metal-organic compounds
Aqua{4,4′,6,6′-tetrafluoro-2,2′-[(piperazine-1,4-diyl)dimethylene]diphenolato}copper(II)
aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp
In the title compound, [Cu(C18H16F4N2O2)(H2O)], the CuII atom shows a distorted square-pyramidal coordination geometry with the N,N′,O,O′-tetradentate piperazine–diphenolate ligand forming the basal plane. The apical site is occupied by the O atom of a coordinated water molecule. Neighbouring complexes are associated through intermolecular O—H⋯O and O—H⋯F hydrogen bonds between the water molecule and a phenolate O atom or an F atom from an adjacent ligand, respectively, forming a centrosymmetric dimer. Dimers are linked by additional intermolecular C—H⋯O and C—H⋯F hydrogen bonds, giving infinite chains propagating along the a axis.
Related literature
For related stuctures, see: Kubono et al. (2003, 2009); Loukiala et al. (1997); Mukhopadhyay et al. (2004); Weinberger et al. (2000). For the supramolecular chemistry of complexes with piperazine-based ligands, see: Tsai et al. (2008); Zhao et al. (2004). For graph-set analysis in the crystal structures of organometallic compounds, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: WinAFC (Rigaku/MSC, 2006); cell WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure.
Supporting information
https://doi.org/10.1107/S1600536810040080/im2234sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810040080/im2234Isup2.hkl
The ligand, H2F2bpi, was prepared by heating 2,4-difluorophenol (190 mmol), piperazine (95 mmol) and paraformaldehyde (190 mmol) under reflux in methanol for 6 h. The mixture was cooled to room temperature, then the solvent was evaporated under vacuum. The product was recrystallized from chloroform-methanol to give colorless ligand crystals (yield 36%). H2F2bpi (0.1 mmol) was dissolved in 60 ml hot methanol. Then 1 ml of a aqueous solution of copper acetate monohydrate (0.15 mmol) was added to this solution. The mixture was stirred for 30 min at 340 K. After a few weeks at room temperature, green crystals of (I) were obtained (yield 30%). Analysis calculated for C18H18CuF4N2O3: C 48.05, H 4.03, N 6.23%; found: C 47.92, H 4.08, N 6.18%.
All H atoms bound to carbon were placed at idealized positions and refined using a riding model, with C—H = 0.93–0.97Å and Uiso(H) = 1.2 Ueq(C). H atoms bound to the water O atom were found in a difference Fourier map, and then refined isotropically.
Piperazine adopts chair and boat conformations by complexing various metal ions, showing several coordination modes and geometries (Kubono et al., 2003; Loukiala et al. 1997; Mukhopadhyay et al. 2004; Weinberger et al. 2000). Therefore, metal complexes with piperazine based ligands have been of great interest in coordination and supramolecular chemistry (Tsai et al., 2008; Zhao et al., 2004). Recently, we have reported the
of a CuII complex with tetrachloro-2,2'-(piperazine-1,4-diyldimethylene)diphenolate, Cu2(Cl2bpi)2, (Kubono et al., 2009), which is a centrosymmetric dinuclear complex. As a continuation of this work on the structural characterization of piperazine-diphenolato compounds, the title mononuclear Cu(II) complex with difluorophenol derivative of the Cl2bpi ligand is reported here (Fig. 1).The Cu(II) atom shows a distorted square-pyramidal coordination geometry with the basal plane comprised of two phenolate O and two tertiary alkyl N atoms from a piperazine-diphenolato ligand. The apical site is occupied by the O atom of a water molecule. The orientaion of two benzene rings in the title complex is anti-parallel, different from that in the dichlorophenol derivative, Cu2(Cl2bpi)2 (Kubono et al., 2009). The difference is reflected in the torsion angles C10—N2—C12—C13 [-69.9 (3) ° in the title complex and -171.8 (4) ° in Cu2(Cl2bpi)2]. Bond lengths and angles involving copper are comparable to those observed in related complexes (Kubono et al., 2009; Loukiala et al. 1997; Mukhopadhyay et al. 2004; Weinberger et al. 2000).
Neighbouring mononuclear complexs are associated through O—H···O and O—H···F intermolecular hydrogen bonds between the H atoms in the water ligand and a phenolate O atom or a F atom from an adjacent ligand generated by inversion operation, forming a centrosymmetric dimer (Fig. 2). The dimeric structure of the title complex is different from those of Cu2(Cl2bpi)2 and the dimethylphenolato derivative (Mukhopadhyay et al., 2004), which are µ-type complexes bridged by a phenolate O atom from an adjacent ligand. The Cu1···Cu1i distance within the dimer of the title compound is 5.5646 (6) Å [symmetry code: (i) -x, -y, -z + 1.]. The dimeric structure of the complex is additionally stabilized by intermolecular C12—H13···F1i hydrogen bonds (Table 1).
In the
of the title complex, there are intermolecular C—H···O hydrogen bonds (Table 1), connecting the dimers. C7—H3···O2ii [symmetry code: (ii) -x + 1, -y, -z + 1.] and C12—H13···F1i hydrogen bonds form an infinite chain of the C(11) type (Bernstein et al., 1995) propagating parallel to the a axis. Chains of dimers are crosslinked into a three-dimensional framework by C8—H6···F4iii hydrogen bonds [symmetry code: (iii) x, y + 1, z.] (Fig. 3).For related stuctures, see: Kubono et al. (2003, 2009); Loukiala et al. (1997); Mukhopadhyay et al. (2004); Weinberger et al. (2000). For the supramolecular chemistry of complexes with piperazine-based ligands, see: Tsai et al. (2008); Zhao et al. (2004). For graph-set analysis in the crystal structures of organometallic compounds, see: Bernstein et al. (1995).
Data collection: WinAFC (Rigaku/MSC, 2006); cell
WinAFC (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).Fig. 1. The molecule of the title complex showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. | |
Fig. 2. Dimeric structure of the title complex, with the hydrogen atoms bound to carbon being omitted for clarity. The O—H···O and O—H···F hydrogen bonds are shown as dashed lines. | |
Fig. 3. Packing diagram of the title complex, viewed down the a axis. The C—H···F hydrogen bonds are shown as dashed lines. |
[Cu(C18H16F4N2O2)(H2O)] | Z = 2 |
Mr = 449.89 | F(000) = 458.00 |
Triclinic, P1 | Dx = 1.708 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 8.0157 (17) Å | Cell parameters from 25 reflections |
b = 9.6873 (10) Å | θ = 15.2–16.8° |
c = 11.7693 (12) Å | µ = 1.31 mm−1 |
α = 83.743 (9)° | T = 296 K |
β = 87.763 (12)° | Prismatic, blue |
γ = 74.420 (11)° | 0.30 × 0.20 × 0.10 mm |
V = 875.0 (2) Å3 |
Rigaku AFC-7R diffractometer | Rint = 0.051 |
ω–2θ scans | θmax = 27.5° |
Absorption correction: ψ scan (North et al., 1968) | h = −10→5 |
Tmin = 0.737, Tmax = 0.877 | k = −12→12 |
4895 measured reflections | l = −15→15 |
4015 independent reflections | 3 standard reflections every 150 reflections |
3120 reflections with F2 > 2σ(F2) | intensity decay: 1.1% |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0368P)2 + 1.0373P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.108 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.54 e Å−3 |
4015 reflections | Δρmin = −0.61 e Å−3 |
262 parameters |
[Cu(C18H16F4N2O2)(H2O)] | γ = 74.420 (11)° |
Mr = 449.89 | V = 875.0 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.0157 (17) Å | Mo Kα radiation |
b = 9.6873 (10) Å | µ = 1.31 mm−1 |
c = 11.7693 (12) Å | T = 296 K |
α = 83.743 (9)° | 0.30 × 0.20 × 0.10 mm |
β = 87.763 (12)° |
Rigaku AFC-7R diffractometer | 3120 reflections with F2 > 2σ(F2) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.051 |
Tmin = 0.737, Tmax = 0.877 | 3 standard reflections every 150 reflections |
4895 measured reflections | intensity decay: 1.1% |
4015 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 262 parameters |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.54 e Å−3 |
4015 reflections | Δρmin = −0.61 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.26597 (5) | 0.08830 (4) | 0.58962 (3) | 0.03020 (12) | |
F1 | 0.1709 (2) | −0.0061 (2) | 0.24903 (17) | 0.0463 (4) | |
F2 | 0.1403 (3) | 0.4645 (2) | 0.0841 (2) | 0.0726 (7) | |
F3 | 0.3363 (3) | −0.3057 (2) | 1.10318 (18) | 0.0675 (7) | |
F4 | 0.3025 (3) | −0.3709 (2) | 0.71553 (17) | 0.0510 (5) | |
O1 | 0.3198 (3) | 0.0354 (2) | 0.43752 (17) | 0.0367 (4) | |
O2 | 0.2095 (3) | −0.0851 (2) | 0.65512 (17) | 0.0352 (4) | |
O3 | −0.0692 (4) | 0.1793 (3) | 0.5321 (2) | 0.0542 (7) | |
N1 | 0.3452 (3) | 0.2713 (2) | 0.5630 (2) | 0.0296 (5) | |
N2 | 0.2158 (3) | 0.1861 (2) | 0.7367 (2) | 0.0302 (5) | |
C1 | 0.2816 (3) | 0.1421 (3) | 0.3534 (2) | 0.0311 (6) | |
C2 | 0.2011 (4) | 0.1248 (3) | 0.2551 (2) | 0.0352 (6) | |
C3 | 0.1514 (4) | 0.2286 (4) | 0.1652 (2) | 0.0439 (7) | |
C4 | 0.1890 (4) | 0.3584 (4) | 0.1722 (2) | 0.0456 (8) | |
C5 | 0.2728 (4) | 0.3836 (3) | 0.2633 (2) | 0.0398 (7) | |
C6 | 0.3215 (4) | 0.2762 (3) | 0.3542 (2) | 0.0335 (6) | |
C7 | 0.4255 (4) | 0.2979 (3) | 0.4507 (2) | 0.0337 (6) | |
C8 | 0.1833 (4) | 0.3809 (3) | 0.5837 (2) | 0.0368 (6) | |
C9 | 0.1110 (4) | 0.3332 (3) | 0.6997 (2) | 0.0374 (6) | |
C10 | 0.3909 (4) | 0.1940 (3) | 0.7660 (2) | 0.0385 (7) | |
C11 | 0.4658 (4) | 0.2616 (3) | 0.6585 (2) | 0.0347 (6) | |
C12 | 0.1324 (4) | 0.1160 (3) | 0.8309 (2) | 0.0369 (6) | |
C13 | 0.2144 (4) | −0.0436 (3) | 0.8547 (2) | 0.0344 (6) | |
C14 | 0.2497 (4) | −0.1032 (3) | 0.9671 (2) | 0.0423 (7) | |
C15 | 0.3025 (5) | −0.2496 (4) | 0.9919 (2) | 0.0450 (8) | |
C16 | 0.3221 (4) | −0.3418 (3) | 0.9091 (3) | 0.0429 (7) | |
C17 | 0.2888 (4) | −0.2811 (3) | 0.7984 (2) | 0.0358 (6) | |
C18 | 0.2376 (4) | −0.1328 (3) | 0.7648 (2) | 0.0318 (6) | |
H1 | 0.0950 | 0.2124 | 0.1024 | 0.053* | |
H2 | 0.2974 | 0.4718 | 0.2649 | 0.048* | |
H3 | 0.5409 | 0.2332 | 0.4482 | 0.040* | |
H4 | 0.4364 | 0.3958 | 0.4413 | 0.040* | |
H5 | 0.1010 | 0.3881 | 0.5237 | 0.044* | |
H6 | 0.2057 | 0.4742 | 0.5853 | 0.044* | |
H7 | 0.1181 | 0.3983 | 0.7553 | 0.045* | |
H8 | −0.0094 | 0.3341 | 0.6925 | 0.045* | |
H9 | 0.4641 | 0.0984 | 0.7889 | 0.046* | |
H10 | 0.3838 | 0.2527 | 0.8286 | 0.046* | |
H11 | 0.4753 | 0.3568 | 0.6704 | 0.042* | |
H12 | 0.5802 | 0.2023 | 0.6410 | 0.042* | |
H13 | 0.0113 | 0.1312 | 0.8128 | 0.044* | |
H14 | 0.1370 | 0.1617 | 0.8997 | 0.044* | |
H15 | 0.2374 | −0.0434 | 1.0253 | 0.051* | |
H16 | 0.3564 | −0.4412 | 0.9270 | 0.052* | |
H17 | −0.108 (6) | 0.180 (5) | 0.473 (4) | 0.064 (14)* | |
H18 | −0.093 (8) | 0.120 (6) | 0.572 (5) | 0.10 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0424 (2) | 0.02358 (18) | 0.02562 (18) | −0.00841 (14) | −0.00367 (14) | −0.00654 (12) |
F1 | 0.0546 (12) | 0.0506 (11) | 0.0397 (10) | −0.0196 (9) | −0.0076 (8) | −0.0136 (8) |
F2 | 0.0874 (18) | 0.0779 (16) | 0.0472 (13) | −0.0242 (14) | −0.0234 (12) | 0.0307 (11) |
F3 | 0.0991 (19) | 0.0711 (15) | 0.0371 (11) | −0.0354 (14) | −0.0242 (12) | 0.0138 (10) |
F4 | 0.0811 (15) | 0.0334 (9) | 0.0425 (10) | −0.0203 (10) | 0.0101 (10) | −0.0120 (8) |
O1 | 0.0559 (14) | 0.0271 (10) | 0.0261 (10) | −0.0075 (9) | −0.0072 (9) | −0.0048 (7) |
O2 | 0.0538 (13) | 0.0314 (10) | 0.0254 (9) | −0.0181 (9) | −0.0004 (9) | −0.0077 (8) |
O3 | 0.0628 (18) | 0.0647 (18) | 0.0454 (15) | −0.0315 (15) | −0.0090 (13) | −0.0105 (14) |
N1 | 0.0328 (12) | 0.0258 (11) | 0.0303 (12) | −0.0057 (9) | −0.0062 (10) | −0.0062 (9) |
N2 | 0.0333 (12) | 0.0278 (11) | 0.0303 (12) | −0.0066 (10) | −0.0027 (9) | −0.0097 (9) |
C1 | 0.0314 (15) | 0.0322 (14) | 0.0277 (13) | −0.0045 (11) | 0.0009 (11) | −0.0051 (11) |
C2 | 0.0330 (15) | 0.0418 (16) | 0.0318 (14) | −0.0096 (13) | 0.0002 (12) | −0.0090 (12) |
C3 | 0.0389 (17) | 0.062 (2) | 0.0282 (15) | −0.0089 (15) | −0.0055 (13) | −0.0022 (14) |
C4 | 0.0456 (19) | 0.054 (2) | 0.0313 (16) | −0.0077 (16) | −0.0032 (14) | 0.0097 (14) |
C5 | 0.0410 (17) | 0.0366 (16) | 0.0398 (17) | −0.0095 (13) | 0.0000 (13) | 0.0027 (13) |
C6 | 0.0343 (15) | 0.0336 (14) | 0.0312 (14) | −0.0069 (12) | −0.0003 (12) | −0.0027 (11) |
C7 | 0.0381 (16) | 0.0301 (14) | 0.0351 (15) | −0.0122 (12) | −0.0017 (12) | −0.0044 (11) |
C8 | 0.0363 (16) | 0.0256 (13) | 0.0457 (17) | −0.0011 (12) | −0.0074 (13) | −0.0077 (12) |
C9 | 0.0366 (16) | 0.0295 (14) | 0.0437 (17) | −0.0018 (12) | −0.0030 (13) | −0.0106 (12) |
C10 | 0.0375 (16) | 0.0448 (17) | 0.0349 (15) | −0.0111 (14) | −0.0095 (12) | −0.0070 (13) |
C11 | 0.0340 (15) | 0.0336 (14) | 0.0382 (15) | −0.0090 (12) | −0.0086 (12) | −0.0081 (12) |
C12 | 0.0452 (18) | 0.0361 (15) | 0.0311 (15) | −0.0103 (13) | 0.0027 (13) | −0.0139 (12) |
C13 | 0.0400 (16) | 0.0378 (15) | 0.0289 (14) | −0.0151 (13) | −0.0007 (12) | −0.0062 (12) |
C14 | 0.054 (2) | 0.0484 (19) | 0.0301 (15) | −0.0218 (16) | −0.0024 (14) | −0.0067 (13) |
C15 | 0.054 (2) | 0.054 (2) | 0.0309 (16) | −0.0227 (17) | −0.0102 (14) | 0.0056 (14) |
C16 | 0.0480 (19) | 0.0357 (16) | 0.0442 (18) | −0.0126 (14) | −0.0030 (15) | 0.0044 (13) |
C17 | 0.0409 (17) | 0.0338 (15) | 0.0357 (15) | −0.0146 (13) | 0.0056 (13) | −0.0074 (12) |
C18 | 0.0335 (15) | 0.0340 (14) | 0.0309 (14) | −0.0137 (12) | 0.0010 (11) | −0.0054 (11) |
Cu1—O1 | 1.917 (2) | C12—C13 | 1.508 (4) |
Cu1—O2 | 1.929 (2) | C13—C14 | 1.392 (4) |
Cu1—O3 | 2.682 (3) | C13—C18 | 1.413 (4) |
Cu1—N1 | 2.028 (2) | C14—C15 | 1.369 (5) |
Cu1—N2 | 2.038 (2) | C15—C16 | 1.369 (5) |
F1—C2 | 1.363 (4) | C16—C17 | 1.375 (4) |
F2—C4 | 1.366 (4) | C17—C18 | 1.400 (4) |
F3—C15 | 1.370 (3) | O3—H17 | 0.77 (5) |
F4—C17 | 1.359 (3) | O3—H18 | 0.76 (6) |
O1—C1 | 1.331 (3) | C3—H1 | 0.930 |
O2—C18 | 1.330 (3) | C5—H2 | 0.930 |
N1—C7 | 1.474 (3) | C7—H3 | 0.970 |
N1—C8 | 1.470 (3) | C7—H4 | 0.970 |
N1—C11 | 1.490 (4) | C8—H5 | 0.970 |
N2—C9 | 1.475 (3) | C8—H6 | 0.970 |
N2—C10 | 1.482 (4) | C9—H7 | 0.970 |
N2—C12 | 1.470 (4) | C9—H8 | 0.970 |
C1—C2 | 1.393 (4) | C10—H9 | 0.970 |
C1—C6 | 1.420 (4) | C10—H10 | 0.970 |
C2—C3 | 1.370 (4) | C11—H11 | 0.970 |
C3—C4 | 1.381 (5) | C11—H12 | 0.970 |
C4—C5 | 1.365 (5) | C12—H13 | 0.970 |
C5—C6 | 1.396 (4) | C12—H14 | 0.970 |
C6—C7 | 1.500 (4) | C14—H15 | 0.930 |
C8—C9 | 1.535 (4) | C16—H16 | 0.930 |
C10—C11 | 1.537 (4) | ||
O1—Cu1—O2 | 98.05 (9) | F3—C15—C16 | 118.9 (3) |
O1—Cu1—N1 | 94.92 (9) | C14—C15—C16 | 122.1 (3) |
O1—Cu1—O3 | 88.73 (10) | C15—C16—C17 | 117.1 (3) |
O1—Cu1—N2 | 167.68 (9) | F4—C17—C16 | 117.9 (2) |
O2—Cu1—N1 | 165.01 (9) | F4—C17—C18 | 117.3 (2) |
O2—Cu1—N2 | 94.21 (9) | C16—C17—C18 | 124.8 (3) |
O2—Cu1—O3 | 85.04 (10) | O2—C18—C13 | 124.6 (2) |
O3—Cu1—N1 | 102.79 (10) | O2—C18—C17 | 120.0 (2) |
O3—Cu1—N2 | 91.14 (10) | C13—C18—C17 | 115.3 (2) |
N1—Cu1—N2 | 73.10 (10) | H17—O3—H18 | 108 (6) |
Cu1—O1—C1 | 116.27 (17) | C2—C3—H1 | 121.6 |
Cu1—O2—C18 | 121.3 (2) | C4—C3—H1 | 121.6 |
Cu1—N1—C7 | 116.32 (19) | C4—C5—H2 | 120.1 |
Cu1—N1—C8 | 101.17 (19) | C6—C5—H2 | 120.1 |
Cu1—N1—C11 | 104.88 (17) | N1—C7—H3 | 109.2 |
C7—N1—C8 | 113.5 (2) | N1—C7—H4 | 109.2 |
C7—N1—C11 | 111.7 (2) | C6—C7—H3 | 109.2 |
C8—N1—C11 | 108.4 (2) | C6—C7—H4 | 109.2 |
Cu1—N2—C9 | 104.26 (18) | H3—C7—H4 | 107.9 |
Cu1—N2—C10 | 101.31 (17) | N1—C8—H5 | 110.3 |
Cu1—N2—C12 | 117.3 (2) | N1—C8—H6 | 110.3 |
C9—N2—C10 | 108.3 (2) | C9—C8—H5 | 110.3 |
C9—N2—C12 | 112.0 (2) | C9—C8—H6 | 110.3 |
C10—N2—C12 | 112.8 (2) | H5—C8—H6 | 108.6 |
O1—C1—C2 | 120.1 (2) | N2—C9—H7 | 110.2 |
O1—C1—C6 | 124.4 (2) | N2—C9—H8 | 110.2 |
C2—C1—C6 | 115.5 (2) | C8—C9—H7 | 110.2 |
F1—C2—C1 | 116.8 (2) | C8—C9—H8 | 110.2 |
F1—C2—C3 | 118.2 (3) | H7—C9—H8 | 108.5 |
C1—C2—C3 | 125.0 (3) | N2—C10—H9 | 110.3 |
C2—C3—C4 | 116.9 (3) | N2—C10—H10 | 110.3 |
F2—C4—C3 | 118.3 (3) | C11—C10—H9 | 110.3 |
F2—C4—C5 | 119.4 (3) | C11—C10—H10 | 110.3 |
C3—C4—C5 | 122.3 (3) | H9—C10—H10 | 108.5 |
C4—C5—C6 | 119.7 (3) | N1—C11—H11 | 110.3 |
C1—C6—C5 | 120.5 (3) | N1—C11—H12 | 110.3 |
C1—C6—C7 | 119.0 (2) | C10—C11—H11 | 110.3 |
C5—C6—C7 | 120.4 (3) | C10—C11—H12 | 110.3 |
N1—C7—C6 | 112.0 (2) | H11—C11—H12 | 108.5 |
N1—C8—C9 | 107.1 (2) | N2—C12—H13 | 108.8 |
N2—C9—C8 | 107.6 (2) | N2—C12—H14 | 108.8 |
N2—C10—C11 | 107.1 (2) | C13—C12—H13 | 108.8 |
N1—C11—C10 | 107.2 (2) | C13—C12—H14 | 108.8 |
N2—C12—C13 | 113.7 (2) | H13—C12—H14 | 107.7 |
C12—C13—C14 | 119.2 (2) | C13—C14—H15 | 120.0 |
C12—C13—C18 | 119.8 (2) | C15—C14—H15 | 120.0 |
C14—C13—C18 | 120.6 (2) | C15—C16—H16 | 121.5 |
C13—C14—C15 | 120.0 (3) | C17—C16—H16 | 121.5 |
F3—C15—C14 | 119.0 (3) | ||
O1—Cu1—O2—C18 | 149.2 (2) | C9—N2—C12—C13 | 167.7 (2) |
O2—Cu1—O1—C1 | 147.0 (2) | C12—N2—C9—C8 | −165.5 (2) |
O1—Cu1—N1—C7 | −4.8 (2) | C10—N2—C12—C13 | −69.9 (3) |
O1—Cu1—N1—C8 | 118.61 (18) | C12—N2—C10—C11 | 177.0 (2) |
O1—Cu1—N1—C11 | −128.73 (17) | O1—C1—C2—F1 | −2.3 (4) |
N1—Cu1—O1—C1 | −40.5 (2) | O1—C1—C2—C3 | 178.0 (2) |
O1—Cu1—N2—C9 | 40.3 (5) | O1—C1—C6—C5 | −178.5 (2) |
O1—Cu1—N2—C10 | −72.0 (5) | O1—C1—C6—C7 | 5.0 (4) |
O1—Cu1—N2—C12 | 164.8 (4) | C2—C1—C6—C5 | 3.2 (4) |
N2—Cu1—O1—C1 | −27.3 (6) | C2—C1—C6—C7 | −173.3 (2) |
O2—Cu1—N1—C7 | 145.0 (3) | C6—C1—C2—F1 | 176.1 (2) |
O2—Cu1—N1—C8 | −91.5 (3) | C6—C1—C2—C3 | −3.6 (4) |
O2—Cu1—N1—C11 | 21.1 (4) | F1—C2—C3—C4 | −177.8 (2) |
N1—Cu1—O2—C18 | −0.4 (4) | C1—C2—C3—C4 | 1.9 (4) |
O2—Cu1—N2—C9 | −134.0 (2) | C2—C3—C4—F2 | −179.6 (2) |
O2—Cu1—N2—C10 | 113.62 (17) | C2—C3—C4—C5 | 0.5 (5) |
O2—Cu1—N2—C12 | −9.5 (2) | F2—C4—C5—C6 | 179.3 (2) |
N2—Cu1—O2—C18 | −32.0 (2) | C3—C4—C5—C6 | −0.8 (5) |
N1—Cu1—N2—C9 | 54.1 (2) | C4—C5—C6—C1 | −1.2 (4) |
N1—Cu1—N2—C10 | −58.25 (17) | C4—C5—C6—C7 | 175.3 (2) |
N1—Cu1—N2—C12 | 178.6 (2) | C1—C6—C7—N1 | −55.8 (3) |
N2—Cu1—N1—C7 | 178.1 (2) | C5—C6—C7—N1 | 127.6 (2) |
N2—Cu1—N1—C8 | −58.47 (18) | N1—C8—C9—N2 | −8.7 (3) |
N2—Cu1—N1—C11 | 54.19 (16) | N2—C10—C11—N1 | −8.6 (3) |
Cu1—O1—C1—C2 | −135.5 (2) | N2—C12—C13—C14 | 133.7 (3) |
Cu1—O1—C1—C6 | 46.3 (3) | N2—C12—C13—C18 | −52.9 (4) |
Cu1—O2—C18—C13 | 37.3 (4) | C12—C13—C14—C15 | 171.3 (3) |
Cu1—O2—C18—C17 | −144.8 (2) | C12—C13—C18—O2 | 7.7 (5) |
Cu1—N1—C7—C6 | 47.3 (2) | C12—C13—C18—C17 | −170.3 (3) |
Cu1—N1—C8—C9 | 51.3 (2) | C14—C13—C18—O2 | −179.0 (3) |
Cu1—N1—C11—C10 | −38.0 (2) | C14—C13—C18—C17 | 3.0 (4) |
C7—N1—C8—C9 | 176.6 (2) | C18—C13—C14—C15 | −2.0 (5) |
C8—N1—C7—C6 | −69.4 (3) | C13—C14—C15—F3 | −179.9 (2) |
C7—N1—C11—C10 | −164.8 (2) | C13—C14—C15—C16 | −0.1 (4) |
C11—N1—C7—C6 | 167.7 (2) | F3—C15—C16—C17 | −179.3 (3) |
C8—N1—C11—C10 | 69.4 (2) | C14—C15—C16—C17 | 1.0 (5) |
C11—N1—C8—C9 | −58.7 (3) | C15—C16—C17—F4 | −178.0 (3) |
Cu1—N2—C9—C8 | −37.7 (3) | C15—C16—C17—C18 | 0.3 (5) |
Cu1—N2—C10—C11 | 50.8 (2) | F4—C17—C18—O2 | −2.0 (4) |
Cu1—N2—C12—C13 | 47.2 (3) | F4—C17—C18—C13 | 176.1 (2) |
C9—N2—C10—C11 | −58.5 (3) | C16—C17—C18—O2 | 179.6 (3) |
C10—N2—C9—C8 | 69.6 (3) | C16—C17—C18—C13 | −2.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H17···O2i | 0.77 (5) | 2.14 (5) | 2.852 (4) | 154 (5) |
O3—H18···F1i | 0.76 (6) | 2.41 (6) | 3.122 (3) | 156 (6) |
C7—H3···O2ii | 0.97 | 2.49 | 3.376 (3) | 152 (1) |
C11—H12···O1ii | 0.97 | 2.50 | 3.226 (3) | 132 (1) |
C8—H6···F4iii | 0.97 | 2.54 | 3.356 (4) | 143 (1) |
C12—H13···F1i | 0.97 | 2.32 | 3.117 (4) | 140 (1) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C18H16F4N2O2)(H2O)] |
Mr | 449.89 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.0157 (17), 9.6873 (10), 11.7693 (12) |
α, β, γ (°) | 83.743 (9), 87.763 (12), 74.420 (11) |
V (Å3) | 875.0 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.31 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku AFC-7R |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.737, 0.877 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 4895, 4015, 3120 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.108, 1.05 |
No. of reflections | 4015 |
No. of parameters | 262 |
No. of restraints | ? |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.54, −0.61 |
Computer programs: WinAFC (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H17···O2i | 0.77 (5) | 2.14 (5) | 2.852 (4) | 154 (5) |
O3—H18···F1i | 0.76 (6) | 2.41 (6) | 3.122 (3) | 156 (6) |
C7—H3···O2ii | 0.97 | 2.49 | 3.376 (3) | 152.28 (18) |
C11—H12···O1ii | 0.97 | 2.50 | 3.226 (3) | 132.3 (2) |
C8—H6···F4iii | 0.97 | 2.54 | 3.356 (4) | 142.5 (2) |
C12—H13···F1i | 0.97 | 2.32 | 3.117 (4) | 139.51 (19) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y+1, z. |
Acknowledgements
This study was supported financially in part by Grants-in-Aid (No. 20550075) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Kubono, K., Hirayama, N., Kokusen, H. & Yokoi, K. (2003). Anal. Sci. 19, 645–646. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kubono, K., Noshita, C., Tani, K. & Yokoi, K. (2009). Acta Cryst. E65, m1685–m1686. Web of Science CSD CrossRef IUCr Journals Google Scholar
Loukiala, S., Ratilainen, J., Valkonen, J. & Rissanen, K. (1997). Acta Chem. Scand. 51, 1162–1168. CrossRef CAS Web of Science Google Scholar
Mukhopadhyay, S., Mandal, D., Chatterjee, P. B., Desplanches, C., Sutter, J.-P., Butcher, R. J. & Chaudhury, M. (2004). Inorg. Chem. 43, 8501–8509. Web of Science CSD CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rigaku/MSC (2006). WinAFC and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsai, H.-A., Hu, M.-S., Teng, M.-Y., Suen, M.-C. & Wang, J.-C. (2008). Polyhedron, 27, 2035–2042. Web of Science CSD CrossRef CAS Google Scholar
Weinberger, P., Costisor, O., Tudose, R., Baumgartner, O. & Linert, W. (2000). J. Mol. Struct. 519, 21–31. Web of Science CSD CrossRef CAS Google Scholar
Zhao, X.-J., Du, M., Wang, Y. & Bu, X.-H. (2004). J. Mol. Struct. 692, 155–161. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Piperazine adopts chair and boat conformations by complexing various metal ions, showing several coordination modes and geometries (Kubono et al., 2003; Loukiala et al. 1997; Mukhopadhyay et al. 2004; Weinberger et al. 2000). Therefore, metal complexes with piperazine based ligands have been of great interest in coordination and supramolecular chemistry (Tsai et al., 2008; Zhao et al., 2004). Recently, we have reported the crystal structure of a CuII complex with tetrachloro-2,2'-(piperazine-1,4-diyldimethylene)diphenolate, Cu2(Cl2bpi)2, (Kubono et al., 2009), which is a centrosymmetric dinuclear complex. As a continuation of this work on the structural characterization of piperazine-diphenolato compounds, the title mononuclear Cu(II) complex with difluorophenol derivative of the Cl2bpi ligand is reported here (Fig. 1).
The Cu(II) atom shows a distorted square-pyramidal coordination geometry with the basal plane comprised of two phenolate O and two tertiary alkyl N atoms from a piperazine-diphenolato ligand. The apical site is occupied by the O atom of a water molecule. The orientaion of two benzene rings in the title complex is anti-parallel, different from that in the dichlorophenol derivative, Cu2(Cl2bpi)2 (Kubono et al., 2009). The difference is reflected in the torsion angles C10—N2—C12—C13 [-69.9 (3) ° in the title complex and -171.8 (4) ° in Cu2(Cl2bpi)2]. Bond lengths and angles involving copper are comparable to those observed in related complexes (Kubono et al., 2009; Loukiala et al. 1997; Mukhopadhyay et al. 2004; Weinberger et al. 2000).
Neighbouring mononuclear complexs are associated through O—H···O and O—H···F intermolecular hydrogen bonds between the H atoms in the water ligand and a phenolate O atom or a F atom from an adjacent ligand generated by inversion operation, forming a centrosymmetric dimer (Fig. 2). The dimeric structure of the title complex is different from those of Cu2(Cl2bpi)2 and the dimethylphenolato derivative (Mukhopadhyay et al., 2004), which are µ-type complexes bridged by a phenolate O atom from an adjacent ligand. The Cu1···Cu1i distance within the dimer of the title compound is 5.5646 (6) Å [symmetry code: (i) -x, -y, -z + 1.]. The dimeric structure of the complex is additionally stabilized by intermolecular C12—H13···F1i hydrogen bonds (Table 1).
In the crystal structure of the title complex, there are intermolecular C—H···O hydrogen bonds (Table 1), connecting the dimers. C7—H3···O2ii [symmetry code: (ii) -x + 1, -y, -z + 1.] and C12—H13···F1i hydrogen bonds form an infinite chain of the C(11) type (Bernstein et al., 1995) propagating parallel to the a axis. Chains of dimers are crosslinked into a three-dimensional framework by C8—H6···F4iii hydrogen bonds [symmetry code: (iii) x, y + 1, z.] (Fig. 3).