organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2,4-Dimeth­­oxy­phen­yl)-1-(3,4-dimeth­­oxy­phen­yl)prop-2-en-1-one

aSchool of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang 325035, People's Republic of China, and bCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, People's Republic of China
*Correspondence e-mail: wujianzhang6@163.com

(Received 17 September 2010; accepted 26 October 2010; online 31 October 2010)

The title compound, C19H20O5, is approximately planar; the dihedral angle between the benzene rings is 3.82 (8)°, and the central propenone C(=O)—C=C plane makes dihedral angles of 1.95 (10) and 3.17 (11)° with the two benzene rings. In the crystal structure, intra- and inter­molecular C—H⋯O hydrogen bonds are observed.

Related literature

For related structures, see: Huang et al. (2010[Huang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518.]); Peng et al. (2010[Peng, J., Xu, H., Li, Z., Zhang, Y. & Wu, J. (2010). Acta Cryst. E66, o1156-o1157.]); Yathirajan et al. (2006[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629-o3630.]); Zhao et al. (2010[Zhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Li, X. X., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388-2393.]). For background to and applications of chalcones, see: Liang et al. (2007[Liang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007). Acta Cryst. E63, o3630.]); Liu et al. (2008[Liu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681-1687.]); Mojzisa et al. (2008[Mojzisa, J., Varinskaa, L., Mojzisovab, G., Kostovac, I. & Mirossaya, L. (2008). Pharmacol. Res. 57, 259-265.]); Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Nowakowska (2007[Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.]); Selvakumar et al. (2007[Selvakumar, N., Kumar, G. S., Azhagan, A. M., Rajulu, G. G., Sharma, S., Kumar, M. S., Das, J., Iqbal, J. & &Trehan, S. (2007). Eur. J. Med. Chem. 42, 538-543.]); Wu et al. (2010[Wu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem. 30, 884-889.]); Wu, Chen et al. (2009[Wu, J. Z., Chen, X., Wang, X. Q., Zhou, P., Liang, G., Li, X. K. & Qiu, P. H. (2009). Chin. Pharm. J. 44, 1830-32.]); Wu, Qiu et al. (2009[Wu, J. Z., Qiu, P. H., Li, Y., Yang, X. F., Li, L. & Ai, C. C. (2009). Chem. Nat. Compd. 45, 572-574.]); Wu, Zhang et al. (2009[Wu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, o2805.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20O5

  • Mr = 328.35

  • Monoclinic, P 21 /n

  • a = 9.031 (5) Å

  • b = 7.962 (5) Å

  • c = 23.631 (14) Å

  • β = 92.827 (10)°

  • V = 1697.0 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.47 × 0.35 × 0.31 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.972

  • 8581 measured reflections

  • 2981 independent reflections

  • 2407 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.04

  • 2981 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.93 2.46 3.363 (3) 162
C8—H8B⋯O4ii 0.96 2.60 3.537 (3) 166
C10—H10⋯O2 0.93 2.25 2.846 (3) 121
C19—H19A⋯O1iii 0.96 2.54 3.443 (3) 157
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcones have the common skeleton of 1,3-diaryl-2-propen-1-ones and belong to the flavonoid family. Chalcones distribute widespread in fruits, vegetables and so on. Like as other flavonoids, chalcones have been reported to possess wide-range biological activities, including antimicrobial, antitumor, anti-inflammatory, antifungal, antioxidant activities and so on (Nowakowska, 2007; Liu et al., 2008; Wu et al., 2010). Moreover, Chalcones belong to nature products and have low toxicity. Owing to its varied pharmacological activities and low toxicity, it has attracted more and more scientists attention and therefore several strategies have been developed to synthesize them (Nowakowska, 2007; Selvakumar et al., 2007; Wu, Chen et al., 2009; Wu, Qiu et al., 2009; Wu, Zhang et al., 2009).

In our effort to develop Chalcones activity, we have synthesized the title chalcone. In order to get detailed information such as the geometrical features and the underlying interaction of the crystal structure, an X-ray study of the title compound was carried out.

Two rings of molecule is approximately planar and the dihedral angle between the two rings is 3.82 (4)°. The average value of exocyclic bond angles [120.8 (5)°] and the bond distances [1.384 (2) Å] in the phenyl rings agree well with the normal values reported in the literature for some analogous structures (Peng et al., 2010; Wu, Chen et al., 2009; Wu, Qiu et al., 2009; Wu, Zhang et al., 2009; Huang et al., 2010; Yathirajan et al., 2006).

Related literature top

For related structures, see: Huang et al. (2010); Peng et al. (2010); Yathirajan et al. (2006); Zhao et al. (2010). For background to and applications of chalcones, see: Liang et al. (2007); Liu et al. (2008); Mojzisa et al. (2008); Nielsen et al. (2005); Nowakowska (2007); Selvakumar et al. (2007); Wu et al. (2010); Wu, Chen et al. (2009); Wu, Qiu et al. (2009); Wu, Zhang et al. (2009).

Experimental top

The title compound was synthesized by Claisene–Schmidt condensation between 2,4-dimethoxybenzaldehyde and 1-(3,4-dimethoxyphenyl)ethanone. 2,4-Dimethoxybenzaldehyde (1 mmol) and 1-(3,4-dimethoxyphenyl)ethanone (1 mmol) were dissolved in ethanol (15 ml). The mixture were controlled at 279 K and then 5 drops NaOH (20%) was added. The reaction was monitored by thin-layer chromatography. 15 ml H2O was added after 10 h and the yellow solid precipitated was washed with water and cold ethanol. It was then dried and purified by column chromatography on silica gel. Single crystals of the title compound were grown in a CH2Cl2/CH3CH2OH mixture (1:1) solution at 279 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 or 0.96 Å, with isotropic displacement parameters 1.2 or 1.5 times Ueq of the parent atom.

Structure description top

Chalcones have the common skeleton of 1,3-diaryl-2-propen-1-ones and belong to the flavonoid family. Chalcones distribute widespread in fruits, vegetables and so on. Like as other flavonoids, chalcones have been reported to possess wide-range biological activities, including antimicrobial, antitumor, anti-inflammatory, antifungal, antioxidant activities and so on (Nowakowska, 2007; Liu et al., 2008; Wu et al., 2010). Moreover, Chalcones belong to nature products and have low toxicity. Owing to its varied pharmacological activities and low toxicity, it has attracted more and more scientists attention and therefore several strategies have been developed to synthesize them (Nowakowska, 2007; Selvakumar et al., 2007; Wu, Chen et al., 2009; Wu, Qiu et al., 2009; Wu, Zhang et al., 2009).

In our effort to develop Chalcones activity, we have synthesized the title chalcone. In order to get detailed information such as the geometrical features and the underlying interaction of the crystal structure, an X-ray study of the title compound was carried out.

Two rings of molecule is approximately planar and the dihedral angle between the two rings is 3.82 (4)°. The average value of exocyclic bond angles [120.8 (5)°] and the bond distances [1.384 (2) Å] in the phenyl rings agree well with the normal values reported in the literature for some analogous structures (Peng et al., 2010; Wu, Chen et al., 2009; Wu, Qiu et al., 2009; Wu, Zhang et al., 2009; Huang et al., 2010; Yathirajan et al., 2006).

For related structures, see: Huang et al. (2010); Peng et al. (2010); Yathirajan et al. (2006); Zhao et al. (2010). For background to and applications of chalcones, see: Liang et al. (2007); Liu et al. (2008); Mojzisa et al. (2008); Nielsen et al. (2005); Nowakowska (2007); Selvakumar et al. (2007); Wu et al. (2010); Wu, Chen et al. (2009); Wu, Qiu et al. (2009); Wu, Zhang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 50% probability level.
(E)-3-(2,4-Dimethoxyphenyl)-1-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C19H20O5F(000) = 696
Mr = 328.35Dx = 1.285 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3028 reflections
a = 9.031 (5) Åθ = 2.4–25.4°
b = 7.962 (5) ŵ = 0.09 mm1
c = 23.631 (14) ÅT = 298 K
β = 92.827 (10)°Block, colourless
V = 1697.0 (17) Å30.47 × 0.35 × 0.31 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2981 independent reflections
Radiation source: fine-focus sealed tube2407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1010
Tmin = 0.958, Tmax = 0.972k = 79
8581 measured reflectionsl = 2821
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.1943P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2981 reflectionsΔρmax = 0.14 e Å3
222 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (16)
Crystal data top
C19H20O5V = 1697.0 (17) Å3
Mr = 328.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.031 (5) ŵ = 0.09 mm1
b = 7.962 (5) ÅT = 298 K
c = 23.631 (14) Å0.47 × 0.35 × 0.31 mm
β = 92.827 (10)°
Data collection top
Bruker APEX area-detector
diffractometer
2981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2407 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.972Rint = 0.021
8581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
2981 reflectionsΔρmin = 0.16 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28103 (12)0.90184 (19)0.42954 (5)0.0819 (4)
O20.70723 (11)0.80481 (15)0.32588 (5)0.0638 (3)
O31.12815 (14)0.4756 (2)0.43350 (6)0.0919 (5)
O41.56960 (12)0.36084 (15)0.31617 (5)0.0671 (4)
O51.51234 (12)0.49882 (14)0.21947 (5)0.0609 (3)
C10.2027 (2)0.8905 (3)0.48040 (9)0.0961 (7)
H1A0.19110.77460.49050.144*
H1B0.10680.94140.47460.144*
H1C0.25740.94790.51040.144*
C20.42024 (16)0.8369 (2)0.42967 (7)0.0580 (4)
C30.49109 (19)0.7598 (3)0.47532 (7)0.0698 (5)
H30.44440.74870.50930.084*
C40.63289 (18)0.6990 (2)0.46998 (7)0.0652 (5)
H40.68010.64670.50110.078*
C50.70830 (16)0.71205 (19)0.42044 (7)0.0509 (4)
C60.63254 (15)0.79194 (18)0.37421 (6)0.0482 (4)
C70.49051 (16)0.8529 (2)0.37918 (7)0.0535 (4)
H70.44170.90520.34840.064*
C80.63986 (18)0.8895 (2)0.27838 (7)0.0652 (5)
H8A0.54860.83450.26700.098*
H8B0.70550.88750.24760.098*
H8C0.61991.00380.28840.098*
C90.85599 (16)0.6388 (2)0.41978 (7)0.0556 (4)
H90.89060.59350.45420.067*
C100.94973 (16)0.6258 (2)0.37837 (7)0.0560 (4)
H100.92390.67030.34290.067*
C111.09404 (17)0.5415 (2)0.38803 (7)0.0577 (4)
C121.19894 (16)0.53612 (18)0.34148 (6)0.0490 (4)
C131.17154 (16)0.61029 (19)0.28937 (7)0.0534 (4)
H131.08320.66820.28220.064*
C141.27305 (17)0.60041 (19)0.24734 (7)0.0557 (4)
H141.25190.65060.21230.067*
C151.40530 (16)0.51638 (18)0.25735 (7)0.0504 (4)
C161.43577 (15)0.44187 (18)0.31052 (6)0.0493 (4)
C171.33443 (16)0.45188 (19)0.35158 (7)0.0515 (4)
H171.35550.40220.38670.062*
C181.61263 (19)0.2977 (2)0.37027 (8)0.0669 (5)
H18A1.61140.38690.39760.100*
H18B1.71090.25200.36960.100*
H18C1.54490.21110.38050.100*
C191.4842 (2)0.5671 (3)0.16424 (7)0.0703 (5)
H19A1.39400.52040.14780.105*
H19B1.56500.54010.14090.105*
H19C1.47450.68690.16680.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0504 (7)0.1228 (11)0.0734 (9)0.0280 (7)0.0114 (6)0.0078 (8)
O20.0466 (6)0.0894 (9)0.0563 (7)0.0110 (5)0.0110 (5)0.0148 (6)
O30.0720 (8)0.1376 (13)0.0679 (9)0.0480 (8)0.0213 (7)0.0313 (8)
O40.0547 (7)0.0841 (8)0.0635 (8)0.0250 (6)0.0118 (6)0.0059 (6)
O50.0566 (7)0.0690 (7)0.0584 (7)0.0066 (5)0.0163 (5)0.0010 (5)
C10.0587 (12)0.152 (2)0.0797 (14)0.0236 (12)0.0227 (10)0.0226 (14)
C20.0426 (8)0.0710 (10)0.0609 (10)0.0082 (7)0.0086 (7)0.0105 (8)
C30.0573 (10)0.0980 (14)0.0555 (10)0.0150 (9)0.0167 (8)0.0014 (9)
C40.0584 (10)0.0837 (12)0.0541 (10)0.0146 (9)0.0096 (8)0.0066 (9)
C50.0459 (8)0.0538 (9)0.0534 (9)0.0033 (7)0.0081 (7)0.0011 (7)
C60.0417 (8)0.0509 (8)0.0526 (9)0.0013 (6)0.0072 (7)0.0032 (7)
C70.0446 (8)0.0592 (9)0.0564 (9)0.0043 (7)0.0001 (7)0.0016 (7)
C80.0560 (10)0.0859 (12)0.0536 (10)0.0003 (9)0.0032 (8)0.0061 (9)
C90.0493 (9)0.0599 (9)0.0578 (10)0.0071 (7)0.0041 (7)0.0040 (7)
C100.0471 (9)0.0633 (10)0.0578 (10)0.0086 (7)0.0059 (7)0.0015 (8)
C110.0508 (9)0.0665 (10)0.0561 (10)0.0120 (7)0.0068 (7)0.0032 (8)
C120.0435 (8)0.0489 (8)0.0548 (9)0.0034 (6)0.0044 (7)0.0046 (7)
C130.0450 (8)0.0538 (9)0.0616 (10)0.0088 (7)0.0045 (7)0.0006 (7)
C140.0555 (9)0.0579 (9)0.0539 (9)0.0054 (7)0.0050 (7)0.0048 (7)
C150.0486 (9)0.0483 (8)0.0549 (9)0.0010 (6)0.0103 (7)0.0056 (7)
C160.0437 (8)0.0475 (8)0.0570 (9)0.0067 (6)0.0059 (7)0.0046 (7)
C170.0491 (8)0.0540 (9)0.0515 (9)0.0065 (7)0.0032 (7)0.0009 (7)
C180.0581 (10)0.0706 (11)0.0717 (12)0.0165 (8)0.0009 (8)0.0029 (9)
C190.0722 (11)0.0831 (12)0.0566 (10)0.0015 (10)0.0141 (8)0.0019 (9)
Geometric parameters (Å, º) top
O1—C21.3593 (19)C8—H8B0.9600
O1—C11.427 (2)C8—H8C0.9600
O2—C61.3586 (18)C9—C101.329 (2)
O2—C81.420 (2)C9—H90.9300
O3—C111.222 (2)C10—C111.473 (2)
O4—C161.3707 (18)C10—H100.9300
O4—C181.410 (2)C11—C121.487 (2)
O5—C151.3567 (17)C12—C131.377 (2)
O5—C191.425 (2)C12—C171.405 (2)
C1—H1A0.9600C13—C141.387 (2)
C1—H1B0.9600C13—H130.9300
C1—H1C0.9600C14—C151.379 (2)
C2—C31.372 (3)C14—H140.9300
C2—C71.385 (2)C15—C161.404 (2)
C3—C41.381 (2)C16—C171.369 (2)
C3—H30.9300C17—H170.9300
C4—C51.387 (2)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.412 (2)C18—H18C0.9600
C5—C91.456 (2)C19—H19A0.9600
C6—C71.382 (2)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C8—H8A0.9600
C2—O1—C1118.09 (15)C9—C10—C11120.80 (15)
C6—O2—C8119.28 (12)C9—C10—H10119.6
C16—O4—C18117.28 (12)C11—C10—H10119.6
C15—O5—C19117.65 (13)O3—C11—C10120.98 (14)
O1—C1—H1A109.5O3—C11—C12119.72 (14)
O1—C1—H1B109.5C10—C11—C12119.30 (14)
H1A—C1—H1B109.5C13—C12—C17118.23 (14)
O1—C1—H1C109.5C13—C12—C11123.79 (14)
H1A—C1—H1C109.5C17—C12—C11117.98 (14)
H1B—C1—H1C109.5C12—C13—C14121.35 (14)
O1—C2—C3124.58 (15)C12—C13—H13119.3
O1—C2—C7115.21 (15)C14—C13—H13119.3
C3—C2—C7120.21 (14)C15—C14—C13120.14 (15)
C2—C3—C4118.93 (16)C15—C14—H14119.9
C2—C3—H3120.5C13—C14—H14119.9
C4—C3—H3120.5O5—C15—C14125.17 (15)
C3—C4—C5123.17 (16)O5—C15—C16115.61 (13)
C3—C4—H4118.4C14—C15—C16119.23 (13)
C5—C4—H4118.4C17—C16—O4125.14 (14)
C4—C5—C6116.59 (14)C17—C16—C15120.09 (14)
C4—C5—C9117.84 (14)O4—C16—C15114.77 (12)
C6—C5—C9125.54 (14)C16—C17—C12120.96 (15)
O2—C6—C7123.12 (14)C16—C17—H17119.5
O2—C6—C5116.28 (13)C12—C17—H17119.5
C7—C6—C5120.60 (14)O4—C18—H18A109.5
C6—C7—C2120.51 (15)O4—C18—H18B109.5
C6—C7—H7119.7H18A—C18—H18B109.5
C2—C7—H7119.7O4—C18—H18C109.5
O2—C8—H8A109.5H18A—C18—H18C109.5
O2—C8—H8B109.5H18B—C18—H18C109.5
H8A—C8—H8B109.5O5—C19—H19A109.5
O2—C8—H8C109.5O5—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19B109.5
H8B—C8—H8C109.5O5—C19—H19C109.5
C10—C9—C5131.00 (16)H19A—C19—H19C109.5
C10—C9—H9114.5H19B—C19—H19C109.5
C5—C9—H9114.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.463.363 (3)162
C8—H8B···O4ii0.962.603.537 (3)166
C10—H10···O20.932.252.846 (3)121
C19—H19A···O1iii0.962.543.443 (3)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H20O5
Mr328.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.031 (5), 7.962 (5), 23.631 (14)
β (°) 92.827 (10)
V3)1697.0 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.47 × 0.35 × 0.31
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.958, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
8581, 2981, 2407
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.04
No. of reflections2981
No. of parameters222
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.932.463.363 (3)162
C8—H8B···O4ii0.962.603.537 (3)166
C10—H10···O20.932.252.846 (3)121
C19—H19A···O1iii0.962.543.443 (3)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+5/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. Y200907137).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, T., Zhang, D., Yang, Q., Wei, X. & Wu, J. (2010). Acta Cryst. E66, o2518.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, G., Tian, J.-L., Zhao, C.-G. & Li, X.-K. (2007). Acta Cryst. E63, o3630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X. L., Xu, Y. J. & Go, M. L. (2008). Eur. J. Med. Chem. 43, 1681–1687.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMojzisa, J., Varinskaa, L., Mojzisovab, G., Kostovac, I. & Mirossaya, L. (2008). Pharmacol. Res. 57, 259–265.  Web of Science PubMed Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, J., Xu, H., Li, Z., Zhang, Y. & Wu, J. (2010). Acta Cryst. E66, o1156–o1157.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSelvakumar, N., Kumar, G. S., Azhagan, A. M., Rajulu, G. G., Sharma, S., Kumar, M. S., Das, J., Iqbal, J. & &Trehan, S. (2007). Eur. J. Med. Chem. 42, 538–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J. Z., Chen, X., Wang, X. Q., Zhou, P., Liang, G., Li, X. K. & Qiu, P. H. (2009). Chin. Pharm. J. 44, 1830–32.  CAS Google Scholar
First citationWu, J. Z., Qiu, P. H., Li, Y., Yang, X. F., Li, L. & Ai, C. C. (2009). Chem. Nat. Compd. 45, 572–574.  Web of Science CrossRef CAS Google Scholar
First citationWu, J. Z., Wang, C., Cai, Y. P., Yang, S. L., Zheng, X. Y., Qiu, P. H., Peng, J., Liang, G. & Li, X. K. (2010). Chin. J. Org. Chem. 30, 884–889.  CAS Google Scholar
First citationWu, J. Z., Zhang, L., Wang, J., Yang, S. L. & Li, X. K. (2009). Acta Cryst. E65, o2805.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o3629–o3630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Li, X. X., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388–2393.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds