metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{4,4′,6,6′-tetra­fluoro-2,2′-[(piperazine-1,4-di­yl)di­methyl­ene]diphenolato}copper(II)

aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp

(Received 30 September 2010; accepted 7 October 2010; online 13 October 2010)

In the title compound, [Cu(C18H16F4N2O2)(H2O)], the CuII atom shows a distorted square-pyramidal coordination geometry with the N,N′,O,O′-tetra­dentate piperazine–diphenolate ligand forming the basal plane. The apical site is occupied by the O atom of a coordinated water mol­ecule. Neighbouring complexes are associated through inter­molecular O—H⋯O and O—H⋯F hydrogen bonds between the water mol­ecule and a phenolate O atom or an F atom from an adjacent ligand, respectively, forming a centrosymmetric dimer. Dimers are linked by additional inter­molecular C—H⋯O and C—H⋯F hydrogen bonds, giving infinite chains propagating along the a axis.

Related literature

For related stuctures, see: Kubono et al. (2003[Kubono, K., Hirayama, N., Kokusen, H. & Yokoi, K. (2003). Anal. Sci. 19, 645-646.], 2009[Kubono, K., Noshita, C., Tani, K. & Yokoi, K. (2009). Acta Cryst. E65, m1685-m1686.]); Loukiala et al. (1997[Loukiala, S., Ratilainen, J., Valkonen, J. & Rissanen, K. (1997). Acta Chem. Scand. 51, 1162-1168.]); Mukhopadhyay et al. (2004[Mukhopadhyay, S., Mandal, D., Chatterjee, P. B., Desplanches, C., Sutter, J.-P., Butcher, R. J. & Chaudhury, M. (2004). Inorg. Chem. 43, 8501-8509.]); Weinberger et al. (2000[Weinberger, P., Costisor, O., Tudose, R., Baumgartner, O. & Linert, W. (2000). J. Mol. Struct. 519, 21-31.]). For the supra­molecular chemistry of complexes with piperazine-based ligands, see: Tsai et al. (2008[Tsai, H.-A., Hu, M.-S., Teng, M.-Y., Suen, M.-C. & Wang, J.-C. (2008). Polyhedron, 27, 2035-2042.]); Zhao et al. (2004[Zhao, X.-J., Du, M., Wang, Y. & Bu, X.-H. (2004). J. Mol. Struct. 692, 155-161.]). For graph-set analysis in the crystal structures of organometallic compounds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H16F4N2O2)(H2O)]

  • Mr = 449.89

  • Triclinic, [P \overline 1]

  • a = 8.0157 (17) Å

  • b = 9.6873 (10) Å

  • c = 11.7693 (12) Å

  • α = 83.743 (9)°

  • β = 87.763 (12)°

  • γ = 74.420 (11)°

  • V = 875.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.737, Tmax = 0.877

  • 4895 measured reflections

  • 4015 independent reflections

  • 3120 reflections with I > 2σ(I)

  • Rint = 0.051

  • 3 standard reflections every 150 reflections intensity decay: 1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 4015 reflections

  • 262 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H17⋯O2i 0.77 (5) 2.14 (5) 2.852 (4) 154 (5)
O3—H18⋯F1i 0.76 (6) 2.41 (6) 3.122 (3) 156 (6)
C7—H3⋯O2ii 0.97 2.49 3.376 (3) 152 (1)
C11—H12⋯O1ii 0.97 2.50 3.226 (3) 132 (1)
C8—H6⋯F4iii 0.97 2.54 3.356 (4) 143 (1)
C12—H13⋯F1i 0.97 2.32 3.117 (4) 140 (1)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) x, y+1, z.

Data collection: WinAFC (Rigaku/MSC, 2006[Rigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Piperazine adopts chair and boat conformations by complexing various metal ions, showing several coordination modes and geometries (Kubono et al., 2003; Loukiala et al. 1997; Mukhopadhyay et al. 2004; Weinberger et al. 2000). Therefore, metal complexes with piperazine based ligands have been of great interest in coordination and supramolecular chemistry (Tsai et al., 2008; Zhao et al., 2004). Recently, we have reported the crystal structure of a CuII complex with tetrachloro-2,2'-(piperazine-1,4-diyldimethylene)diphenolate, Cu2(Cl2bpi)2, (Kubono et al., 2009), which is a centrosymmetric dinuclear complex. As a continuation of this work on the structural characterization of piperazine-diphenolato compounds, the title mononuclear Cu(II) complex with difluorophenol derivative of the Cl2bpi ligand is reported here (Fig. 1).

The Cu(II) atom shows a distorted square-pyramidal coordination geometry with the basal plane comprised of two phenolate O and two tertiary alkyl N atoms from a piperazine-diphenolato ligand. The apical site is occupied by the O atom of a water molecule. The orientaion of two benzene rings in the title complex is anti-parallel, different from that in the dichlorophenol derivative, Cu2(Cl2bpi)2 (Kubono et al., 2009). The difference is reflected in the torsion angles C10—N2—C12—C13 [-69.9 (3) ° in the title complex and -171.8 (4) ° in Cu2(Cl2bpi)2]. Bond lengths and angles involving copper are comparable to those observed in related complexes (Kubono et al., 2009; Loukiala et al. 1997; Mukhopadhyay et al. 2004; Weinberger et al. 2000).

Neighbouring mononuclear complexs are associated through O—H···O and O—H···F intermolecular hydrogen bonds between the H atoms in the water ligand and a phenolate O atom or a F atom from an adjacent ligand generated by inversion operation, forming a centrosymmetric dimer (Fig. 2). The dimeric structure of the title complex is different from those of Cu2(Cl2bpi)2 and the dimethylphenolato derivative (Mukhopadhyay et al., 2004), which are µ-type complexes bridged by a phenolate O atom from an adjacent ligand. The Cu1···Cu1i distance within the dimer of the title compound is 5.5646 (6) Å [symmetry code: (i) -x, -y, -z + 1.]. The dimeric structure of the complex is additionally stabilized by intermolecular C12—H13···F1i hydrogen bonds (Table 1).

In the crystal structure of the title complex, there are intermolecular C—H···O hydrogen bonds (Table 1), connecting the dimers. C7—H3···O2ii [symmetry code: (ii) -x + 1, -y, -z + 1.] and C12—H13···F1i hydrogen bonds form an infinite chain of the C(11) type (Bernstein et al., 1995) propagating parallel to the a axis. Chains of dimers are crosslinked into a three-dimensional framework by C8—H6···F4iii hydrogen bonds [symmetry code: (iii) x, y + 1, z.] (Fig. 3).

Related literature top

For related stuctures, see: Kubono et al. (2003, 2009); Loukiala et al. (1997); Mukhopadhyay et al. (2004); Weinberger et al. (2000). For the supramolecular chemistry of complexes with piperazine-based ligands, see: Tsai et al. (2008); Zhao et al. (2004). For graph-set analysis in the crystal structures of organometallic compounds, see: Bernstein et al. (1995).

Experimental top

The ligand, H2F2bpi, was prepared by heating 2,4-difluorophenol (190 mmol), piperazine (95 mmol) and paraformaldehyde (190 mmol) under reflux in methanol for 6 h. The mixture was cooled to room temperature, then the solvent was evaporated under vacuum. The product was recrystallized from chloroform-methanol to give colorless ligand crystals (yield 36%). H2F2bpi (0.1 mmol) was dissolved in 60 ml hot methanol. Then 1 ml of a aqueous solution of copper acetate monohydrate (0.15 mmol) was added to this solution. The mixture was stirred for 30 min at 340 K. After a few weeks at room temperature, green crystals of (I) were obtained (yield 30%). Analysis calculated for C18H18CuF4N2O3: C 48.05, H 4.03, N 6.23%; found: C 47.92, H 4.08, N 6.18%.

Refinement top

All H atoms bound to carbon were placed at idealized positions and refined using a riding model, with C—H = 0.93–0.97Å and Uiso(H) = 1.2 Ueq(C). H atoms bound to the water O atom were found in a difference Fourier map, and then refined isotropically.

Structure description top

Piperazine adopts chair and boat conformations by complexing various metal ions, showing several coordination modes and geometries (Kubono et al., 2003; Loukiala et al. 1997; Mukhopadhyay et al. 2004; Weinberger et al. 2000). Therefore, metal complexes with piperazine based ligands have been of great interest in coordination and supramolecular chemistry (Tsai et al., 2008; Zhao et al., 2004). Recently, we have reported the crystal structure of a CuII complex with tetrachloro-2,2'-(piperazine-1,4-diyldimethylene)diphenolate, Cu2(Cl2bpi)2, (Kubono et al., 2009), which is a centrosymmetric dinuclear complex. As a continuation of this work on the structural characterization of piperazine-diphenolato compounds, the title mononuclear Cu(II) complex with difluorophenol derivative of the Cl2bpi ligand is reported here (Fig. 1).

The Cu(II) atom shows a distorted square-pyramidal coordination geometry with the basal plane comprised of two phenolate O and two tertiary alkyl N atoms from a piperazine-diphenolato ligand. The apical site is occupied by the O atom of a water molecule. The orientaion of two benzene rings in the title complex is anti-parallel, different from that in the dichlorophenol derivative, Cu2(Cl2bpi)2 (Kubono et al., 2009). The difference is reflected in the torsion angles C10—N2—C12—C13 [-69.9 (3) ° in the title complex and -171.8 (4) ° in Cu2(Cl2bpi)2]. Bond lengths and angles involving copper are comparable to those observed in related complexes (Kubono et al., 2009; Loukiala et al. 1997; Mukhopadhyay et al. 2004; Weinberger et al. 2000).

Neighbouring mononuclear complexs are associated through O—H···O and O—H···F intermolecular hydrogen bonds between the H atoms in the water ligand and a phenolate O atom or a F atom from an adjacent ligand generated by inversion operation, forming a centrosymmetric dimer (Fig. 2). The dimeric structure of the title complex is different from those of Cu2(Cl2bpi)2 and the dimethylphenolato derivative (Mukhopadhyay et al., 2004), which are µ-type complexes bridged by a phenolate O atom from an adjacent ligand. The Cu1···Cu1i distance within the dimer of the title compound is 5.5646 (6) Å [symmetry code: (i) -x, -y, -z + 1.]. The dimeric structure of the complex is additionally stabilized by intermolecular C12—H13···F1i hydrogen bonds (Table 1).

In the crystal structure of the title complex, there are intermolecular C—H···O hydrogen bonds (Table 1), connecting the dimers. C7—H3···O2ii [symmetry code: (ii) -x + 1, -y, -z + 1.] and C12—H13···F1i hydrogen bonds form an infinite chain of the C(11) type (Bernstein et al., 1995) propagating parallel to the a axis. Chains of dimers are crosslinked into a three-dimensional framework by C8—H6···F4iii hydrogen bonds [symmetry code: (iii) x, y + 1, z.] (Fig. 3).

For related stuctures, see: Kubono et al. (2003, 2009); Loukiala et al. (1997); Mukhopadhyay et al. (2004); Weinberger et al. (2000). For the supramolecular chemistry of complexes with piperazine-based ligands, see: Tsai et al. (2008); Zhao et al. (2004). For graph-set analysis in the crystal structures of organometallic compounds, see: Bernstein et al. (1995).

Computing details top

Data collection: WinAFC (Rigaku/MSC, 2006); cell refinement: WinAFC (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The molecule of the title complex showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. Dimeric structure of the title complex, with the hydrogen atoms bound to carbon being omitted for clarity. The O—H···O and O—H···F hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title complex, viewed down the a axis. The C—H···F hydrogen bonds are shown as dashed lines.
Aqua{4,4',6,6'-tetrafluoro-2,2'-[(piperazine-1,4- diyl)dimethylene]diphenolato}copper(II) top
Crystal data top
[Cu(C18H16F4N2O2)(H2O)]Z = 2
Mr = 449.89F(000) = 458.00
Triclinic, P1Dx = 1.708 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.0157 (17) ÅCell parameters from 25 reflections
b = 9.6873 (10) Åθ = 15.2–16.8°
c = 11.7693 (12) ŵ = 1.31 mm1
α = 83.743 (9)°T = 296 K
β = 87.763 (12)°Prismatic, blue
γ = 74.420 (11)°0.30 × 0.20 × 0.10 mm
V = 875.0 (2) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.051
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 105
Tmin = 0.737, Tmax = 0.877k = 1212
4895 measured reflectionsl = 1515
4015 independent reflections3 standard reflections every 150 reflections
3120 reflections with F2 > 2σ(F2) intensity decay: 1.1%
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0368P)2 + 1.0373P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.54 e Å3
4015 reflectionsΔρmin = 0.61 e Å3
262 parameters
Crystal data top
[Cu(C18H16F4N2O2)(H2O)]γ = 74.420 (11)°
Mr = 449.89V = 875.0 (2) Å3
Triclinic, P1Z = 2
a = 8.0157 (17) ÅMo Kα radiation
b = 9.6873 (10) ŵ = 1.31 mm1
c = 11.7693 (12) ÅT = 296 K
α = 83.743 (9)°0.30 × 0.20 × 0.10 mm
β = 87.763 (12)°
Data collection top
Rigaku AFC-7R
diffractometer
3120 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.051
Tmin = 0.737, Tmax = 0.8773 standard reflections every 150 reflections
4895 measured reflections intensity decay: 1.1%
4015 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039262 parameters
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
4015 reflectionsΔρmin = 0.61 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26597 (5)0.08830 (4)0.58962 (3)0.03020 (12)
F10.1709 (2)0.0061 (2)0.24903 (17)0.0463 (4)
F20.1403 (3)0.4645 (2)0.0841 (2)0.0726 (7)
F30.3363 (3)0.3057 (2)1.10318 (18)0.0675 (7)
F40.3025 (3)0.3709 (2)0.71553 (17)0.0510 (5)
O10.3198 (3)0.0354 (2)0.43752 (17)0.0367 (4)
O20.2095 (3)0.0851 (2)0.65512 (17)0.0352 (4)
O30.0692 (4)0.1793 (3)0.5321 (2)0.0542 (7)
N10.3452 (3)0.2713 (2)0.5630 (2)0.0296 (5)
N20.2158 (3)0.1861 (2)0.7367 (2)0.0302 (5)
C10.2816 (3)0.1421 (3)0.3534 (2)0.0311 (6)
C20.2011 (4)0.1248 (3)0.2551 (2)0.0352 (6)
C30.1514 (4)0.2286 (4)0.1652 (2)0.0439 (7)
C40.1890 (4)0.3584 (4)0.1722 (2)0.0456 (8)
C50.2728 (4)0.3836 (3)0.2633 (2)0.0398 (7)
C60.3215 (4)0.2762 (3)0.3542 (2)0.0335 (6)
C70.4255 (4)0.2979 (3)0.4507 (2)0.0337 (6)
C80.1833 (4)0.3809 (3)0.5837 (2)0.0368 (6)
C90.1110 (4)0.3332 (3)0.6997 (2)0.0374 (6)
C100.3909 (4)0.1940 (3)0.7660 (2)0.0385 (7)
C110.4658 (4)0.2616 (3)0.6585 (2)0.0347 (6)
C120.1324 (4)0.1160 (3)0.8309 (2)0.0369 (6)
C130.2144 (4)0.0436 (3)0.8547 (2)0.0344 (6)
C140.2497 (4)0.1032 (3)0.9671 (2)0.0423 (7)
C150.3025 (5)0.2496 (4)0.9919 (2)0.0450 (8)
C160.3221 (4)0.3418 (3)0.9091 (3)0.0429 (7)
C170.2888 (4)0.2811 (3)0.7984 (2)0.0358 (6)
C180.2376 (4)0.1328 (3)0.7648 (2)0.0318 (6)
H10.09500.21240.10240.053*
H20.29740.47180.26490.048*
H30.54090.23320.44820.040*
H40.43640.39580.44130.040*
H50.10100.38810.52370.044*
H60.20570.47420.58530.044*
H70.11810.39830.75530.045*
H80.00940.33410.69250.045*
H90.46410.09840.78890.046*
H100.38380.25270.82860.046*
H110.47530.35680.67040.042*
H120.58020.20230.64100.042*
H130.01130.13120.81280.044*
H140.13700.16170.89970.044*
H150.23740.04341.02530.051*
H160.35640.44120.92700.052*
H170.108 (6)0.180 (5)0.473 (4)0.064 (14)*
H180.093 (8)0.120 (6)0.572 (5)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0424 (2)0.02358 (18)0.02562 (18)0.00841 (14)0.00367 (14)0.00654 (12)
F10.0546 (12)0.0506 (11)0.0397 (10)0.0196 (9)0.0076 (8)0.0136 (8)
F20.0874 (18)0.0779 (16)0.0472 (13)0.0242 (14)0.0234 (12)0.0307 (11)
F30.0991 (19)0.0711 (15)0.0371 (11)0.0354 (14)0.0242 (12)0.0138 (10)
F40.0811 (15)0.0334 (9)0.0425 (10)0.0203 (10)0.0101 (10)0.0120 (8)
O10.0559 (14)0.0271 (10)0.0261 (10)0.0075 (9)0.0072 (9)0.0048 (7)
O20.0538 (13)0.0314 (10)0.0254 (9)0.0181 (9)0.0004 (9)0.0077 (8)
O30.0628 (18)0.0647 (18)0.0454 (15)0.0315 (15)0.0090 (13)0.0105 (14)
N10.0328 (12)0.0258 (11)0.0303 (12)0.0057 (9)0.0062 (10)0.0062 (9)
N20.0333 (12)0.0278 (11)0.0303 (12)0.0066 (10)0.0027 (9)0.0097 (9)
C10.0314 (15)0.0322 (14)0.0277 (13)0.0045 (11)0.0009 (11)0.0051 (11)
C20.0330 (15)0.0418 (16)0.0318 (14)0.0096 (13)0.0002 (12)0.0090 (12)
C30.0389 (17)0.062 (2)0.0282 (15)0.0089 (15)0.0055 (13)0.0022 (14)
C40.0456 (19)0.054 (2)0.0313 (16)0.0077 (16)0.0032 (14)0.0097 (14)
C50.0410 (17)0.0366 (16)0.0398 (17)0.0095 (13)0.0000 (13)0.0027 (13)
C60.0343 (15)0.0336 (14)0.0312 (14)0.0069 (12)0.0003 (12)0.0027 (11)
C70.0381 (16)0.0301 (14)0.0351 (15)0.0122 (12)0.0017 (12)0.0044 (11)
C80.0363 (16)0.0256 (13)0.0457 (17)0.0011 (12)0.0074 (13)0.0077 (12)
C90.0366 (16)0.0295 (14)0.0437 (17)0.0018 (12)0.0030 (13)0.0106 (12)
C100.0375 (16)0.0448 (17)0.0349 (15)0.0111 (14)0.0095 (12)0.0070 (13)
C110.0340 (15)0.0336 (14)0.0382 (15)0.0090 (12)0.0086 (12)0.0081 (12)
C120.0452 (18)0.0361 (15)0.0311 (15)0.0103 (13)0.0027 (13)0.0139 (12)
C130.0400 (16)0.0378 (15)0.0289 (14)0.0151 (13)0.0007 (12)0.0062 (12)
C140.054 (2)0.0484 (19)0.0301 (15)0.0218 (16)0.0024 (14)0.0067 (13)
C150.054 (2)0.054 (2)0.0309 (16)0.0227 (17)0.0102 (14)0.0056 (14)
C160.0480 (19)0.0357 (16)0.0442 (18)0.0126 (14)0.0030 (15)0.0044 (13)
C170.0409 (17)0.0338 (15)0.0357 (15)0.0146 (13)0.0056 (13)0.0074 (12)
C180.0335 (15)0.0340 (14)0.0309 (14)0.0137 (12)0.0010 (11)0.0054 (11)
Geometric parameters (Å, º) top
Cu1—O11.917 (2)C12—C131.508 (4)
Cu1—O21.929 (2)C13—C141.392 (4)
Cu1—O32.682 (3)C13—C181.413 (4)
Cu1—N12.028 (2)C14—C151.369 (5)
Cu1—N22.038 (2)C15—C161.369 (5)
F1—C21.363 (4)C16—C171.375 (4)
F2—C41.366 (4)C17—C181.400 (4)
F3—C151.370 (3)O3—H170.77 (5)
F4—C171.359 (3)O3—H180.76 (6)
O1—C11.331 (3)C3—H10.930
O2—C181.330 (3)C5—H20.930
N1—C71.474 (3)C7—H30.970
N1—C81.470 (3)C7—H40.970
N1—C111.490 (4)C8—H50.970
N2—C91.475 (3)C8—H60.970
N2—C101.482 (4)C9—H70.970
N2—C121.470 (4)C9—H80.970
C1—C21.393 (4)C10—H90.970
C1—C61.420 (4)C10—H100.970
C2—C31.370 (4)C11—H110.970
C3—C41.381 (5)C11—H120.970
C4—C51.365 (5)C12—H130.970
C5—C61.396 (4)C12—H140.970
C6—C71.500 (4)C14—H150.930
C8—C91.535 (4)C16—H160.930
C10—C111.537 (4)
O1—Cu1—O298.05 (9)F3—C15—C16118.9 (3)
O1—Cu1—N194.92 (9)C14—C15—C16122.1 (3)
O1—Cu1—O388.73 (10)C15—C16—C17117.1 (3)
O1—Cu1—N2167.68 (9)F4—C17—C16117.9 (2)
O2—Cu1—N1165.01 (9)F4—C17—C18117.3 (2)
O2—Cu1—N294.21 (9)C16—C17—C18124.8 (3)
O2—Cu1—O385.04 (10)O2—C18—C13124.6 (2)
O3—Cu1—N1102.79 (10)O2—C18—C17120.0 (2)
O3—Cu1—N291.14 (10)C13—C18—C17115.3 (2)
N1—Cu1—N273.10 (10)H17—O3—H18108 (6)
Cu1—O1—C1116.27 (17)C2—C3—H1121.6
Cu1—O2—C18121.3 (2)C4—C3—H1121.6
Cu1—N1—C7116.32 (19)C4—C5—H2120.1
Cu1—N1—C8101.17 (19)C6—C5—H2120.1
Cu1—N1—C11104.88 (17)N1—C7—H3109.2
C7—N1—C8113.5 (2)N1—C7—H4109.2
C7—N1—C11111.7 (2)C6—C7—H3109.2
C8—N1—C11108.4 (2)C6—C7—H4109.2
Cu1—N2—C9104.26 (18)H3—C7—H4107.9
Cu1—N2—C10101.31 (17)N1—C8—H5110.3
Cu1—N2—C12117.3 (2)N1—C8—H6110.3
C9—N2—C10108.3 (2)C9—C8—H5110.3
C9—N2—C12112.0 (2)C9—C8—H6110.3
C10—N2—C12112.8 (2)H5—C8—H6108.6
O1—C1—C2120.1 (2)N2—C9—H7110.2
O1—C1—C6124.4 (2)N2—C9—H8110.2
C2—C1—C6115.5 (2)C8—C9—H7110.2
F1—C2—C1116.8 (2)C8—C9—H8110.2
F1—C2—C3118.2 (3)H7—C9—H8108.5
C1—C2—C3125.0 (3)N2—C10—H9110.3
C2—C3—C4116.9 (3)N2—C10—H10110.3
F2—C4—C3118.3 (3)C11—C10—H9110.3
F2—C4—C5119.4 (3)C11—C10—H10110.3
C3—C4—C5122.3 (3)H9—C10—H10108.5
C4—C5—C6119.7 (3)N1—C11—H11110.3
C1—C6—C5120.5 (3)N1—C11—H12110.3
C1—C6—C7119.0 (2)C10—C11—H11110.3
C5—C6—C7120.4 (3)C10—C11—H12110.3
N1—C7—C6112.0 (2)H11—C11—H12108.5
N1—C8—C9107.1 (2)N2—C12—H13108.8
N2—C9—C8107.6 (2)N2—C12—H14108.8
N2—C10—C11107.1 (2)C13—C12—H13108.8
N1—C11—C10107.2 (2)C13—C12—H14108.8
N2—C12—C13113.7 (2)H13—C12—H14107.7
C12—C13—C14119.2 (2)C13—C14—H15120.0
C12—C13—C18119.8 (2)C15—C14—H15120.0
C14—C13—C18120.6 (2)C15—C16—H16121.5
C13—C14—C15120.0 (3)C17—C16—H16121.5
F3—C15—C14119.0 (3)
O1—Cu1—O2—C18149.2 (2)C9—N2—C12—C13167.7 (2)
O2—Cu1—O1—C1147.0 (2)C12—N2—C9—C8165.5 (2)
O1—Cu1—N1—C74.8 (2)C10—N2—C12—C1369.9 (3)
O1—Cu1—N1—C8118.61 (18)C12—N2—C10—C11177.0 (2)
O1—Cu1—N1—C11128.73 (17)O1—C1—C2—F12.3 (4)
N1—Cu1—O1—C140.5 (2)O1—C1—C2—C3178.0 (2)
O1—Cu1—N2—C940.3 (5)O1—C1—C6—C5178.5 (2)
O1—Cu1—N2—C1072.0 (5)O1—C1—C6—C75.0 (4)
O1—Cu1—N2—C12164.8 (4)C2—C1—C6—C53.2 (4)
N2—Cu1—O1—C127.3 (6)C2—C1—C6—C7173.3 (2)
O2—Cu1—N1—C7145.0 (3)C6—C1—C2—F1176.1 (2)
O2—Cu1—N1—C891.5 (3)C6—C1—C2—C33.6 (4)
O2—Cu1—N1—C1121.1 (4)F1—C2—C3—C4177.8 (2)
N1—Cu1—O2—C180.4 (4)C1—C2—C3—C41.9 (4)
O2—Cu1—N2—C9134.0 (2)C2—C3—C4—F2179.6 (2)
O2—Cu1—N2—C10113.62 (17)C2—C3—C4—C50.5 (5)
O2—Cu1—N2—C129.5 (2)F2—C4—C5—C6179.3 (2)
N2—Cu1—O2—C1832.0 (2)C3—C4—C5—C60.8 (5)
N1—Cu1—N2—C954.1 (2)C4—C5—C6—C11.2 (4)
N1—Cu1—N2—C1058.25 (17)C4—C5—C6—C7175.3 (2)
N1—Cu1—N2—C12178.6 (2)C1—C6—C7—N155.8 (3)
N2—Cu1—N1—C7178.1 (2)C5—C6—C7—N1127.6 (2)
N2—Cu1—N1—C858.47 (18)N1—C8—C9—N28.7 (3)
N2—Cu1—N1—C1154.19 (16)N2—C10—C11—N18.6 (3)
Cu1—O1—C1—C2135.5 (2)N2—C12—C13—C14133.7 (3)
Cu1—O1—C1—C646.3 (3)N2—C12—C13—C1852.9 (4)
Cu1—O2—C18—C1337.3 (4)C12—C13—C14—C15171.3 (3)
Cu1—O2—C18—C17144.8 (2)C12—C13—C18—O27.7 (5)
Cu1—N1—C7—C647.3 (2)C12—C13—C18—C17170.3 (3)
Cu1—N1—C8—C951.3 (2)C14—C13—C18—O2179.0 (3)
Cu1—N1—C11—C1038.0 (2)C14—C13—C18—C173.0 (4)
C7—N1—C8—C9176.6 (2)C18—C13—C14—C152.0 (5)
C8—N1—C7—C669.4 (3)C13—C14—C15—F3179.9 (2)
C7—N1—C11—C10164.8 (2)C13—C14—C15—C160.1 (4)
C11—N1—C7—C6167.7 (2)F3—C15—C16—C17179.3 (3)
C8—N1—C11—C1069.4 (2)C14—C15—C16—C171.0 (5)
C11—N1—C8—C958.7 (3)C15—C16—C17—F4178.0 (3)
Cu1—N2—C9—C837.7 (3)C15—C16—C17—C180.3 (5)
Cu1—N2—C10—C1150.8 (2)F4—C17—C18—O22.0 (4)
Cu1—N2—C12—C1347.2 (3)F4—C17—C18—C13176.1 (2)
C9—N2—C10—C1158.5 (3)C16—C17—C18—O2179.6 (3)
C10—N2—C9—C869.6 (3)C16—C17—C18—C132.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H17···O2i0.77 (5)2.14 (5)2.852 (4)154 (5)
O3—H18···F1i0.76 (6)2.41 (6)3.122 (3)156 (6)
C7—H3···O2ii0.972.493.376 (3)152 (1)
C11—H12···O1ii0.972.503.226 (3)132 (1)
C8—H6···F4iii0.972.543.356 (4)143 (1)
C12—H13···F1i0.972.323.117 (4)140 (1)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C18H16F4N2O2)(H2O)]
Mr449.89
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0157 (17), 9.6873 (10), 11.7693 (12)
α, β, γ (°)83.743 (9), 87.763 (12), 74.420 (11)
V3)875.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC-7R
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.737, 0.877
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
4895, 4015, 3120
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections4015
No. of parameters262
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.61

Computer programs: WinAFC (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H17···O2i0.77 (5)2.14 (5)2.852 (4)154 (5)
O3—H18···F1i0.76 (6)2.41 (6)3.122 (3)156 (6)
C7—H3···O2ii0.972.493.376 (3)152.28 (18)
C11—H12···O1ii0.972.503.226 (3)132.3 (2)
C8—H6···F4iii0.972.543.356 (4)142.5 (2)
C12—H13···F1i0.972.323.117 (4)139.51 (19)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z.
 

Acknowledgements

This study was supported financially in part by Grants-in-Aid (No. 20550075) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationKubono, K., Hirayama, N., Kokusen, H. & Yokoi, K. (2003). Anal. Sci. 19, 645–646.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKubono, K., Noshita, C., Tani, K. & Yokoi, K. (2009). Acta Cryst. E65, m1685–m1686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoukiala, S., Ratilainen, J., Valkonen, J. & Rissanen, K. (1997). Acta Chem. Scand. 51, 1162–1168.  CrossRef CAS Web of Science Google Scholar
First citationMukhopadhyay, S., Mandal, D., Chatterjee, P. B., Desplanches, C., Sutter, J.-P., Butcher, R. J. & Chaudhury, M. (2004). Inorg. Chem. 43, 8501–8509.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsai, H.-A., Hu, M.-S., Teng, M.-Y., Suen, M.-C. & Wang, J.-C. (2008). Polyhedron, 27, 2035–2042.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeinberger, P., Costisor, O., Tudose, R., Baumgartner, O. & Linert, W. (2000). J. Mol. Struct. 519, 21–31.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, X.-J., Du, M., Wang, Y. & Bu, X.-H. (2004). J. Mol. Struct. 692, 155–161.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds