metal-organic compounds
Iodidobis(η5-pentamethylcyclopentadienyl)titanium(III)
aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: monty.kessler@catalysis.de
In the title complex molecule, [Ti(C10H15)2I], the paramagnetic Ti(III) atom is coordinated by two pentamethylcyclopentadienyl (Cp*) ligands and one iodide ligand. The two Cp* ligands are in a staggered orientation. The coordination geometry at the titanium atom can be described as distorted trigonal-planar.
Related literature
For related bis(η5-pentamethylcyclopentadienyl)titanium(III) halides, Cp*2TiX, see: Pattiasina et al. (1987) (X = Cl); Herzog et al. (1994) (X = F). For the molecular structure of Cp*2TiF, see: Lukens et al. (1996). For bis(η5-tetramethylcyclopentadienyl)titanium(III) halides, see: Troyanov et al. (1993).
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2005); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810040110/is2610sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810040110/is2610Isup2.hkl
A mixture of Cp*2TiF (0.350 g, 1.04 mmol) and LiI (0.223 g, 1.67 mmol) was suspended in 25 ml diethyl ether and stirred at room temperature overnight. The solvent was removed in vacuo and the dark green residue was extracted with n-hexane. The filtrate was concentrated to dryness in vacuo and the solid residue was recrystallized from n-pentane to give dark blue-green needles. Yield: 0.431 g (0.97 mmol, 93%).
All H atoms were placed in idealized positions with d(C—H) = 0.98 and refined using a riding model, with Uiso(H) fixed at 1.5Ueq(C).
The title compound, Cp*2TiI, was first synthesized by Pattiasina et al. (1987) via salt metathesis of Cp*2TiCl. Using Cp*2TiF as starting material we obtained Cp*2TiI in high yields and single crystals by recrystallization from n-pentane at -78 °C. The X-ray η5-coordination mode. The Cp*-ligands are in a staggered orientation. The coordination geometry at the titanium is distorted trigonal planar (CE1—Ti1—CE2 = 142.4, CE1—Ti1—I1 = 109.2 and CE2—Ti1—I1 = 108.4°; CE1 = centroid of C1—C5 and CE2 = centroid of C11—C15). A similar distortion is observed for the known bis(η5-pentamethylcyclopentadienyl)-titanium(III) halides Cp*2TiF (Herzog et al., 1994) and Cp*2TiCl (Pattiasina et al., 1987). The Ti1—I1 bond length of 2.7508 (3) Å is close to that in the related complex (η5-C5HMe4)2TiI [Ti1—I1 = 2.759 (2) Å] (Troyanov et al., 1993).
analysis of Cp*2TiI confirms its monomeric structure probably due to the steric demand of the pentamethylcyclopentadienyl ligands. The trivalent paramagnetic titanium center is coordinated by one iodide ligand and by two Cp*-ligands in aFor related bis(η5-pentamethylcyclopentadienyl)titanium(III) halides, Cp*2TiX, see: Pattiasina et al. (1987) (X = Cl); Herzog et al. (1994) (X = F). For the molecular structure of Cp*2TiF, see: Lukens et al. (1996). For bis(η5-tetramethylcyclopentadienyl)titanium(III) halides, see: Troyanov et al. (1993).
Data collection: X-AREA (Stoe & Cie, 2005); cell
X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level. |
[Ti(C10H15)2I] | F(000) = 900 |
Mr = 445.24 | Dx = 1.482 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5078 reflections |
a = 8.5513 (3) Å | θ = 1.8–29.6° |
b = 14.1353 (5) Å | µ = 1.97 mm−1 |
c = 16.9547 (6) Å | T = 150 K |
β = 103.158 (3)° | Needle, dark blue-green |
V = 1995.60 (12) Å3 | 0.60 × 0.27 × 0.20 mm |
Z = 4 |
Stoe IPDS II diffractometer | 5395 independent reflections |
Radiation source: fine-focus sealed tube | 3921 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 29.2°, θmin = 1.9° |
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005) | h = −11→11 |
Tmin = 0.451, Tmax = 0.875 | k = −19→19 |
23992 measured reflections | l = −22→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.052 | H-atom parameters constrained |
S = 0.86 | w = 1/[σ2(Fo2) + (0.0282P)2] where P = (Fo2 + 2Fc2)/3 |
5395 reflections | (Δ/σ)max = 0.001 |
209 parameters | Δρmax = 0.65 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Ti(C10H15)2I] | V = 1995.60 (12) Å3 |
Mr = 445.24 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.5513 (3) Å | µ = 1.97 mm−1 |
b = 14.1353 (5) Å | T = 150 K |
c = 16.9547 (6) Å | 0.60 × 0.27 × 0.20 mm |
β = 103.158 (3)° |
Stoe IPDS II diffractometer | 5395 independent reflections |
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005) | 3921 reflections with I > 2σ(I) |
Tmin = 0.451, Tmax = 0.875 | Rint = 0.036 |
23992 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.052 | H-atom parameters constrained |
S = 0.86 | Δρmax = 0.65 e Å−3 |
5395 reflections | Δρmin = −0.43 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1702 (2) | 0.69392 (15) | 0.10016 (11) | 0.0231 (4) | |
C2 | 0.1239 (2) | 0.78575 (13) | 0.07150 (11) | 0.0200 (4) | |
C3 | 0.2412 (2) | 0.82110 (13) | 0.03163 (11) | 0.0207 (4) | |
C4 | 0.3572 (2) | 0.74932 (15) | 0.03365 (12) | 0.0239 (4) | |
C5 | 0.3119 (2) | 0.67040 (14) | 0.07461 (13) | 0.0253 (4) | |
C6 | 0.0717 (3) | 0.62684 (17) | 0.13752 (15) | 0.0376 (5) | |
H6A | 0.0090 | 0.6627 | 0.1691 | 0.056* | |
H6B | 0.1430 | 0.5826 | 0.1732 | 0.056* | |
H6C | −0.0012 | 0.5914 | 0.0947 | 0.056* | |
C7 | −0.0419 (2) | 0.82456 (16) | 0.06611 (14) | 0.0310 (5) | |
H7A | −0.1202 | 0.7868 | 0.0276 | 0.047* | |
H7B | −0.0464 | 0.8904 | 0.0476 | 0.047* | |
H7C | −0.0673 | 0.8218 | 0.1196 | 0.047* | |
C8 | 0.2339 (3) | 0.91097 (16) | −0.01645 (13) | 0.0309 (5) | |
H8A | 0.3413 | 0.9391 | −0.0071 | 0.046* | |
H8B | 0.1601 | 0.9555 | 0.0006 | 0.046* | |
H8C | 0.1954 | 0.8969 | −0.0742 | 0.046* | |
C9 | 0.4955 (3) | 0.7556 (2) | −0.00683 (16) | 0.0401 (6) | |
H9A | 0.4566 | 0.7465 | −0.0653 | 0.060* | |
H9B | 0.5745 | 0.7065 | 0.0149 | 0.060* | |
H9C | 0.5460 | 0.8180 | 0.0035 | 0.060* | |
C10 | 0.3827 (3) | 0.57250 (16) | 0.07894 (18) | 0.0431 (6) | |
H10A | 0.3171 | 0.5328 | 0.0367 | 0.065* | |
H10B | 0.3848 | 0.5449 | 0.1322 | 0.065* | |
H10C | 0.4924 | 0.5761 | 0.0708 | 0.065* | |
C11 | 0.2539 (2) | 0.87291 (14) | 0.26881 (12) | 0.0220 (4) | |
C12 | 0.2530 (2) | 0.94111 (14) | 0.20774 (12) | 0.0218 (4) | |
C13 | 0.4142 (2) | 0.96209 (13) | 0.20569 (12) | 0.0223 (4) | |
C14 | 0.5137 (2) | 0.91117 (14) | 0.26920 (13) | 0.0246 (4) | |
C15 | 0.4160 (2) | 0.85547 (14) | 0.30742 (12) | 0.0242 (4) | |
C16 | 0.1122 (3) | 0.83399 (18) | 0.29660 (16) | 0.0381 (6) | |
H16A | 0.0946 | 0.8713 | 0.3425 | 0.057* | |
H16B | 0.1330 | 0.7679 | 0.3133 | 0.057* | |
H16C | 0.0164 | 0.8373 | 0.2521 | 0.057* | |
C17 | 0.1126 (3) | 1.00169 (16) | 0.16858 (16) | 0.0369 (5) | |
H17A | 0.0125 | 0.9693 | 0.1711 | 0.055* | |
H17B | 0.1151 | 1.0130 | 0.1119 | 0.055* | |
H17C | 0.1185 | 1.0623 | 0.1972 | 0.055* | |
C18 | 0.4682 (3) | 1.03754 (16) | 0.15589 (15) | 0.0381 (5) | |
H18A | 0.5041 | 1.0930 | 0.1899 | 0.057* | |
H18B | 0.3788 | 1.0554 | 0.1112 | 0.057* | |
H18C | 0.5572 | 1.0136 | 0.1340 | 0.057* | |
C19 | 0.6924 (2) | 0.92654 (18) | 0.29768 (18) | 0.0445 (6) | |
H19A | 0.7412 | 0.9294 | 0.2507 | 0.067* | |
H19B | 0.7397 | 0.8741 | 0.3329 | 0.067* | |
H19C | 0.7122 | 0.9861 | 0.3278 | 0.067* | |
C20 | 0.4730 (3) | 0.79563 (19) | 0.38119 (14) | 0.0437 (6) | |
H20A | 0.5827 | 0.7739 | 0.3832 | 0.065* | |
H20B | 0.4020 | 0.7408 | 0.3789 | 0.065* | |
H20C | 0.4716 | 0.8330 | 0.4297 | 0.065* | |
I1 | 0.651593 (15) | 0.699360 (11) | 0.219599 (10) | 0.03611 (5) | |
Ti1 | 0.37146 (3) | 0.80034 (2) | 0.169855 (19) | 0.01689 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0265 (8) | 0.0231 (9) | 0.0196 (9) | −0.0047 (8) | 0.0047 (7) | −0.0004 (9) |
C2 | 0.0195 (7) | 0.0234 (10) | 0.0167 (9) | −0.0002 (7) | 0.0032 (6) | −0.0020 (7) |
C3 | 0.0237 (8) | 0.0228 (10) | 0.0146 (8) | −0.0018 (7) | 0.0023 (7) | 0.0009 (7) |
C4 | 0.0244 (9) | 0.0291 (11) | 0.0195 (10) | 0.0003 (7) | 0.0077 (7) | −0.0042 (8) |
C5 | 0.0296 (9) | 0.0219 (10) | 0.0235 (10) | 0.0026 (7) | 0.0039 (8) | −0.0041 (8) |
C6 | 0.0409 (12) | 0.0350 (13) | 0.0372 (14) | −0.0143 (10) | 0.0098 (10) | 0.0050 (10) |
C7 | 0.0192 (8) | 0.0413 (13) | 0.0307 (12) | 0.0032 (8) | 0.0018 (8) | −0.0043 (9) |
C8 | 0.0388 (11) | 0.0311 (11) | 0.0209 (11) | −0.0015 (9) | 0.0031 (8) | 0.0079 (9) |
C9 | 0.0353 (11) | 0.0577 (16) | 0.0329 (13) | 0.0027 (11) | 0.0195 (10) | −0.0042 (12) |
C10 | 0.0495 (13) | 0.0252 (12) | 0.0514 (16) | 0.0078 (10) | 0.0048 (12) | −0.0082 (11) |
C11 | 0.0245 (8) | 0.0241 (10) | 0.0196 (10) | −0.0020 (7) | 0.0096 (7) | −0.0052 (8) |
C12 | 0.0240 (8) | 0.0210 (9) | 0.0192 (10) | 0.0044 (7) | 0.0029 (7) | −0.0038 (8) |
C13 | 0.0298 (9) | 0.0175 (9) | 0.0211 (10) | −0.0025 (7) | 0.0086 (8) | −0.0017 (8) |
C14 | 0.0215 (8) | 0.0242 (10) | 0.0269 (11) | −0.0005 (7) | 0.0030 (7) | −0.0053 (8) |
C15 | 0.0324 (10) | 0.0217 (10) | 0.0169 (10) | 0.0020 (8) | 0.0022 (8) | 0.0003 (8) |
C16 | 0.0411 (12) | 0.0407 (13) | 0.0405 (14) | −0.0130 (10) | 0.0260 (11) | −0.0125 (11) |
C17 | 0.0380 (11) | 0.0302 (12) | 0.0378 (14) | 0.0153 (10) | −0.0013 (10) | −0.0073 (10) |
C18 | 0.0557 (14) | 0.0270 (12) | 0.0348 (13) | −0.0109 (10) | 0.0173 (11) | 0.0016 (10) |
C19 | 0.0242 (10) | 0.0397 (14) | 0.0631 (18) | −0.0047 (9) | −0.0033 (10) | −0.0152 (13) |
C20 | 0.0665 (15) | 0.0384 (13) | 0.0216 (11) | 0.0077 (12) | 0.0008 (10) | 0.0085 (11) |
I1 | 0.02397 (6) | 0.03285 (8) | 0.04797 (10) | 0.01242 (6) | 0.00080 (5) | −0.00121 (8) |
Ti1 | 0.01598 (12) | 0.01732 (15) | 0.01722 (15) | 0.00272 (12) | 0.00345 (11) | 0.00109 (14) |
C1—C2 | 1.411 (3) | C11—C12 | 1.414 (3) |
C1—C5 | 1.416 (3) | C11—C16 | 1.501 (3) |
C1—C6 | 1.501 (3) | C11—Ti1 | 2.3760 (18) |
C1—Ti1 | 2.3864 (19) | C12—C13 | 1.417 (3) |
C2—C3 | 1.422 (2) | C12—C17 | 1.501 (3) |
C2—C7 | 1.504 (2) | C12—Ti1 | 2.3862 (19) |
C2—Ti1 | 2.3869 (17) | C13—C14 | 1.409 (3) |
C3—C4 | 1.413 (3) | C13—C18 | 1.497 (3) |
C3—C8 | 1.503 (3) | C13—Ti1 | 2.3726 (19) |
C3—Ti1 | 2.3729 (19) | C14—C15 | 1.409 (3) |
C4—C5 | 1.414 (3) | C14—C19 | 1.509 (3) |
C4—C9 | 1.500 (3) | C14—Ti1 | 2.416 (2) |
C4—Ti1 | 2.396 (2) | C15—C20 | 1.497 (3) |
C5—C10 | 1.506 (3) | C15—Ti1 | 2.406 (2) |
C5—Ti1 | 2.422 (2) | C16—H16A | 0.9800 |
C6—H6A | 0.9800 | C16—H16B | 0.9800 |
C6—H6B | 0.9800 | C16—H16C | 0.9800 |
C6—H6C | 0.9800 | C17—H17A | 0.9800 |
C7—H7A | 0.9800 | C17—H17B | 0.9800 |
C7—H7B | 0.9800 | C17—H17C | 0.9800 |
C7—H7C | 0.9800 | C18—H18A | 0.9800 |
C8—H8A | 0.9800 | C18—H18B | 0.9800 |
C8—H8B | 0.9800 | C18—H18C | 0.9800 |
C8—H8C | 0.9800 | C19—H19A | 0.9800 |
C9—H9A | 0.9800 | C19—H19B | 0.9800 |
C9—H9B | 0.9800 | C19—H19C | 0.9800 |
C9—H9C | 0.9800 | C20—H20A | 0.9800 |
C10—H10A | 0.9800 | C20—H20B | 0.9800 |
C10—H10B | 0.9800 | C20—H20C | 0.9800 |
C10—H10C | 0.9800 | I1—Ti1 | 2.7508 (3) |
C11—C15 | 1.413 (3) | ||
C2—C1—C5 | 107.64 (16) | C11—C15—Ti1 | 71.66 (11) |
C2—C1—C6 | 125.89 (18) | C20—C15—Ti1 | 125.22 (15) |
C5—C1—C6 | 125.6 (2) | C11—C16—H16A | 109.5 |
C2—C1—Ti1 | 72.83 (11) | C11—C16—H16B | 109.5 |
C5—C1—Ti1 | 74.25 (11) | H16A—C16—H16B | 109.5 |
C6—C1—Ti1 | 126.88 (14) | C11—C16—H16C | 109.5 |
C1—C2—C3 | 108.31 (15) | H16A—C16—H16C | 109.5 |
C1—C2—C7 | 122.90 (17) | H16B—C16—H16C | 109.5 |
C3—C2—C7 | 126.92 (18) | C12—C17—H17A | 109.5 |
C1—C2—Ti1 | 72.79 (10) | C12—C17—H17B | 109.5 |
C3—C2—Ti1 | 72.08 (10) | H17A—C17—H17B | 109.5 |
C7—C2—Ti1 | 133.24 (13) | C12—C17—H17C | 109.5 |
C4—C3—C2 | 107.64 (17) | H17A—C17—H17C | 109.5 |
C4—C3—C8 | 124.22 (18) | H17B—C17—H17C | 109.5 |
C2—C3—C8 | 127.44 (17) | C13—C18—H18A | 109.5 |
C4—C3—Ti1 | 73.64 (11) | C13—C18—H18B | 109.5 |
C2—C3—Ti1 | 73.16 (11) | H18A—C18—H18B | 109.5 |
C8—C3—Ti1 | 126.33 (13) | C13—C18—H18C | 109.5 |
C3—C4—C5 | 108.02 (17) | H18A—C18—H18C | 109.5 |
C3—C4—C9 | 124.64 (19) | H18B—C18—H18C | 109.5 |
C5—C4—C9 | 127.19 (19) | C14—C19—H19A | 109.5 |
C3—C4—Ti1 | 71.88 (11) | C14—C19—H19B | 109.5 |
C5—C4—Ti1 | 73.95 (12) | H19A—C19—H19B | 109.5 |
C9—C4—Ti1 | 123.42 (14) | C14—C19—H19C | 109.5 |
C4—C5—C1 | 108.31 (17) | H19A—C19—H19C | 109.5 |
C4—C5—C10 | 126.7 (2) | H19B—C19—H19C | 109.5 |
C1—C5—C10 | 124.3 (2) | C15—C20—H20A | 109.5 |
C4—C5—Ti1 | 71.92 (11) | C15—C20—H20B | 109.5 |
C1—C5—Ti1 | 71.50 (11) | H20A—C20—H20B | 109.5 |
C10—C5—Ti1 | 130.03 (16) | C15—C20—H20C | 109.5 |
C1—C6—H6A | 109.5 | H20A—C20—H20C | 109.5 |
C1—C6—H6B | 109.5 | H20B—C20—H20C | 109.5 |
H6A—C6—H6B | 109.5 | C13—Ti1—C3 | 98.28 (7) |
C1—C6—H6C | 109.5 | C13—Ti1—C11 | 57.88 (6) |
H6A—C6—H6C | 109.5 | C3—Ti1—C11 | 117.72 (7) |
H6B—C6—H6C | 109.5 | C13—Ti1—C12 | 34.66 (6) |
C2—C7—H7A | 109.5 | C3—Ti1—C12 | 91.73 (7) |
C2—C7—H7B | 109.5 | C11—Ti1—C12 | 34.53 (7) |
H7A—C7—H7B | 109.5 | C13—Ti1—C1 | 141.80 (7) |
C2—C7—H7C | 109.5 | C3—Ti1—C1 | 57.69 (6) |
H7A—C7—H7C | 109.5 | C11—Ti1—C1 | 104.38 (6) |
H7B—C7—H7C | 109.5 | C12—Ti1—C1 | 110.89 (7) |
C3—C8—H8A | 109.5 | C13—Ti1—C2 | 108.81 (7) |
C3—C8—H8B | 109.5 | C3—Ti1—C2 | 34.76 (6) |
H8A—C8—H8B | 109.5 | C11—Ti1—C2 | 94.60 (6) |
C3—C8—H8C | 109.5 | C12—Ti1—C2 | 84.08 (6) |
H8A—C8—H8C | 109.5 | C1—Ti1—C2 | 34.38 (6) |
H8B—C8—H8C | 109.5 | C13—Ti1—C4 | 120.53 (7) |
C4—C9—H9A | 109.5 | C3—Ti1—C4 | 34.48 (7) |
C4—C9—H9B | 109.5 | C11—Ti1—C4 | 150.89 (7) |
H9A—C9—H9B | 109.5 | C12—Ti1—C4 | 125.37 (7) |
C4—C9—H9C | 109.5 | C1—Ti1—C4 | 57.33 (7) |
H9A—C9—H9C | 109.5 | C2—Ti1—C4 | 57.18 (6) |
H9B—C9—H9C | 109.5 | C13—Ti1—C15 | 57.21 (7) |
C5—C10—H10A | 109.5 | C3—Ti1—C15 | 148.49 (7) |
C5—C10—H10B | 109.5 | C11—Ti1—C15 | 34.37 (6) |
H10A—C10—H10B | 109.5 | C12—Ti1—C15 | 56.77 (7) |
C5—C10—H10C | 109.5 | C1—Ti1—C15 | 128.41 (7) |
H10A—C10—H10C | 109.5 | C2—Ti1—C15 | 128.66 (6) |
H10B—C10—H10C | 109.5 | C4—Ti1—C15 | 173.78 (7) |
C15—C11—C12 | 107.42 (16) | C13—Ti1—C14 | 34.20 (7) |
C15—C11—C16 | 124.58 (19) | C3—Ti1—C14 | 131.07 (7) |
C12—C11—C16 | 127.57 (19) | C11—Ti1—C14 | 56.95 (6) |
C15—C11—Ti1 | 73.97 (11) | C12—Ti1—C14 | 56.55 (6) |
C12—C11—Ti1 | 73.13 (11) | C1—Ti1—C14 | 161.04 (7) |
C16—C11—Ti1 | 124.40 (14) | C2—Ti1—C14 | 140.24 (6) |
C11—C12—C13 | 108.52 (16) | C4—Ti1—C14 | 140.74 (7) |
C11—C12—C17 | 125.67 (18) | C15—Ti1—C14 | 33.98 (7) |
C13—C12—C17 | 123.65 (19) | C13—Ti1—C5 | 153.93 (7) |
C11—C12—Ti1 | 72.34 (11) | C3—Ti1—C5 | 56.98 (7) |
C13—C12—Ti1 | 72.15 (11) | C11—Ti1—C5 | 137.70 (7) |
C17—C12—Ti1 | 134.62 (14) | C12—Ti1—C5 | 140.73 (7) |
C14—C13—C12 | 107.21 (17) | C1—Ti1—C5 | 34.24 (6) |
C14—C13—C18 | 125.77 (18) | C2—Ti1—C5 | 56.64 (6) |
C12—C13—C18 | 126.13 (19) | C4—Ti1—C5 | 34.13 (7) |
C14—C13—Ti1 | 74.60 (11) | C15—Ti1—C5 | 148.74 (7) |
C12—C13—Ti1 | 73.20 (11) | C14—Ti1—C5 | 162.29 (6) |
C18—C13—Ti1 | 126.25 (15) | C13—Ti1—I1 | 110.43 (5) |
C13—C14—C15 | 108.57 (16) | C3—Ti1—I1 | 123.17 (5) |
C13—C14—C19 | 124.2 (2) | C11—Ti1—I1 | 119.10 (5) |
C15—C14—C19 | 126.6 (2) | C12—Ti1—I1 | 138.03 (5) |
C13—C14—Ti1 | 71.20 (11) | C1—Ti1—I1 | 107.72 (5) |
C15—C14—Ti1 | 72.60 (11) | C2—Ti1—I1 | 137.84 (5) |
C19—C14—Ti1 | 128.94 (15) | C4—Ti1—I1 | 89.38 (5) |
C14—C15—C11 | 108.14 (17) | C15—Ti1—I1 | 86.35 (5) |
C14—C15—C20 | 125.85 (19) | C14—Ti1—I1 | 81.82 (5) |
C11—C15—C20 | 125.8 (2) | C5—Ti1—I1 | 81.21 (5) |
C14—C15—Ti1 | 73.42 (12) |
Experimental details
Crystal data | |
Chemical formula | [Ti(C10H15)2I] |
Mr | 445.24 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 8.5513 (3), 14.1353 (5), 16.9547 (6) |
β (°) | 103.158 (3) |
V (Å3) | 1995.60 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.97 |
Crystal size (mm) | 0.60 × 0.27 × 0.20 |
Data collection | |
Diffractometer | Stoe IPDS II |
Absorption correction | Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005) |
Tmin, Tmax | 0.451, 0.875 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23992, 5395, 3921 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.052, 0.86 |
No. of reflections | 5395 |
No. of parameters | 209 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.43 |
Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).
Acknowledgements
We thank our technical and analytical staff for assistance. This work was supported by the BMBF.
References
Herzog, A., Liu, F.-Q., Roesky, H. W., Demsar, A., Keller, K., Noltemeyer, M. & Pauer, F. (1994). Organometallics, 13, 1251–1256. CSD CrossRef CAS Web of Science Google Scholar
Lukens, W. W. Jr, Smith, M. R. III & Andersen, R. A. (1996). J. Am. Chem. Soc. 118, 1719–1728. CSD CrossRef CAS Web of Science Google Scholar
Pattiasina, J. W., Heeres, H. J., van Bolhuis, F., Meetsma, A. Teuben, J. H. & Spek, A. L. (1987). Organometallics, 6, 1004–1010. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Troyanov, S. I., Rybakov, V. B., Thewalt, U., Varga, V. & Mach, K. (1993). J. Organomet. Chem. 447, 221–225. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, Cp*2TiI, was first synthesized by Pattiasina et al. (1987) via salt metathesis of Cp*2TiCl. Using Cp*2TiF as starting material we obtained Cp*2TiI in high yields and single crystals by recrystallization from n-pentane at -78 °C. The X-ray crystal structure analysis of Cp*2TiI confirms its monomeric structure probably due to the steric demand of the pentamethylcyclopentadienyl ligands. The trivalent paramagnetic titanium center is coordinated by one iodide ligand and by two Cp*-ligands in a η5-coordination mode. The Cp*-ligands are in a staggered orientation. The coordination geometry at the titanium is distorted trigonal planar (CE1—Ti1—CE2 = 142.4, CE1—Ti1—I1 = 109.2 and CE2—Ti1—I1 = 108.4°; CE1 = centroid of C1—C5 and CE2 = centroid of C11—C15). A similar distortion is observed for the known bis(η5-pentamethylcyclopentadienyl)-titanium(III) halides Cp*2TiF (Herzog et al., 1994) and Cp*2TiCl (Pattiasina et al., 1987). The Ti1—I1 bond length of 2.7508 (3) Å is close to that in the related complex (η5-C5HMe4)2TiI [Ti1—I1 = 2.759 (2) Å] (Troyanov et al., 1993).