metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­tris­­(μ2-3-methyl­pyridine-2-carboxyl­ato)(3-methyl­pyridine-2-car­boxyl­ato)sodiumterbium(III)] ethanol monosolvate monohydrate]

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 17 September 2010; accepted 26 September 2010; online 2 October 2010)

In the title compound, {[NaTb(C7H6NO2)4(H2O)2]·C2H5OH·H2O}n, the TbIII atom is eight-coordinated in a slightly distorted square-anti­prismatic geometry defined by four carboxyl­ate O atoms and four pyridine N atoms. The bond lengths lie within the range 2.3000 (2)–2.326 (2) Å for the Tb—O bonds and 2.543 (3)–2.553 (3) Å for the Tb—N bonds. The NaI atom is five-coordinated by two water O atoms and three carboxyl­ate O atoms in a distorted square-pyramidal geometry. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background to luminescent compounds, see: Fan et al. (2009[Fan, B., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034-6043.]); Oh et al. (2010[Oh, Y., Kim, J. Y., Kim, H. J., Lee, T. & Kang, S. K. (2010). Bull. Korean Chem. Soc. 31, 1058-1060.]); Seo et al. (2010[Seo, H. J., Yoo, K., Song, M., Park, J. S., Jin, S., Kim, Y. I. & Kim, J. (2010). Org. Electron. 11, 564-572.]); Zhou et al. (2010[Zhou, Y., Zhu, C.-Y., Gao, X.-S., You, X.-Y. & Yao, C. (2010). Org. Lett. 12, 2566-2569.]). For luminescence properties of metal compounds, see: Godlewska et al. (2008[Godlewska, P., Macalik, L. & Hanuza, J. (2008). J. Alloys Compd, 451, 236-239.]); Kang (2010[Kang, S. K. (2010). Acta Cryst. E66, m1092-m1093.]); Kim et al. (2010[Kim, Y.-I., Seo, H.-J., Kim, J.-H., Lee, Y.-S. & Kang, S. K. (2010). Acta Cryst. E66, m124.]); Legendziewicz (2002[Legendziewicz, J. (2002). J. Alloys Compd, 341, 34-44.]); Lis et al. (2009[Lis, S., Piskula, Z. & Kubicki, M. (2009). Mater. Chem. Phys. 114, 134-138.]); Seo et al. (2009[Seo, H.-J., Ryu, J. S., Nam, K.-S., Kang, S. K., Park, S. Y. & Kim, Y.-I. (2009). Bull. Korean Chem. Soc. 30, 3109-3112.]).

[Scheme 1]

Experimental

Crystal data
  • [NaTb(C7H6NO2)4(H2O)2]·C2H6O·H2O

  • Mr = 826.54

  • Orthorhombic, P n a 21

  • a = 18.4662 (6) Å

  • b = 18.5290 (5) Å

  • c = 9.8939 (3) Å

  • V = 3385.30 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.17 mm−1

  • T = 174 K

  • 0.16 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.704, Tmax = 0.856

  • 44141 measured reflections

  • 6652 independent reflections

  • 5995 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.045

  • S = 1.07

  • 6652 reflections

  • 460 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2234 Friedel pairs

  • Flack parameter: 0.001 (6)

Table 1
Selected bond lengths (Å)

Na41—O9 2.324 (2)
Na41—O29i 2.390 (3)
Na41—O39ii 2.374 (2)
Na41—O42 2.265 (3)
Na41—O43 2.476 (3)
Symmetry codes: (i) [-x+2, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O42—H42A⋯O47 0.81 (2) 1.95 (2) 2.742 (4) 163 (4)
O42—H42B⋯O38ii 0.81 (2) 2.01 (2) 2.819 (3) 169 (4)
O43—H43A⋯O28i 0.82 (2) 1.99 (2) 2.796 (3) 171 (4)
O43—H43A⋯O29i 0.82 (2) 2.53 (3) 3.050 (3) 122 (3)
O43—H43B⋯O44i 0.81 (2) 2.02 (2) 2.794 (4) 162 (3)
O44—H44A⋯O8 0.80 (4) 2.31 (4) 3.103 (4) 170 (4)
O44—H44A⋯O9 0.80 (4) 2.34 (4) 2.943 (4) 133 (4)
O44—H44B⋯O43 0.80 (4) 2.07 (4) 2.790 (4) 151 (4)
O47—H47⋯O19ii 0.80 (2) 1.96 (2) 2.726 (3) 159 (4)
Symmetry codes: (i) [-x+2, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Luminescent metal compounds with N-containing ligands have been reported in the investigation of their interesting photophysical properties and various coordination modes (Seo et al., 2010; Zhou et al., 2010; Fan et al., 2009). Especially, lanthanide metal complexes have been extensively studied due to their unique luminescence properties (Lis et al., 2009; Godlewska et al., 2008; Legendziewicz, 2002). As an extension of our work (Kang, 2010; Oh et al., 2010; Kim et al., 2010; Seo et al., 2009) on luminescent complexes, herein, we report the crystal structure and luminescent properties of the title Tb(III) chloride complex with 3-methylpyridine-2-carboxylic acid (3-methylpicolinic acid), (I).

In the title compound, {[NaTb(H2O)2(C7H6NO2)4].C2H5OH.H2O}n, the TbIII atom is eight-coordinated within a slightly distorted square antiprismatic geometry. The TbIII atom is coordinated to the four carboxylate-O atoms and four pyridine-N atoms. The Tb—O bond distances are within the range of 2.300 (2)–2.326 (2) Å (Table 1), which are significantly shorter than the sum of the covalent radii of Tb and O atoms (2.420 Å). The Na+ ion is five-coordinated with two water-O atoms and three carboxylate-O atoms to form a distorted square pyramidal geometry. In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the uncoordinated water molecule to the coordinated picolinic ligands and further link the molecules into a three-dimensional network.

The title compound exhibits an intense emission at 543 nm upon 326 nm excitation in PL spectra with 325 nm of He—Cd laser excitation wavelength

Related literature top

For general background to luminescent compounds, see: Fan et al. (2009); Oh et al. (2010); Seo et al. (2010); Zhou et al. (2010). For luminescence properties of metal compounds, see: Godlewska et al. (2008); Kang (2010); Kim et al. (2010); Legendziewicz (2002); Lis et al. (2009); Seo et al. (2009).

Experimental top

Terbium trichloride solution was prepared by dissolving TbCl3.6H2O (0.27 g, 1.0 mmol; Aldrich) in absolute ethanol (20 ml) at room temperature with stirring. The ligand solution was prepared by dissolving 3-methylpicolinic acid (0.55 g, 4.0 mmol; Aldrich) in absolute ethanol (30 ml) at room temperature with stirring. The pH of the ligand solution was adjusted to about 5.1 with 2 N NaOH solution. The Terbium trichloride solution was added dropwise slowly to the ligand solution. The reaction mixture was stirred for 1 h at room temperature. Colourless crystals of (I) were obtained at room temperature over a period of a few weeks. The complex was recrystallized from the mixture of distilled water and absolute ethanol solution.

Refinement top

The O—H atoms were located in a difference Fourier map and refined with O—H = 0.81±0.01 Å. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and methylene-H and 1.5Ueq(C) for methyl-H atoms. The maximum and minimum residual electron density peaks of 0.51 and -0.56 e Å-3, respectively, were located 0.85 Å and 0.57 Å from the Tb1 atom, respectively.

Structure description top

Luminescent metal compounds with N-containing ligands have been reported in the investigation of their interesting photophysical properties and various coordination modes (Seo et al., 2010; Zhou et al., 2010; Fan et al., 2009). Especially, lanthanide metal complexes have been extensively studied due to their unique luminescence properties (Lis et al., 2009; Godlewska et al., 2008; Legendziewicz, 2002). As an extension of our work (Kang, 2010; Oh et al., 2010; Kim et al., 2010; Seo et al., 2009) on luminescent complexes, herein, we report the crystal structure and luminescent properties of the title Tb(III) chloride complex with 3-methylpyridine-2-carboxylic acid (3-methylpicolinic acid), (I).

In the title compound, {[NaTb(H2O)2(C7H6NO2)4].C2H5OH.H2O}n, the TbIII atom is eight-coordinated within a slightly distorted square antiprismatic geometry. The TbIII atom is coordinated to the four carboxylate-O atoms and four pyridine-N atoms. The Tb—O bond distances are within the range of 2.300 (2)–2.326 (2) Å (Table 1), which are significantly shorter than the sum of the covalent radii of Tb and O atoms (2.420 Å). The Na+ ion is five-coordinated with two water-O atoms and three carboxylate-O atoms to form a distorted square pyramidal geometry. In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the uncoordinated water molecule to the coordinated picolinic ligands and further link the molecules into a three-dimensional network.

The title compound exhibits an intense emission at 543 nm upon 326 nm excitation in PL spectra with 325 nm of He—Cd laser excitation wavelength

For general background to luminescent compounds, see: Fan et al. (2009); Oh et al. (2010); Seo et al. (2010); Zhou et al. (2010). For luminescence properties of metal compounds, see: Godlewska et al. (2008); Kang (2010); Kim et al. (2010); Legendziewicz (2002); Lis et al. (2009); Seo et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex showing the atom-numbering scheme and 50% probability ellipsoids. H atoms have been omitted for clarity.
Poly[[diaquatris(µ2-3-methylpyridine-2-carboxylato)(3-methylpyridine- 2-carboxylato)sodiumterbium(III)] ethanol monosolvate monohydrate] top
Crystal data top
[NaTb(C7H6NO2)4(H2O)2]·C2H6O·H2OF(000) = 1664
Mr = 826.54Dx = 1.622 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9041 reflections
a = 18.4662 (6) Åθ = 2.3–28.2°
b = 18.5290 (5) ŵ = 2.17 mm1
c = 9.8939 (3) ÅT = 174 K
V = 3385.30 (18) Å3Block, colourless
Z = 40.16 × 0.11 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5995 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 1.6°
Tmin = 0.704, Tmax = 0.856h = 2420
44141 measured reflectionsk = 1824
6652 independent reflectionsl = 138
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0185P)2 + 0.0181P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max = 0.004
wR(F2) = 0.045Δρmax = 0.51 e Å3
S = 1.07Δρmin = 0.56 e Å3
6652 reflectionsAbsolute structure: Flack (1983), 2234 Friedel pairs
460 parametersAbsolute structure parameter: 0.001 (6)
6 restraints
Crystal data top
[NaTb(C7H6NO2)4(H2O)2]·C2H6O·H2OV = 3385.30 (18) Å3
Mr = 826.54Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.4662 (6) ŵ = 2.17 mm1
b = 18.5290 (5) ÅT = 174 K
c = 9.8939 (3) Å0.16 × 0.11 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6652 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
5995 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.856Rint = 0.038
44141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045Δρmax = 0.51 e Å3
S = 1.07Δρmin = 0.56 e Å3
6652 reflectionsAbsolute structure: Flack (1983), 2234 Friedel pairs
460 parametersAbsolute structure parameter: 0.001 (6)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.878991 (6)0.769501 (6)0.19856 (3)0.01726 (4)
N10.75484 (13)0.80674 (13)0.1090 (2)0.0206 (5)
C20.74647 (16)0.87607 (16)0.0698 (3)0.0218 (6)
C30.68063 (18)0.90306 (18)0.0214 (3)0.0302 (8)
C40.62409 (18)0.8540 (2)0.0116 (4)0.0331 (9)
H40.57940.86950.02090.04*
C50.63268 (17)0.7836 (2)0.0487 (3)0.0304 (8)
H50.59450.7510.04120.036*
C60.69877 (17)0.76174 (18)0.0972 (3)0.0264 (7)
H60.70470.71380.12270.032*
C70.81601 (17)0.91984 (16)0.0816 (3)0.0262 (7)
O80.86652 (10)0.89129 (11)0.1516 (2)0.0254 (5)
O90.82067 (13)0.97871 (12)0.0241 (3)0.0380 (6)
C100.6682 (2)0.9806 (2)0.0189 (5)0.0563 (12)
H10A0.68860.9890.10680.084*
H10B0.69111.01190.04570.084*
H10C0.61720.99040.02110.084*
N110.94179 (14)0.77843 (13)0.0307 (2)0.0242 (6)
C120.93444 (17)0.72055 (16)0.1136 (3)0.0240 (7)
C130.9646 (2)0.71841 (19)0.2442 (3)0.0331 (9)
C141.0026 (2)0.77989 (19)0.2830 (4)0.0407 (10)
H141.02330.78130.36870.049*
C151.01063 (19)0.8380 (2)0.2005 (4)0.0404 (9)
H151.03660.87830.22850.049*
C160.97899 (18)0.83566 (18)0.0733 (3)0.0316 (8)
H160.98390.87520.01610.038*
C170.89107 (17)0.65991 (18)0.0524 (3)0.0231 (7)
O180.85345 (12)0.67662 (11)0.0515 (2)0.0233 (5)
O190.89462 (13)0.59921 (13)0.1012 (2)0.0421 (6)
C200.9552 (2)0.6564 (2)0.3396 (3)0.0529 (12)
H20A0.99230.62110.32320.079*
H20B0.95880.67340.4310.079*
H20C0.90850.63490.32570.079*
N210.97062 (13)0.67355 (13)0.2657 (2)0.0218 (6)
C221.03261 (16)0.69539 (16)0.3236 (3)0.0194 (6)
C231.08422 (19)0.64699 (18)0.3738 (3)0.0252 (8)
C241.06794 (18)0.57326 (18)0.3599 (3)0.0321 (8)
H241.10070.53910.39170.039*
C251.00540 (19)0.55083 (17)0.3009 (4)0.0355 (9)
H250.99540.50190.29150.043*
C260.95664 (18)0.60265 (16)0.2549 (3)0.0311 (8)
H260.91330.58780.21570.037*
C271.04130 (17)0.77676 (15)0.3275 (3)0.0211 (7)
O280.99116 (11)0.81287 (11)0.2681 (2)0.0216 (5)
O291.09365 (13)0.80420 (12)0.3846 (2)0.0337 (5)
C301.1533 (2)0.66829 (19)0.4411 (4)0.0365 (9)
H30A1.17970.70070.38350.055*
H30B1.1820.6260.45790.055*
H30C1.14280.69190.52530.055*
N310.85257 (14)0.81025 (13)0.4399 (2)0.0214 (5)
C320.81292 (16)0.76643 (16)0.5184 (3)0.0209 (7)
C330.79403 (18)0.78474 (18)0.6512 (3)0.0280 (8)
C340.81700 (15)0.85172 (17)0.6973 (5)0.0374 (7)
H340.80480.86630.78430.045*
C350.85745 (19)0.8969 (2)0.6171 (3)0.0376 (9)
H350.87250.94170.64860.045*
C360.87514 (16)0.87394 (18)0.4880 (4)0.0298 (8)
H360.90340.90350.43340.036*
C370.78728 (16)0.69799 (17)0.4476 (3)0.0213 (7)
O380.80812 (12)0.69262 (11)0.3243 (2)0.0254 (5)
O390.74967 (12)0.65377 (12)0.5063 (2)0.0306 (5)
C400.7506 (2)0.7367 (2)0.7431 (3)0.0462 (11)
H40A0.7480.75790.83150.069*
H40B0.77340.69020.74910.069*
H40C0.70250.73120.70750.069*
Na410.84271 (7)1.08389 (6)0.09718 (12)0.0286 (3)
O420.77005 (16)1.07464 (14)0.2808 (3)0.0468 (7)
H42A0.764 (2)1.058 (2)0.356 (3)0.056*
H42B0.7432 (18)1.1072 (16)0.257 (3)0.056*
O430.96139 (14)1.04567 (12)0.1891 (2)0.0340 (6)
H43A0.9724 (19)1.0870 (11)0.209 (3)0.041*
H43B0.9744 (18)1.0202 (16)0.250 (3)0.041*
O440.97142 (17)1.01756 (16)0.0874 (3)0.0452 (7)
H44A0.941 (2)0.988 (2)0.098 (4)0.052 (14)*
H44B0.984 (2)1.023 (2)0.011 (4)0.062 (15)*
C450.8279 (2)1.0581 (3)0.6322 (5)0.0689 (13)
H45A0.8541.05340.71560.103*
H45B0.85771.04180.55880.103*
H45C0.81521.10780.61820.103*
C460.7615 (2)1.0140 (2)0.6381 (4)0.0559 (12)
H46A0.73211.03040.71340.067*
H46B0.77480.96420.65530.067*
O470.71951 (15)1.01711 (15)0.5181 (3)0.0495 (7)
H470.6882 (18)1.0467 (18)0.525 (4)0.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01829 (7)0.01596 (6)0.01754 (6)0.00143 (5)0.00021 (9)0.00065 (11)
N10.0205 (14)0.0203 (14)0.0209 (12)0.0017 (11)0.0016 (10)0.0017 (11)
C20.0209 (17)0.0235 (16)0.0210 (14)0.0002 (13)0.0029 (13)0.0008 (13)
C30.0251 (19)0.035 (2)0.0305 (16)0.0036 (16)0.0028 (14)0.0067 (15)
C40.025 (2)0.044 (2)0.0305 (19)0.0014 (18)0.0022 (16)0.0036 (17)
C50.020 (2)0.044 (2)0.0280 (17)0.0083 (15)0.0015 (14)0.0023 (15)
C60.026 (2)0.0266 (17)0.0266 (16)0.0051 (15)0.0025 (14)0.0011 (14)
C70.0258 (19)0.0212 (17)0.0316 (17)0.0033 (14)0.0038 (14)0.0019 (14)
O80.0195 (12)0.0218 (11)0.0349 (12)0.0002 (9)0.0038 (9)0.0015 (9)
O90.0319 (14)0.0284 (13)0.0535 (15)0.0011 (11)0.0010 (12)0.0213 (12)
C100.036 (2)0.048 (3)0.085 (3)0.006 (2)0.017 (2)0.022 (2)
N110.0229 (16)0.0250 (15)0.0247 (13)0.0018 (12)0.0002 (11)0.0026 (11)
C120.0243 (19)0.0261 (18)0.0215 (15)0.0066 (13)0.0013 (13)0.0045 (14)
C130.038 (2)0.040 (2)0.0216 (16)0.0124 (17)0.0079 (15)0.0019 (15)
C140.047 (2)0.049 (2)0.025 (3)0.0076 (16)0.0158 (18)0.0132 (18)
C150.034 (2)0.044 (2)0.044 (2)0.0016 (17)0.0119 (17)0.0187 (19)
C160.030 (2)0.0296 (18)0.0351 (18)0.0032 (15)0.0018 (15)0.0073 (15)
C170.0228 (18)0.0253 (17)0.0213 (15)0.0001 (13)0.0007 (13)0.0013 (13)
O180.0246 (12)0.0231 (11)0.0220 (10)0.0013 (10)0.0031 (9)0.0037 (9)
O190.0596 (17)0.0266 (13)0.0401 (14)0.0064 (12)0.0216 (13)0.0127 (12)
C200.085 (3)0.047 (2)0.026 (2)0.017 (2)0.0180 (18)0.0006 (16)
N210.0210 (15)0.0175 (13)0.0268 (13)0.0006 (11)0.0006 (11)0.0017 (10)
C220.0241 (18)0.0160 (15)0.0180 (13)0.0017 (13)0.0026 (12)0.0008 (12)
C230.025 (2)0.0234 (17)0.0274 (17)0.0017 (15)0.0017 (15)0.0037 (14)
C240.0251 (19)0.0253 (18)0.046 (2)0.0061 (15)0.0007 (16)0.0093 (16)
C250.037 (2)0.0160 (17)0.054 (2)0.0014 (15)0.0021 (18)0.0023 (16)
C260.030 (2)0.0186 (16)0.0453 (19)0.0021 (14)0.0054 (15)0.0001 (14)
C270.0213 (18)0.0237 (17)0.0184 (14)0.0023 (13)0.0035 (12)0.0010 (13)
O280.0177 (11)0.0172 (11)0.0298 (11)0.0004 (9)0.0021 (9)0.0012 (9)
O290.0307 (14)0.0242 (12)0.0463 (14)0.0051 (11)0.0151 (12)0.0019 (11)
C300.034 (2)0.032 (2)0.043 (2)0.0024 (17)0.0071 (17)0.0057 (17)
N310.0195 (14)0.0220 (14)0.0227 (12)0.0004 (12)0.0016 (11)0.0036 (11)
C320.0148 (17)0.0289 (17)0.0192 (14)0.0007 (14)0.0005 (12)0.0018 (13)
C330.0235 (19)0.039 (2)0.0215 (14)0.0012 (15)0.0014 (12)0.0010 (13)
C340.0322 (17)0.056 (2)0.0234 (13)0.0029 (15)0.003 (2)0.015 (3)
C350.039 (2)0.036 (2)0.038 (2)0.0087 (17)0.0002 (17)0.0173 (17)
C360.026 (2)0.0308 (18)0.0329 (18)0.0072 (15)0.0039 (14)0.0073 (15)
C370.0177 (17)0.0253 (16)0.0210 (14)0.0039 (14)0.0012 (12)0.0026 (13)
O380.0324 (14)0.0240 (12)0.0199 (10)0.0061 (10)0.0037 (10)0.0026 (9)
O390.0327 (14)0.0345 (13)0.0246 (11)0.0096 (11)0.0041 (10)0.0056 (10)
C400.051 (3)0.067 (3)0.0206 (16)0.005 (2)0.0059 (16)0.0044 (17)
Na410.0312 (8)0.0212 (6)0.0333 (7)0.0014 (6)0.0016 (6)0.0032 (6)
O420.0501 (16)0.0436 (16)0.047 (2)0.0212 (12)0.0120 (14)0.0133 (14)
O430.0413 (15)0.0226 (13)0.0382 (14)0.0012 (12)0.0097 (12)0.0011 (11)
O440.0456 (19)0.0522 (19)0.0379 (16)0.0228 (15)0.0070 (14)0.0054 (14)
C450.065 (3)0.067 (3)0.075 (3)0.007 (3)0.012 (3)0.009 (3)
C460.052 (3)0.063 (3)0.053 (3)0.006 (2)0.001 (2)0.011 (2)
O470.052 (2)0.0492 (18)0.0470 (16)0.0097 (14)0.0055 (14)0.0090 (14)
Geometric parameters (Å, º) top
Tb1—O82.315 (2)N21—C261.343 (4)
Tb1—O182.302 (2)C22—C231.400 (4)
Tb1—O282.326 (2)C22—C271.517 (4)
Tb1—O382.300 (2)C23—C241.406 (4)
Tb1—N12.553 (2)C23—C301.493 (5)
Tb1—N112.553 (3)C24—C251.359 (4)
Tb1—N212.543 (2)C24—H240.93
Tb1—N312.551 (2)C25—C261.393 (4)
Na41—O92.324 (2)C25—H250.93
Na41—O29i2.390 (3)C26—H260.93
Na41—O39ii2.374 (2)C27—O291.230 (4)
Na41—O422.265 (3)C27—O281.285 (3)
Na41—O432.476 (3)C30—H30A0.96
N1—C61.334 (4)C30—H30B0.96
N1—C21.351 (4)C30—H30C0.96
C2—C31.399 (4)N31—C361.339 (4)
C2—C71.523 (4)N31—C321.341 (4)
C3—C41.387 (4)C32—C331.401 (4)
C3—C101.509 (5)C32—C371.524 (4)
C4—C51.366 (5)C33—C341.389 (4)
C4—H40.93C33—C401.505 (5)
C5—C61.372 (4)C34—C351.374 (5)
C5—H50.93C34—H340.93
C6—H60.93C35—C361.385 (5)
C7—O91.233 (3)C35—H350.93
C7—O81.277 (4)C36—H360.93
C10—H10A0.96C37—O391.221 (3)
C10—H10B0.96C37—O381.283 (3)
C10—H10C0.96C40—H40A0.96
N11—C161.332 (4)C40—H40B0.96
N11—C121.357 (3)C40—H40C0.96
C12—C131.408 (4)O42—H42A0.814 (18)
C12—C171.507 (4)O42—H42B0.814 (18)
C13—C141.392 (5)O43—H43A0.817 (18)
C13—C201.497 (5)O43—H43B0.806 (17)
C14—C151.360 (5)O44—H44A0.80 (4)
C14—H140.93O44—H44B0.80 (4)
C15—C161.388 (4)C45—C461.474 (5)
C15—H150.93C45—H45A0.96
C16—H160.93C45—H45B0.96
C17—O191.226 (4)C45—H45C0.96
C17—O181.279 (3)C46—O471.419 (5)
C20—H20A0.96C46—H46A0.97
C20—H20B0.96C46—H46B0.97
C20—H20C0.96O47—H470.800 (18)
N21—C221.343 (4)
O38—Tb1—O1876.25 (7)C22—N21—C26119.5 (3)
O38—Tb1—O8130.96 (7)C22—N21—Tb1117.91 (18)
O18—Tb1—O8125.56 (7)C26—N21—Tb1122.4 (2)
O38—Tb1—O28124.11 (7)N21—C22—C23122.6 (3)
O18—Tb1—O28128.87 (7)N21—C22—C27113.6 (2)
O8—Tb1—O2879.11 (7)C23—C22—C27123.8 (3)
O38—Tb1—N2178.72 (8)C22—C23—C24116.2 (3)
O18—Tb1—N2177.21 (8)C22—C23—C30124.8 (3)
O8—Tb1—N21143.13 (7)C24—C23—C30118.9 (3)
O28—Tb1—N2164.64 (7)C25—C24—C23121.4 (3)
O38—Tb1—N3164.42 (7)C25—C24—H24119.3
O18—Tb1—N31140.66 (8)C23—C24—H24119.3
O8—Tb1—N3183.12 (8)C24—C25—C26118.6 (3)
O28—Tb1—N3177.95 (8)C24—C25—H25120.7
N21—Tb1—N3195.15 (8)C26—C25—H25120.7
O38—Tb1—N181.03 (8)N21—C26—C25121.6 (3)
O18—Tb1—N178.40 (8)N21—C26—H26119.2
O8—Tb1—N165.02 (7)C25—C26—H26119.2
O28—Tb1—N1144.00 (7)O29—C27—O28124.2 (3)
N21—Tb1—N1151.31 (8)O29—C27—C22120.4 (3)
N31—Tb1—N194.19 (8)O28—C27—C22115.5 (3)
O38—Tb1—N11141.19 (7)C27—O28—Tb1126.68 (18)
O18—Tb1—N1165.17 (7)C27—O29—Na41iii141.3 (2)
O8—Tb1—N1178.69 (7)C23—C30—H30A109.5
O28—Tb1—N1180.56 (8)C23—C30—H30B109.5
N21—Tb1—N1188.57 (8)H30A—C30—H30B109.5
N31—Tb1—N11154.06 (8)C23—C30—H30C109.5
N1—Tb1—N1194.71 (8)H30A—C30—H30C109.5
C6—N1—C2118.7 (3)H30B—C30—H30C109.5
C6—N1—Tb1123.9 (2)C36—N31—C32119.8 (3)
C2—N1—Tb1117.35 (19)C36—N31—Tb1122.3 (2)
N1—C2—C3122.5 (3)C32—N31—Tb1117.86 (18)
N1—C2—C7112.8 (3)N31—C32—C33122.2 (3)
C3—C2—C7124.6 (3)N31—C32—C37114.0 (2)
C4—C3—C2116.4 (3)C33—C32—C37123.7 (3)
C4—C3—C10119.4 (3)C34—C33—C32116.6 (3)
C2—C3—C10124.2 (3)C34—C33—C40119.6 (3)
C5—C4—C3121.3 (3)C32—C33—C40123.8 (3)
C5—C4—H4119.3C35—C34—C33121.4 (4)
C3—C4—H4119.3C35—C34—H34119.3
C4—C5—C6118.6 (3)C33—C34—H34119.3
C4—C5—H5120.7C34—C35—C36118.3 (3)
C6—C5—H5120.7C34—C35—H35120.9
N1—C6—C5122.5 (3)C36—C35—H35120.9
N1—C6—H6118.8N31—C36—C35121.7 (3)
C5—C6—H6118.8N31—C36—H36119.2
O9—C7—O8124.5 (3)C35—C36—H36119.2
O9—C7—C2119.6 (3)O39—C37—O38124.8 (3)
O8—C7—C2115.9 (3)O39—C37—C32121.1 (3)
C7—O8—Tb1125.82 (19)O38—C37—C32114.1 (3)
C7—O9—Na41172.7 (2)C37—O38—Tb1129.57 (19)
C3—C10—H10A109.5C37—O39—Na41iv124.7 (2)
C3—C10—H10B109.5C33—C40—H40A109.5
H10A—C10—H10B109.5C33—C40—H40B109.5
C3—C10—H10C109.5H40A—C40—H40B109.5
H10A—C10—H10C109.5C33—C40—H40C109.5
H10B—C10—H10C109.5H40A—C40—H40C109.5
C16—N11—C12119.3 (3)H40B—C40—H40C109.5
C16—N11—Tb1124.5 (2)O42—Na41—O9104.30 (10)
C12—N11—Tb1116.12 (19)O42—Na41—O39ii87.81 (9)
N11—C12—C13122.5 (3)O9—Na41—O39ii96.24 (9)
N11—C12—C17113.6 (3)O42—Na41—O29i107.23 (11)
C13—C12—C17123.9 (3)O9—Na41—O29i148.47 (10)
C14—C13—C12115.4 (3)O39ii—Na41—O29i84.99 (9)
C14—C13—C20120.9 (3)O42—Na41—O43102.01 (10)
C12—C13—C20123.7 (3)O9—Na41—O4396.01 (9)
C15—C14—C13122.5 (4)O39ii—Na41—O43161.88 (10)
C15—C14—H14118.7O29i—Na41—O4377.59 (9)
C13—C14—H14118.7H42A—O42—H42B117 (4)
C14—C15—C16118.3 (3)H43A—O43—H43B107 (3)
C14—C15—H15120.9H44A—O44—H44B115 (4)
C16—C15—H15120.9C46—C45—H45A109.5
N11—C16—C15121.9 (3)C46—C45—H45B109.5
N11—C16—H16119H45A—C45—H45B109.5
C15—C16—H16119C46—C45—H45C109.5
O19—C17—O18124.6 (3)H45A—C45—H45C109.5
O19—C17—C12119.8 (3)H45B—C45—H45C109.5
O18—C17—C12115.5 (3)O47—C46—C45113.5 (4)
C17—O18—Tb1125.3 (2)O47—C46—H46A108.9
C13—C20—H20A109.5C45—C46—H46A108.9
C13—C20—H20B109.5O47—C46—H46B108.9
H20A—C20—H20B109.5C45—C46—H46B108.9
C13—C20—H20C109.5H46A—C46—H46B107.7
H20A—C20—H20C109.5C46—O47—H47111 (3)
H20B—C20—H20C109.5
Symmetry codes: (i) x+2, y+2, z1/2; (ii) x+3/2, y+1/2, z1/2; (iii) x+2, y+2, z+1/2; (iv) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O42—H42A···O470.81 (2)1.95 (2)2.742 (4)163 (4)
O42—H42B···O38ii0.81 (2)2.01 (2)2.819 (3)169 (4)
O43—H43A···O28i0.82 (2)1.99 (2)2.796 (3)171 (4)
O43—H43A···O29i0.82 (2)2.53 (3)3.050 (3)122 (3)
O43—H43B···O44i0.81 (2)2.02 (2)2.794 (4)162 (3)
O44—H44A···O80.80 (4)2.31 (4)3.103 (4)170 (4)
O44—H44A···O90.80 (4)2.34 (4)2.943 (4)133 (4)
O44—H44B···O430.80 (4)2.07 (4)2.790 (4)151 (4)
O47—H47···O19ii0.80 (2)1.96 (2)2.726 (3)159 (4)
Symmetry codes: (i) x+2, y+2, z1/2; (ii) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[NaTb(C7H6NO2)4(H2O)2]·C2H6O·H2O
Mr826.54
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)174
a, b, c (Å)18.4662 (6), 18.5290 (5), 9.8939 (3)
V3)3385.30 (18)
Z4
Radiation typeMo Kα
µ (mm1)2.17
Crystal size (mm)0.16 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.704, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
44141, 6652, 5995
Rint0.038
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.045, 1.07
No. of reflections6652
No. of parameters460
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.56
Absolute structureFlack (1983), 2234 Friedel pairs
Absolute structure parameter0.001 (6)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Tb1—O82.315 (2)Tb1—N312.551 (2)
Tb1—O182.302 (2)Na41—O92.324 (2)
Tb1—O282.326 (2)Na41—O29i2.390 (3)
Tb1—O382.300 (2)Na41—O39ii2.374 (2)
Tb1—N12.553 (2)Na41—O422.265 (3)
Tb1—N112.553 (3)Na41—O432.476 (3)
Tb1—N212.543 (2)
Symmetry codes: (i) x+2, y+2, z1/2; (ii) x+3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O42—H42A···O470.814 (18)1.95 (2)2.742 (4)163 (4)
O42—H42B···O38ii0.814 (18)2.01 (2)2.819 (3)169 (4)
O43—H43A···O28i0.817 (18)1.986 (19)2.796 (3)171 (4)
O43—H43A···O29i0.817 (18)2.53 (3)3.050 (3)122 (3)
O43—H43B···O44i0.806 (17)2.02 (2)2.794 (4)162 (3)
O44—H44A···O80.80 (4)2.31 (4)3.103 (4)170 (4)
O44—H44A···O90.80 (4)2.34 (4)2.943 (4)133 (4)
O44—H44B···O430.80 (4)2.07 (4)2.790 (4)151 (4)
O47—H47···O19ii0.800 (18)1.96 (2)2.726 (3)159 (4)
Symmetry codes: (i) x+2, y+2, z1/2; (ii) x+3/2, y+1/2, z1/2.
 

Acknowledgements

The X-ray data were collected at the center for Research Facilities at Chungnam National University.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, B., Yang, Y., Yin, Y., Hasi, W. & Mu, Y. (2009). Inorg. Chem. 48, 6034–6043.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGodlewska, P., Macalik, L. & Hanuza, J. (2008). J. Alloys Compd, 451, 236–239.  Web of Science CrossRef CAS Google Scholar
First citationKang, S. K. (2010). Acta Cryst. E66, m1092–m1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y.-I., Seo, H.-J., Kim, J.-H., Lee, Y.-S. & Kang, S. K. (2010). Acta Cryst. E66, m124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLegendziewicz, J. (2002). J. Alloys Compd, 341, 34–44.  Web of Science CrossRef CAS Google Scholar
First citationLis, S., Piskula, Z. & Kubicki, M. (2009). Mater. Chem. Phys. 114, 134–138.  Web of Science CSD CrossRef CAS Google Scholar
First citationOh, Y., Kim, J. Y., Kim, H. J., Lee, T. & Kang, S. K. (2010). Bull. Korean Chem. Soc. 31, 1058–1060.  CrossRef CAS Google Scholar
First citationSeo, H.-J., Ryu, J. S., Nam, K.-S., Kang, S. K., Park, S. Y. & Kim, Y.-I. (2009). Bull. Korean Chem. Soc. 30, 3109–3112.  CSD CrossRef CAS Google Scholar
First citationSeo, H. J., Yoo, K., Song, M., Park, J. S., Jin, S., Kim, Y. I. & Kim, J. (2010). Org. Electron. 11, 564–572.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y., Zhu, C.-Y., Gao, X.-S., You, X.-Y. & Yao, C. (2010). Org. Lett. 12, 2566–2569.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds