2)
N1—C1—C2—N28.3 (3)C6—N2—C4—C364.4 (3)
C7—N2—C2—C1173.2 (2)C2—N2—C4—C353.5 (3)
C4—N2—C2—C163.9 (3)N1—C3—C4—N28.8 (3)
C6—N2—C2—C154.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2i0.932.563.217 (2)128
N1—H1C···Cl3ii0.932.563.270 (2)133
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z1.

Experimental details

Crystal data
Chemical formula(C8H15N3)[MnCl4]
Mr349.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.373 (3), 13.713 (6), 12.188 (5)
β (°) 93.657 (8)
V3)1396.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.713, 0.721
No. of measured, independent and
observed [I > 2σ(I)] reflections
14901, 3181, 2788
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.103, 1.11
No. of reflections3181
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.52

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl2i0.932.563.217 (2)127.7
N1—H1C···Cl3ii0.932.563.270 (2)132.9
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y, z1.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationAl-Far, R. H., Ali, B. F. & Haddad, S. F. (2008). Acta Cryst. E64, m689–m690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBasaviah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891.  Web of Science PubMed Google Scholar
First citationCai, Y. (2010). Acta Cryst. E66, m830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L.-Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y. & Xiong, R.-G. (2009). Coord. Chem. Rev. 253, 2980–2997.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds