organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Methyl­phen­yl)-2H-indazole

aKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, People's Republic of China
*Correspondence e-mail: xingqin118@126.com

(Received 23 September 2010; accepted 29 September 2010; online 9 October 2010)

The title compound, C14H12N2, was synthesized by the reaction of 4-methyl-N-(2-nitro­benz­yl)aniline with tin(II) chloride dihydrate in ethanol at 313 K. The indazole ring system is almost planar with a dihedral angle of 1.58 (10)° between the rings, whereas the plane of the attached p-tolyl substituent shows a dihedral angle of 46.26 (5)° with respect to the indazole core.

Related literature

For the pharmaceutical properties of indazole derivatives, see: Bistochi et al. (1981[Bistochi, G. A., De Meo, G., Pedini, M., Ricci, A., Brouilhet, H., Bucherie, S., Rabaud, M. & Jacquignon, P. (1981). Farm. Ed. Sci. 36, 315-333.]); Cerecetto et al. (2005[Cerecetto, H., Gerpe, A., Gonzalez, M., Aran, V. J. & de Ocarizi, C. O. (2005). Mini Rev. Med. Chem. 5, 869-878.]); Corsi et al. (1976[Corsi, G., Palazzo, G., Germani, C., Barcellona, P. S. & Silvestrini, B. (1976). J. Med. Chem. 19, 778-783.]); Keppler & Hartmann (1994[Keppler, B. K. & Hartmann, M. (1994). Met. Based Drugs, 1, 145-149.]); Picciola et al. (1981[Picciola, G., Ravenna, F., Carenimi, G., Gentili, P. & Riva, M. (1981). Farm. Ed. Sci. 36, 1037-1056.]); Rodgers et al. (1996[Rodgers, J. D., Johnson, B. L., Wang, H., Greenberg, R. A., Erickson, V. S., Klabe, R. M., Cordova, B. C., Rayner, M. M., Lam, G. N. & Chang, C. H. (1996). Bioorg. Med. Chem. Lett. 6, 2919-2924.]); Sun et al. (1997[Sun, J. H., Teleha, C. A., Yan, J. S., Rodgers, J. D. & Nugiel, D. A. (1997). J. Org. Chem. 62, 5627-5629.]); Ykeda et al. (1979[Ykeda, Y., Takano, N., Matsushita, H., Shiraki, Y., Koide, T., Nagashima, R., Fujimura, Y., Shindo, M., Suzuki, S. & Iwasaki, T. (1979). Arzneim. Forsch. 29, 511-520.]). For synthetic procedures for indazoles, see: Stadlbauer (2002[Stadlbauer, W. (2002). Science of Synthesis, Vol. 12. Stuttgart: Thieme.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2

  • Mr = 208.26

  • Monoclinic, P 21 /n

  • a = 12.539 (4) Å

  • b = 6.029 (2) Å

  • c = 14.401 (5) Å

  • β = 93.636 (5)°

  • V = 1086.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.48 × 0.34 × 0.31 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.980

  • 5372 measured reflections

  • 1915 independent reflections

  • 1236 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.140

  • S = 1.03

  • 1911 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indazole is well known as an aza analogue of indole, and a number of indazole derivatives have powerful pharmacological activities including anti-inflammatory (Bistochi et al., 1981; Picciola et al., 1981), antitumor (Keppler & Hartmann, 1994), anti-HIV (Sun et al., 1997; Rodgers et al., 1996), antidepressant (Ykeda et al., 1979), contraceptive activities (Corsi et al., 1976) as well as anti-aggregatory, and vasorelaxant activity by NO release (Cerecetto et al., 2005). Different approaches to the synthesis of 2-substituted indazoles have been reported (Stadlbauer, 2002). However, many of these still suffer from drawbacks as unsatisfactory yields, long reaction time and high temperature. Therefore, the development of more efficient methods for preparation of this kind of compounds is still an active research area.

We report here the crystal structure of the title compound, (I), which was synthesized by the reaction of 4-methyl-N-(2-nitrobenzyl)aniline with tin (II) chloride dihydrate using ethanol as solvent at 313 K.

In (I), the pyrazole ring (C1/C2/C7/N1/N2) is a new formed ring. The dihedral angle between the C1/C2/C7/N1/N2 plane and the C2/C3/C4/C5/C6/C7 plane is 1.58 (10)°, so the indazole ring shows an almost perfectly planar conformation. The dihedral angle between the C2/C3/C4/C5/C6/C7 plane and the C8/C9/C10/C11/C12/C13 of the p-tolyl substituent plane is 46.26 (5)°.

Related literature top

For the pharmaceutical properties of indazole derivatives, see: Bistochi et al. (1981); Cerecetto et al. (2005); Corsi et al. (1976); Keppler & Hartmann (1994); Picciola et al. (1981); Rodgers et al. (1996); Sun et al. (1997); Ykeda et al. (1979). For synthetic procedures for indazoles, see: Stadlbauer (2002).

Experimental top

The title compound, (I), was prepared by the reaction of 4-methyl-N-(2-nitrobenzyl)aniline (3 mmol) and tin (II) chloride dihydrate (6 mmol) in ethanol (20 ml) at 313 K (yield: 40%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanolic solution. 1H NMR (DMSO-d6, δ): 2.39 (3H, s, CH3), 7.09–7.12 (1H, m, ArH), 7.29–7.33 (1H, m, ArH), 7.40 (2H, d, J = 8.4 Hz, ArH), 7.71 (1H, d, J = 8.8 Hz, ArH), 7.77 (1H, d, J = 8.8 Hz, ArH), 7.98 (2H, d, J = 8.4 Hz, ArH), 9.06 (1H, s, CH). 13C NMR (DMSO-d6, δ): 20.69, 117.56, 120.27, 121.01, 121.45, 122.13, 122.58, 126.77, 130.23, 137.53, 137.91, 148.98.

Refinement top

The C-bound H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2–1.5(methyl) Ueq(C).

Structure description top

Indazole is well known as an aza analogue of indole, and a number of indazole derivatives have powerful pharmacological activities including anti-inflammatory (Bistochi et al., 1981; Picciola et al., 1981), antitumor (Keppler & Hartmann, 1994), anti-HIV (Sun et al., 1997; Rodgers et al., 1996), antidepressant (Ykeda et al., 1979), contraceptive activities (Corsi et al., 1976) as well as anti-aggregatory, and vasorelaxant activity by NO release (Cerecetto et al., 2005). Different approaches to the synthesis of 2-substituted indazoles have been reported (Stadlbauer, 2002). However, many of these still suffer from drawbacks as unsatisfactory yields, long reaction time and high temperature. Therefore, the development of more efficient methods for preparation of this kind of compounds is still an active research area.

We report here the crystal structure of the title compound, (I), which was synthesized by the reaction of 4-methyl-N-(2-nitrobenzyl)aniline with tin (II) chloride dihydrate using ethanol as solvent at 313 K.

In (I), the pyrazole ring (C1/C2/C7/N1/N2) is a new formed ring. The dihedral angle between the C1/C2/C7/N1/N2 plane and the C2/C3/C4/C5/C6/C7 plane is 1.58 (10)°, so the indazole ring shows an almost perfectly planar conformation. The dihedral angle between the C2/C3/C4/C5/C6/C7 plane and the C8/C9/C10/C11/C12/C13 of the p-tolyl substituent plane is 46.26 (5)°.

For the pharmaceutical properties of indazole derivatives, see: Bistochi et al. (1981); Cerecetto et al. (2005); Corsi et al. (1976); Keppler & Hartmann (1994); Picciola et al. (1981); Rodgers et al. (1996); Sun et al. (1997); Ykeda et al. (1979). For synthetic procedures for indazoles, see: Stadlbauer (2002).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I).
2-(4-Methylphenyl)-2H-indazole top
Crystal data top
C14H12N2F(000) = 440
Mr = 208.26Dx = 1.273 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1425 reflections
a = 12.539 (4) Åθ = 2.8–24.4°
b = 6.029 (2) ŵ = 0.08 mm1
c = 14.401 (5) ÅT = 298 K
β = 93.636 (5)°Prism, colorless
V = 1086.4 (6) Å30.48 × 0.34 × 0.31 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1915 independent reflections
Radiation source: fine-focus sealed tube1236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.969, Tmax = 0.980k = 77
5372 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.1862P]
where P = (Fo2 + 2Fc2)/3
1911 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H12N2V = 1086.4 (6) Å3
Mr = 208.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.539 (4) ŵ = 0.08 mm1
b = 6.029 (2) ÅT = 298 K
c = 14.401 (5) Å0.48 × 0.34 × 0.31 mm
β = 93.636 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1915 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1236 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.980Rint = 0.039
5372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
1911 reflectionsΔρmin = 0.26 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57580 (13)0.0040 (3)0.35143 (12)0.0442 (5)
N20.55544 (13)0.2100 (3)0.38504 (11)0.0420 (5)
C10.64349 (16)0.3229 (4)0.41472 (14)0.0457 (6)
H10.64580.46480.44010.055*
C20.72979 (16)0.1879 (4)0.40029 (13)0.0433 (5)
C30.84218 (17)0.2057 (4)0.41335 (16)0.0566 (7)
H30.87380.33270.43930.068*
C40.90270 (19)0.0330 (5)0.38714 (17)0.0631 (7)
H40.97670.04210.39580.076*
C50.85600 (18)0.1603 (4)0.34703 (16)0.0573 (7)
H50.90020.27480.32950.069*
C60.74854 (17)0.1839 (4)0.33324 (15)0.0490 (6)
H60.71880.31220.30670.059*
C70.68372 (16)0.0084 (3)0.36036 (13)0.0409 (5)
C80.44707 (16)0.2872 (3)0.38157 (13)0.0417 (5)
C90.36778 (16)0.1513 (4)0.41005 (14)0.0473 (6)
H90.38460.01120.43380.057*
C100.26299 (17)0.2226 (4)0.40340 (15)0.0516 (6)
H100.20970.12970.42310.062*
C110.23572 (17)0.4304 (4)0.36780 (15)0.0486 (6)
C120.31752 (18)0.5648 (4)0.34099 (16)0.0538 (6)
H120.30120.70540.31770.065*
C130.42283 (18)0.4963 (4)0.34777 (15)0.0508 (6)
H130.47670.59010.32980.061*
C140.12148 (18)0.5069 (5)0.35741 (19)0.0705 (8)
H14A0.07570.39250.37880.106*
H14B0.10250.53820.29310.106*
H14C0.11330.63860.39370.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0509 (12)0.0386 (11)0.0432 (10)0.0059 (8)0.0047 (8)0.0025 (8)
N20.0471 (10)0.0377 (10)0.0415 (10)0.0048 (8)0.0052 (8)0.0015 (8)
C10.0542 (13)0.0396 (12)0.0435 (12)0.0105 (11)0.0031 (10)0.0045 (10)
C20.0475 (13)0.0466 (13)0.0358 (11)0.0073 (10)0.0036 (9)0.0012 (10)
C30.0516 (14)0.0626 (16)0.0550 (15)0.0127 (12)0.0006 (11)0.0055 (12)
C40.0455 (14)0.0786 (19)0.0649 (16)0.0015 (13)0.0008 (11)0.0010 (14)
C50.0574 (16)0.0582 (16)0.0569 (15)0.0101 (12)0.0085 (11)0.0021 (12)
C60.0571 (14)0.0443 (13)0.0462 (13)0.0015 (11)0.0089 (10)0.0016 (10)
C70.0474 (13)0.0419 (13)0.0338 (11)0.0041 (10)0.0061 (9)0.0037 (9)
C80.0481 (12)0.0409 (13)0.0360 (11)0.0024 (10)0.0034 (9)0.0015 (9)
C90.0538 (14)0.0410 (13)0.0471 (13)0.0047 (11)0.0024 (10)0.0072 (10)
C100.0494 (14)0.0526 (15)0.0530 (14)0.0080 (11)0.0044 (10)0.0026 (11)
C110.0513 (13)0.0533 (15)0.0408 (12)0.0021 (11)0.0006 (10)0.0063 (11)
C120.0639 (16)0.0453 (14)0.0516 (14)0.0050 (12)0.0002 (11)0.0034 (11)
C130.0569 (15)0.0437 (14)0.0523 (14)0.0078 (11)0.0064 (10)0.0051 (11)
C140.0573 (16)0.082 (2)0.0707 (17)0.0118 (14)0.0054 (12)0.0070 (15)
Geometric parameters (Å, º) top
N1—C71.353 (2)C6—H60.9300
N1—N21.362 (2)C8—C91.371 (3)
N2—C11.344 (2)C8—C131.378 (3)
N2—C81.434 (3)C9—C101.380 (3)
C1—C21.380 (3)C9—H90.9300
C1—H10.9300C10—C111.388 (3)
C2—C31.414 (3)C10—H100.9300
C2—C71.422 (3)C11—C121.381 (3)
C3—C41.356 (3)C11—C141.503 (3)
C3—H30.9300C12—C131.381 (3)
C4—C51.411 (3)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.357 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—C71.405 (3)C14—H14C0.9600
C7—N1—N2103.03 (16)C9—C8—C13120.3 (2)
C1—N2—N1113.95 (17)C9—C8—N2119.91 (19)
C1—N2—C8127.16 (19)C13—C8—N2119.78 (19)
N1—N2—C8118.82 (16)C8—C9—C10119.9 (2)
N2—C1—C2106.85 (19)C8—C9—H9120.1
N2—C1—H1126.6C10—C9—H9120.1
C2—C1—H1126.6C9—C10—C11121.2 (2)
C1—C2—C3136.0 (2)C9—C10—H10119.4
C1—C2—C7104.43 (17)C11—C10—H10119.4
C3—C2—C7119.5 (2)C12—C11—C10117.6 (2)
C4—C3—C2118.4 (2)C12—C11—C14120.8 (2)
C4—C3—H3120.8C10—C11—C14121.6 (2)
C2—C3—H3120.8C11—C12—C13121.9 (2)
C3—C4—C5121.5 (2)C11—C12—H12119.0
C3—C4—H4119.2C13—C12—H12119.0
C5—C4—H4119.2C8—C13—C12119.1 (2)
C6—C5—C4121.9 (2)C8—C13—H13120.4
C6—C5—H5119.0C12—C13—H13120.4
C4—C5—H5119.0C11—C14—H14A109.5
C5—C6—C7117.8 (2)C11—C14—H14B109.5
C5—C6—H6121.1H14A—C14—H14B109.5
C7—C6—H6121.1C11—C14—H14C109.5
N1—C7—C6127.45 (19)H14A—C14—H14C109.5
N1—C7—C2111.74 (18)H14B—C14—H14C109.5
C6—C7—C2120.80 (19)

Experimental details

Crystal data
Chemical formulaC14H12N2
Mr208.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.539 (4), 6.029 (2), 14.401 (5)
β (°) 93.636 (5)
V3)1086.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.34 × 0.31
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5372, 1915, 1236
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.03
No. of reflections1911
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30770602) and the Natural Science Foundation of Jiangsu Province, China (BK2010157).

References

First citationBistochi, G. A., De Meo, G., Pedini, M., Ricci, A., Brouilhet, H., Bucherie, S., Rabaud, M. & Jacquignon, P. (1981). Farm. Ed. Sci. 36, 315–333.  Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerecetto, H., Gerpe, A., Gonzalez, M., Aran, V. J. & de Ocarizi, C. O. (2005). Mini Rev. Med. Chem. 5, 869–878.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCorsi, G., Palazzo, G., Germani, C., Barcellona, P. S. & Silvestrini, B. (1976). J. Med. Chem. 19, 778–783.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKeppler, B. K. & Hartmann, M. (1994). Met. Based Drugs, 1, 145–149.  CrossRef PubMed CAS Google Scholar
First citationPicciola, G., Ravenna, F., Carenimi, G., Gentili, P. & Riva, M. (1981). Farm. Ed. Sci. 36, 1037–1056.  CAS Google Scholar
First citationRodgers, J. D., Johnson, B. L., Wang, H., Greenberg, R. A., Erickson, V. S., Klabe, R. M., Cordova, B. C., Rayner, M. M., Lam, G. N. & Chang, C. H. (1996). Bioorg. Med. Chem. Lett. 6, 2919–2924.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadlbauer, W. (2002). Science of Synthesis, Vol. 12. Stuttgart: Thieme.  Google Scholar
First citationSun, J. H., Teleha, C. A., Yan, J. S., Rodgers, J. D. & Nugiel, D. A. (1997). J. Org. Chem. 62, 5627–5629.  CrossRef CAS Web of Science Google Scholar
First citationYkeda, Y., Takano, N., Matsushita, H., Shiraki, Y., Koide, T., Nagashima, R., Fujimura, Y., Shindo, M., Suzuki, S. & Iwasaki, T. (1979). Arzneim. Forsch. 29, 511–520.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds