organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­hexyl-4-methyl-1H-pyrazol-3(2H)-one monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 29 September 2010; accepted 30 September 2010; online 9 October 2010)

In the title compound, C10H16N2O·H2O, the cyclo­hexane ring is in a chair conformation and its least-squares plane makes a dihedral angle of 53.68 (5)° with the approximately planar pyrazole ring [maximum deviation = 0.034 (1) Å]. Pairs of inter­molecular N—H⋯O hydrogen bonds form inversion dimers between neighbouring pyrazolone mol­ecules, generating R22(8) ring motifs. The pyrazolone and water mol­ecules are further linked by inter­molecular N—H⋯O, C—H⋯O and O—H⋯O hydrogen bonds into two-dimensional sheets parallel to the bc plane.

Related literature

For pyrazole derivatives and their microbial activities, see: Ragavan et al. (2009[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852-3857.], 2010[Ragavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173-1180.]). For related structures, see: Shahani et al. (2009[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249-o3250.], 2010a[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142-o143.],b[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357-o1358.],c[Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482-o1483.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N2O·H2O

  • Mr = 198.26

  • Monoclinic, P 21 /c

  • a = 13.4959 (3) Å

  • b = 6.2497 (1) Å

  • c = 13.9268 (3) Å

  • β = 112.782 (1)°

  • V = 1083.02 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.46 × 0.27 × 0.23 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.981

  • 26403 measured reflections

  • 4715 independent reflections

  • 3863 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.03

  • 4715 reflections

  • 199 parameters

  • All H-atom parameters refined

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1Wi 0.889 (14) 1.866 (14) 2.7513 (9) 173.7 (12)
N2—H1N2⋯O1ii 0.924 (14) 1.842 (13) 2.7552 (9) 169.5 (13)
O1W—H1W1⋯O1 0.889 (17) 1.851 (17) 2.7354 (8) 173.2 (18)
O1W—H1W2⋯O1iii 0.860 (19) 1.961 (19) 2.8007 (9) 165.0 (16)
C5—H5A⋯O1Wi 0.987 (14) 2.503 (15) 3.4161 (12) 153.7 (11)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are used in clinical practice as anti-microbial agents. However, the existence of azole-resistant strains had led to the development of new antimicrobial compounds. In particular, pyrazole derivatives are also extensively studied and used as antimicrobial agents. Pyrazole is an important class of heterocyclic compound and many pyrazole derivatives are reported to have the broad spectrum of biological activities, such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic and antiviral activities. Pyrazole derivatives also act as antiangiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists, kinase inhibitor for treatment of type-2 diabetes, hyperlipidemia, obesity, and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming on the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan et al., 2009, 2010).

The asymmetric unit of the title compound, (Fig. 1), consists of one 5-cyclohexyl-4-methyl-1H-pyrazol-3(2H)-one molecule (C1—C10/N1/N2/O1) and one water molecule. The 3-cyclohexyl-4-methyl-1 H-pyrazol-5-ol undergoes an enol-to-keto tautomerism during the crystallization process (Fig. 2). The cyclohexane ring is in a chair conformation with puckering parameters of Q = 0.5813 (10) Å, Θ = 177.06 (10)° and φ = 164.9 (19)° (Cremer & Pople, 1975), and its least-squares plane is at an angle of 53.68 (5)° with the approximately planar pyrazole ring (C7–C9/N1/N2; maximum deviation of 0.034 (1) Å at atom N2). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c)

In the crystal packing (Fig. 3), pairs of intermolecular N2—H1N2···O1 hydrogen bonds (Table 1) form dimers with neighbouring molecules, generating R22(8) ring motifs (Bernstein et al., 1995). The molecules are further linked by intermolecular N1—H1N1···O1W, C5—H5A···O1W, O1W—H1W1···O1 and O1W—H1W2 ···O1 hydrogen bonds (Table 1) into two-dimensional sheets parallel to the bc plane.

Related literature top

For pyrazole derivatives and their microbial activities, see: Ragavan et al. (2009, 2010). For related structures, see: Shahani et al. (2009, 2010a,b,c). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The compound has been synthesized using the method available in the literature (Ragavan et al., 2010) and recrystallized using the ethanol-chloroform 1:1 mixture. Yield: 77%. m.p.: 205.4–206.2 °C.

Refinement top

All H atoms were located in a difference fourier map and were refined freely [refined distances: N—H = 0.889 (14)–0.923 (14) Å, C—H = 0.93 (12)–1.022 (13) Å and O—H = 0.858 (18)–0.888 (17) Å].

Structure description top

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are used in clinical practice as anti-microbial agents. However, the existence of azole-resistant strains had led to the development of new antimicrobial compounds. In particular, pyrazole derivatives are also extensively studied and used as antimicrobial agents. Pyrazole is an important class of heterocyclic compound and many pyrazole derivatives are reported to have the broad spectrum of biological activities, such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic and antiviral activities. Pyrazole derivatives also act as antiangiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists, kinase inhibitor for treatment of type-2 diabetes, hyperlipidemia, obesity, and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming on the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan et al., 2009, 2010).

The asymmetric unit of the title compound, (Fig. 1), consists of one 5-cyclohexyl-4-methyl-1H-pyrazol-3(2H)-one molecule (C1—C10/N1/N2/O1) and one water molecule. The 3-cyclohexyl-4-methyl-1 H-pyrazol-5-ol undergoes an enol-to-keto tautomerism during the crystallization process (Fig. 2). The cyclohexane ring is in a chair conformation with puckering parameters of Q = 0.5813 (10) Å, Θ = 177.06 (10)° and φ = 164.9 (19)° (Cremer & Pople, 1975), and its least-squares plane is at an angle of 53.68 (5)° with the approximately planar pyrazole ring (C7–C9/N1/N2; maximum deviation of 0.034 (1) Å at atom N2). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c)

In the crystal packing (Fig. 3), pairs of intermolecular N2—H1N2···O1 hydrogen bonds (Table 1) form dimers with neighbouring molecules, generating R22(8) ring motifs (Bernstein et al., 1995). The molecules are further linked by intermolecular N1—H1N1···O1W, C5—H5A···O1W, O1W—H1W1···O1 and O1W—H1W2 ···O1 hydrogen bonds (Table 1) into two-dimensional sheets parallel to the bc plane.

For pyrazole derivatives and their microbial activities, see: Ragavan et al. (2009, 2010). For related structures, see: Shahani et al. (2009, 2010a,b,c). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. Enol-to-keto tautomerism of the title compound during crystallization process.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed two-dimensional arrays parallel to the bc plane. Dashed lines indicate hydrogen bonds.
5-Cyclohexyl-4-methyl-1H-pyrazol-3(2H)-one monohydrate top
Crystal data top
C10H16N2O·H2OF(000) = 432
Mr = 198.26Dx = 1.216 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9296 reflections
a = 13.4959 (3) Åθ = 3.0–34.7°
b = 6.2497 (1) ŵ = 0.09 mm1
c = 13.9268 (3) ÅT = 100 K
β = 112.782 (1)°Block, colourless
V = 1083.02 (4) Å30.46 × 0.27 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4715 independent reflections
Radiation source: fine-focus sealed tube3863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 35.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2021
Tmin = 0.962, Tmax = 0.981k = 1010
26403 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.2027P]
where P = (Fo2 + 2Fc2)/3
4715 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H16N2O·H2OV = 1083.02 (4) Å3
Mr = 198.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4959 (3) ŵ = 0.09 mm1
b = 6.2497 (1) ÅT = 100 K
c = 13.9268 (3) Å0.46 × 0.27 × 0.23 mm
β = 112.782 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4715 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3863 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.981Rint = 0.033
26403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.117All H-atom parameters refined
S = 1.03Δρmax = 0.55 e Å3
4715 reflectionsΔρmin = 0.28 e Å3
199 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47692 (5)0.58283 (9)0.36443 (4)0.01649 (11)
N10.35298 (5)0.86770 (11)0.49923 (5)0.01570 (12)
N20.43455 (5)0.74179 (11)0.49437 (5)0.01560 (12)
C10.22589 (7)1.31323 (13)0.36124 (7)0.02077 (15)
C20.12483 (7)1.45257 (14)0.33028 (7)0.02375 (16)
C30.07738 (7)1.44773 (14)0.41354 (7)0.02298 (16)
C40.05310 (7)1.21880 (14)0.43594 (7)0.02146 (16)
C50.15219 (7)1.07543 (13)0.46434 (7)0.01902 (14)
C60.19853 (6)1.08190 (12)0.37959 (6)0.01492 (13)
C70.29215 (6)0.93410 (11)0.40136 (5)0.01425 (13)
C80.41832 (6)0.71084 (12)0.39255 (5)0.01420 (13)
C90.32907 (6)0.83939 (12)0.33169 (5)0.01507 (13)
C100.28323 (7)0.85575 (15)0.21552 (6)0.02220 (16)
O1W0.39076 (5)0.38748 (10)0.17409 (5)0.02017 (12)
H1A0.2820 (10)1.3696 (19)0.4284 (10)0.026 (3)*
H1B0.2551 (10)1.319 (2)0.3063 (11)0.030 (3)*
H2A0.0700 (11)1.398 (2)0.2637 (11)0.029 (3)*
H2B0.1410 (11)1.602 (2)0.3181 (11)0.033 (3)*
H3A0.1301 (11)1.516 (2)0.4797 (10)0.028 (3)*
H3B0.0083 (10)1.536 (2)0.3909 (10)0.027 (3)*
H4A0.0056 (10)1.161 (2)0.3741 (11)0.029 (3)*
H4B0.0270 (10)1.214 (2)0.4932 (10)0.028 (3)*
H5A0.2079 (11)1.124 (2)0.5307 (11)0.032 (3)*
H5B0.1334 (10)0.922 (2)0.4749 (10)0.025 (3)*
H60.1416 (10)1.028 (2)0.3127 (9)0.020 (3)*
H10A0.2285 (15)0.956 (3)0.1918 (15)0.066 (5)*
H10B0.3351 (14)0.891 (3)0.1877 (13)0.053 (5)*
H10C0.2553 (13)0.719 (3)0.1795 (14)0.060 (5)*
H1N10.3647 (11)0.938 (2)0.5581 (11)0.033 (3)*
H1N20.4682 (11)0.646 (2)0.5476 (11)0.034 (3)*
H1W10.4222 (13)0.442 (3)0.2377 (13)0.046 (4)*
H1W20.4323 (13)0.284 (3)0.1729 (13)0.052 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (3)0.0165 (2)0.0143 (2)0.00467 (19)0.00818 (19)0.00135 (18)
N10.0190 (3)0.0166 (3)0.0112 (2)0.0047 (2)0.0057 (2)0.0004 (2)
N20.0187 (3)0.0162 (3)0.0116 (3)0.0051 (2)0.0056 (2)0.0017 (2)
C10.0210 (3)0.0161 (3)0.0261 (4)0.0025 (3)0.0102 (3)0.0048 (3)
C20.0251 (4)0.0165 (3)0.0282 (4)0.0053 (3)0.0088 (3)0.0047 (3)
C30.0227 (4)0.0170 (3)0.0272 (4)0.0040 (3)0.0074 (3)0.0051 (3)
C40.0197 (3)0.0206 (4)0.0257 (4)0.0018 (3)0.0105 (3)0.0039 (3)
C50.0208 (3)0.0179 (3)0.0211 (3)0.0028 (3)0.0113 (3)0.0010 (3)
C60.0158 (3)0.0139 (3)0.0145 (3)0.0018 (2)0.0053 (2)0.0002 (2)
C70.0166 (3)0.0135 (3)0.0122 (3)0.0015 (2)0.0052 (2)0.0010 (2)
C80.0173 (3)0.0138 (3)0.0118 (3)0.0012 (2)0.0060 (2)0.0009 (2)
C90.0180 (3)0.0156 (3)0.0112 (3)0.0034 (2)0.0052 (2)0.0015 (2)
C100.0275 (4)0.0259 (4)0.0118 (3)0.0087 (3)0.0059 (3)0.0024 (3)
O1W0.0246 (3)0.0216 (3)0.0139 (2)0.0035 (2)0.0071 (2)0.0007 (2)
Geometric parameters (Å, º) top
O1—C81.2880 (9)C4—C51.5290 (11)
N1—C71.3555 (9)C4—H4A0.985 (14)
N1—N21.3760 (9)C4—H4B0.989 (13)
N1—H1N10.889 (14)C5—C61.5354 (10)
N2—C81.3622 (9)C5—H5A0.986 (14)
N2—H1N20.923 (14)C5—H5B1.020 (13)
C1—C21.5326 (12)C6—C71.4982 (10)
C1—C61.5378 (11)C6—H61.009 (12)
C1—H1A1.012 (13)C7—C91.3836 (10)
C1—H1B0.987 (13)C8—C91.4226 (10)
C2—C31.5267 (13)C9—C101.4953 (11)
C2—H2A0.995 (14)C10—H10A0.93 (2)
C2—H2B0.986 (14)C10—H10B0.948 (17)
C3—C41.5267 (13)C10—H10C0.987 (19)
C3—H3A1.013 (14)O1W—H1W10.888 (17)
C3—H3B1.022 (13)O1W—H1W20.858 (18)
C7—N1—N2108.07 (6)H4A—C4—H4B106.1 (11)
C7—N1—H1N1126.7 (9)C4—C5—C6111.20 (7)
N2—N1—H1N1118.0 (9)C4—C5—H5A109.6 (8)
C8—N2—N1108.86 (6)C6—C5—H5A108.8 (8)
C8—N2—H1N2125.1 (9)C4—C5—H5B110.4 (7)
N1—N2—H1N2119.0 (8)C6—C5—H5B109.5 (7)
C2—C1—C6109.64 (7)H5A—C5—H5B107.3 (11)
C2—C1—H1A109.2 (7)C7—C6—C5113.01 (6)
C6—C1—H1A108.4 (7)C7—C6—C1112.05 (6)
C2—C1—H1B110.0 (8)C5—C6—C1110.36 (6)
C6—C1—H1B110.7 (8)C7—C6—H6105.2 (7)
H1A—C1—H1B108.9 (10)C5—C6—H6108.0 (7)
C3—C2—C1111.37 (7)C1—C6—H6107.9 (7)
C3—C2—H2A108.8 (8)N1—C7—C9109.38 (6)
C1—C2—H2A109.1 (8)N1—C7—C6121.81 (6)
C3—C2—H2B109.6 (8)C9—C7—C6128.78 (7)
C1—C2—H2B110.7 (8)O1—C8—N2122.31 (7)
H2A—C2—H2B107.2 (11)O1—C8—C9130.36 (6)
C2—C3—C4111.10 (7)N2—C8—C9107.32 (6)
C2—C3—H3A109.2 (7)C7—C9—C8105.99 (6)
C4—C3—H3A109.7 (8)C7—C9—C10128.25 (7)
C2—C3—H3B110.8 (7)C8—C9—C10125.68 (7)
C4—C3—H3B109.0 (8)C9—C10—H10A111.8 (12)
H3A—C3—H3B106.9 (11)C9—C10—H10B113.4 (10)
C3—C4—C5111.51 (7)H10A—C10—H10B108.0 (15)
C3—C4—H4A109.1 (8)C9—C10—H10C114.0 (11)
C5—C4—H4A109.8 (8)H10A—C10—H10C108.0 (15)
C3—C4—H4B111.4 (8)H10B—C10—H10C101.0 (14)
C5—C4—H4B108.8 (8)H1W1—O1W—H1W2104.0 (14)
C7—N1—N2—C86.34 (8)C5—C6—C7—C9154.47 (8)
C6—C1—C2—C357.93 (10)C1—C6—C7—C980.10 (10)
C1—C2—C3—C456.21 (10)N1—N2—C8—O1173.49 (7)
C2—C3—C4—C554.34 (10)N1—N2—C8—C95.81 (8)
C3—C4—C5—C654.98 (9)N1—C7—C9—C80.75 (9)
C4—C5—C6—C7176.77 (7)C6—C7—C9—C8178.70 (7)
C4—C5—C6—C156.89 (9)N1—C7—C9—C10176.30 (8)
C2—C1—C6—C7175.19 (7)C6—C7—C9—C101.65 (14)
C2—C1—C6—C557.94 (9)O1—C8—C9—C7176.10 (8)
N2—N1—C7—C94.32 (9)N2—C8—C9—C73.12 (8)
N2—N1—C7—C6177.56 (6)O1—C8—C9—C101.05 (14)
C5—C6—C7—N123.26 (10)N2—C8—C9—C10179.74 (8)
C1—C6—C7—N1102.18 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.889 (14)1.866 (14)2.7513 (9)173.7 (12)
N2—H1N2···O1ii0.924 (14)1.842 (13)2.7552 (9)169.5 (13)
O1W—H1W1···O10.889 (17)1.851 (17)2.7354 (8)173.2 (18)
O1W—H1W2···O1iii0.860 (19)1.961 (19)2.8007 (9)165.0 (16)
C5—H5A···O1Wi0.987 (14)2.503 (15)3.4161 (12)153.7 (11)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H16N2O·H2O
Mr198.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.4959 (3), 6.2497 (1), 13.9268 (3)
β (°) 112.782 (1)
V3)1083.02 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.962, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
26403, 4715, 3863
Rint0.033
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.03
No. of reflections4715
No. of parameters199
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.55, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1Wi0.889 (14)1.866 (14)2.7513 (9)173.7 (12)
N2—H1N2···O1ii0.924 (14)1.842 (13)2.7552 (9)169.5 (13)
O1W—H1W1···O10.889 (17)1.851 (17)2.7354 (8)173.2 (18)
O1W—H1W2···O1iii0.860 (19)1.961 (19)2.8007 (9)165.0 (16)
C5—H5A···O1Wi0.987 (14)2.503 (15)3.4161 (12)153.7 (11)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TS thank Universiti Sains Malaysia (USM) for the Research University Grant (grant No. 1001/PFIZIK/811160). TS also thanks USM for the award of a research fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852–3857.  PubMed CAS Google Scholar
First citationRagavan, R. V., Vijayakumar, V. & Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173–1180.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2009). Acta Cryst. E65, o3249–o3250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010a). Acta Cryst. E66, o142–o143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010b). Acta Cryst. E66, o1357–o1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. & Sarveswari, S. (2010c). Acta Cryst. E66, o1482–o1483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds