organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy­quinolin-1-ium nitrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 30 September 2010; accepted 1 October 2010; online 23 October 2010)

In the title salt, C9H8NO+·NO3, the quinoline ring system is essentially planar with a maximum deviation of 0.043 (1) Å. In the crystal, an R22(7) ring motif is formed by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds between the cation and the anion. In addition, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the two ions, generating an R22(8) ring motif. These sets of ring motifs are further linked into a ribbon along the a axis via inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background to and the biological activity of quinoline derivatives, see: Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Reux et al. (2009[Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.]); Sasaki et al. (1998[Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp.3851-3856.]). For related structures, see: Loh et al. (2010a[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2357.],b[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010d). Acta Cryst. E66, o2396.],c[Loh, W.-S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2709.],d[Loh, W.-S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2726-o2727.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8NO+·NO3

  • Mr = 208.17

  • Monoclinic, P 21 /c

  • a = 11.3186 (2) Å

  • b = 6.7568 (1) Å

  • c = 14.5006 (2) Å

  • β = 128.882 (1)°

  • V = 863.27 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.33 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.981

  • 9590 measured reflections

  • 1978 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.095

  • S = 1.08

  • 1978 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O4i 0.874 (18) 1.944 (18) 2.8112 (12) 171.6 (15)
O1—H1O1⋯O4ii 0.86 (3) 1.83 (3) 2.6794 (16) 169 (2)
C2—H2A⋯O3iii 0.93 2.53 3.106 (2) 120
C2—H2A⋯O3i 0.93 2.31 3.0247 (14) 133
C8—H8A⋯O2ii 0.93 2.40 3.249 (2) 152
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b,c,d). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Herein we report the synthesis of 8-hydroxyquinolin-1-ium nitrate.

The asymmetric unit of the title compound (Fig. 1) consists of one 8-hydroxyquinolin-1-ium cation (C1–C10/N1/N2) and one nitrate anion (O2–O4/N2). One proton is transferred from the hydroxyl group of nitric acid to the atom N1 of 8-hydroxyquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.043 (1) Å at atom C4. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010a,b,c,d).

In the crystal packing (Fig. 2), R22(7) ring motifs are formed by intermolecular N1—H1N1···O4 and C2—H2A···O3 hydrogen bonds (Table 1). In addition, pairs of intermolecular O1—H1O1···O4 and C8—H8A···O2 hydrogen bonds (Table 1) link the cations and anions together to generate another set of R22(8) ring motifs. These sets of ring motifs are further linked into ribbons along the a axis via intermolecular C2—H2A···O3 hydrogen bonds (Table 1).

Related literature top

For background to and the biological activity of quinoline derivatives, see: Campbell et al. (1988); Markees et al. (1970); Michael (1997); Morimoto et al. (1991); Reux et al. (2009); Sasaki et al. (1998). For related structures, see: Loh et al. (2010a,b,c,d). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A few drops of nitric acid were added to a hot methanol solution (20 ml) of 8-hydroxyquinoline (29 mg, Merck) which had been warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.

Refinement top

Atoms H1N1 and H1O1 were located from the difference Fourier map and were refined freely [N—H = 0.874 (18) Å and O—H = 0.86 (2) Å]. The remaining H atoms were positioned geometrically with the bond length of C—H being 0.93 Å and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b,c,d). Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Herein we report the synthesis of 8-hydroxyquinolin-1-ium nitrate.

The asymmetric unit of the title compound (Fig. 1) consists of one 8-hydroxyquinolin-1-ium cation (C1–C10/N1/N2) and one nitrate anion (O2–O4/N2). One proton is transferred from the hydroxyl group of nitric acid to the atom N1 of 8-hydroxyquinoline during the crystallization, resulting in the formation of salt. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.043 (1) Å at atom C4. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Loh et al., 2010a,b,c,d).

In the crystal packing (Fig. 2), R22(7) ring motifs are formed by intermolecular N1—H1N1···O4 and C2—H2A···O3 hydrogen bonds (Table 1). In addition, pairs of intermolecular O1—H1O1···O4 and C8—H8A···O2 hydrogen bonds (Table 1) link the cations and anions together to generate another set of R22(8) ring motifs. These sets of ring motifs are further linked into ribbons along the a axis via intermolecular C2—H2A···O3 hydrogen bonds (Table 1).

For background to and the biological activity of quinoline derivatives, see: Campbell et al. (1988); Markees et al. (1970); Michael (1997); Morimoto et al. (1991); Reux et al. (2009); Sasaki et al. (1998). For related structures, see: Loh et al. (2010a,b,c,d). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis.
8-Hydroxyquinolin-1-ium nitrate top
Crystal data top
C9H8NO+·NO3F(000) = 432
Mr = 208.17Dx = 1.602 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5491 reflections
a = 11.3186 (2) Åθ = 3.5–37.4°
b = 6.7568 (1) ŵ = 0.13 mm1
c = 14.5006 (2) ÅT = 100 K
β = 128.882 (1)°Block, colourless
V = 863.27 (2) Å30.33 × 0.21 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1978 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.959, Tmax = 0.981k = 88
9590 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.3584P]
where P = (Fo2 + 2Fc2)/3
1978 reflections(Δ/σ)max < 0.001
144 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H8NO+·NO3V = 863.27 (2) Å3
Mr = 208.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3186 (2) ŵ = 0.13 mm1
b = 6.7568 (1) ÅT = 100 K
c = 14.5006 (2) Å0.33 × 0.21 × 0.15 mm
β = 128.882 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1978 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1754 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.981Rint = 0.023
9590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.39 e Å3
1978 reflectionsΔρmin = 0.22 e Å3
144 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07908 (9)0.09986 (13)0.12784 (7)0.0167 (2)
N10.13600 (11)0.10475 (14)0.15595 (8)0.0139 (2)
C10.01506 (13)0.11333 (16)0.25398 (10)0.0138 (2)
C20.24612 (13)0.10646 (17)0.16438 (10)0.0163 (2)
H2A0.34650.09530.09610.020*
C30.21344 (13)0.12476 (17)0.27446 (10)0.0171 (2)
H3A0.29130.12790.27950.021*
C40.06498 (13)0.13802 (17)0.37464 (10)0.0158 (2)
H4A0.04240.15460.44790.019*
C50.05450 (13)0.12672 (16)0.36803 (10)0.0144 (2)
C60.21000 (13)0.12812 (17)0.46913 (10)0.0171 (2)
H6A0.23830.13390.54470.020*
C70.31841 (13)0.12080 (18)0.45453 (10)0.0186 (3)
H7A0.42040.12090.52100.022*
C80.27878 (13)0.11312 (18)0.34078 (11)0.0177 (2)
H8A0.35470.11140.33340.021*
C90.12859 (13)0.10813 (16)0.24054 (10)0.0148 (2)
O20.52824 (10)0.47945 (18)0.24518 (8)0.0321 (3)
O30.53907 (10)0.42125 (15)0.39694 (8)0.0239 (2)
O40.74765 (9)0.44023 (13)0.41965 (7)0.0179 (2)
N20.60151 (11)0.44742 (16)0.35208 (9)0.0177 (2)
H1N10.1627 (19)0.091 (2)0.0852 (16)0.028 (4)*
H1O10.145 (2)0.056 (3)0.1211 (17)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0159 (4)0.0230 (4)0.0140 (4)0.0024 (3)0.0108 (3)0.0012 (3)
N10.0159 (5)0.0145 (5)0.0124 (4)0.0001 (4)0.0095 (4)0.0002 (3)
C10.0161 (5)0.0114 (5)0.0137 (5)0.0003 (4)0.0094 (4)0.0003 (4)
C20.0153 (5)0.0169 (5)0.0167 (5)0.0007 (4)0.0100 (4)0.0008 (4)
C30.0189 (5)0.0183 (6)0.0200 (5)0.0007 (4)0.0150 (5)0.0012 (4)
C40.0216 (6)0.0138 (5)0.0150 (5)0.0000 (4)0.0130 (5)0.0003 (4)
C50.0183 (5)0.0114 (5)0.0146 (5)0.0001 (4)0.0108 (5)0.0000 (4)
C60.0198 (5)0.0163 (5)0.0133 (5)0.0006 (4)0.0095 (5)0.0004 (4)
C70.0152 (5)0.0191 (6)0.0160 (5)0.0010 (4)0.0071 (4)0.0004 (4)
C80.0163 (5)0.0186 (6)0.0203 (6)0.0008 (4)0.0126 (5)0.0003 (4)
C90.0184 (5)0.0132 (5)0.0147 (5)0.0010 (4)0.0113 (5)0.0010 (4)
O20.0186 (4)0.0607 (7)0.0157 (4)0.0030 (4)0.0101 (4)0.0078 (4)
O30.0169 (4)0.0395 (5)0.0197 (4)0.0012 (4)0.0137 (4)0.0007 (4)
O40.0121 (4)0.0260 (5)0.0155 (4)0.0000 (3)0.0087 (3)0.0005 (3)
N20.0141 (4)0.0238 (5)0.0159 (5)0.0002 (4)0.0098 (4)0.0006 (4)
Geometric parameters (Å, º) top
O1—C91.3558 (13)C4—H4A0.9300
O1—H1O10.86 (2)C5—C61.4170 (15)
N1—C21.3266 (15)C6—C71.3707 (16)
N1—C11.3770 (14)C6—H6A0.9300
N1—H1N10.874 (18)C7—C81.4126 (16)
C1—C91.4160 (16)C7—H7A0.9300
C1—C51.4196 (15)C8—C91.3790 (16)
C2—C31.3995 (16)C8—H8A0.9300
C2—H2A0.9300O2—N21.2343 (13)
C3—C41.3701 (16)O3—N21.2372 (13)
C3—H3A0.9300O4—N21.2899 (12)
C4—C51.4166 (16)
C9—O1—H1O1114.7 (13)C4—C5—C1117.82 (10)
C2—N1—C1122.28 (10)C6—C5—C1118.93 (10)
C2—N1—H1N1117.2 (11)C7—C6—C5119.40 (10)
C1—N1—H1N1120.5 (11)C7—C6—H6A120.3
N1—C1—C9120.19 (10)C5—C6—H6A120.3
N1—C1—C5118.95 (10)C6—C7—C8121.52 (11)
C9—C1—C5120.86 (10)C6—C7—H7A119.2
N1—C2—C3120.99 (10)C8—C7—H7A119.2
N1—C2—H2A119.5C9—C8—C7120.63 (11)
C3—C2—H2A119.5C9—C8—H8A119.7
C4—C3—C2119.03 (10)C7—C8—H8A119.7
C4—C3—H3A120.5O1—C9—C8125.09 (10)
C2—C3—H3A120.5O1—C9—C1116.28 (10)
C3—C4—C5120.81 (10)C8—C9—C1118.62 (10)
C3—C4—H4A119.6O2—N2—O3122.01 (10)
C5—C4—H4A119.6O2—N2—O4119.39 (9)
C4—C5—C6123.24 (10)O3—N2—O4118.60 (9)
C2—N1—C1—C9179.06 (10)C4—C5—C6—C7178.64 (11)
C2—N1—C1—C50.72 (16)C1—C5—C6—C71.38 (16)
C1—N1—C2—C32.44 (17)C5—C6—C7—C80.40 (18)
N1—C2—C3—C40.98 (17)C6—C7—C8—C91.52 (18)
C2—C3—C4—C52.14 (17)C7—C8—C9—O1179.71 (11)
C3—C4—C5—C6176.26 (11)C7—C8—C9—C10.77 (17)
C3—C4—C5—C13.72 (16)N1—C1—C9—O11.69 (15)
N1—C1—C5—C42.31 (15)C5—C1—C9—O1178.53 (10)
C9—C1—C5—C4177.91 (10)N1—C1—C9—C8178.75 (10)
N1—C1—C5—C6177.67 (10)C5—C1—C9—C81.03 (16)
C9—C1—C5—C62.11 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.874 (18)1.944 (18)2.8112 (12)171.6 (15)
O1—H1O1···O4ii0.86 (3)1.83 (3)2.6794 (16)169 (2)
C2—H2A···O3iii0.932.533.106 (2)120
C2—H2A···O3i0.932.313.0247 (14)133
C8—H8A···O2ii0.932.403.249 (2)152
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8NO+·NO3
Mr208.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.3186 (2), 6.7568 (1), 14.5006 (2)
β (°) 128.882 (1)
V3)863.27 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.33 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.959, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9590, 1978, 1754
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.08
No. of reflections1978
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.874 (18)1.944 (18)2.8112 (12)171.6 (15)
O1—H1O1···O4ii0.86 (3)1.83 (3)2.6794 (16)169 (2)
C2—H2A···O3iii0.932.533.106 (2)120
C2—H2A···O3i0.932.313.0247 (14)133.3
C8—H8A···O2ii0.932.403.249 (2)152
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL thanks USM for the award of a USM fellowship and HM thanks USM for the award of a postdoctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLoh, W.-S., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2726–o2727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010c). Acta Cryst. E66, o2357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010d). Acta Cryst. E66, o2396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationReux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp.3851–3856.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds