metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iodidobis(η5-penta­methyl­cyclo­penta­dien­yl)titanium(III)

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: monty.kessler@catalysis.de

(Received 4 October 2010; accepted 7 October 2010; online 13 October 2010)

In the title complex mol­ecule, [Ti(C10H15)2I], the paramagnetic Ti(III) atom is coordinated by two penta­methyl­cyclo­penta­dienyl (Cp*) ligands and one iodide ligand. The two Cp* ligands are in a staggered orientation. The coordination geometry at the titanium atom can be described as distorted trigonal-planar.

Related literature

For related bis­(η5-penta­methyl­cyclo­penta­dien­yl)titanium(III) halides, Cp*2TiX, see: Pattiasina et al. (1987[Pattiasina, J. W., Heeres, H. J., van Bolhuis, F., Meetsma, A. Teuben, J. H. & Spek, A. L. (1987). Organometallics, 6, 1004-1010.]) (X = Cl); Herzog et al. (1994[Herzog, A., Liu, F.-Q., Roesky, H. W., Demsar, A., Keller, K., Noltemeyer, M. & Pauer, F. (1994). Organometallics, 13, 1251-1256.]) (X = F). For the mol­ecular structure of Cp*2TiF, see: Lukens et al. (1996[Lukens, W. W. Jr, Smith, M. R. III & Andersen, R. A. (1996). J. Am. Chem. Soc. 118, 1719-1728.]). For bis­(η5-tetra­methyl­cyclo­penta­dien­yl)titanium(III) halides, see: Troyanov et al. (1993[Troyanov, S. I., Rybakov, V. B., Thewalt, U., Varga, V. & Mach, K. (1993). J. Organomet. Chem. 447, 221-225.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C10H15)2I]

  • Mr = 445.24

  • Monoclinic, P 21 /n

  • a = 8.5513 (3) Å

  • b = 14.1353 (5) Å

  • c = 16.9547 (6) Å

  • β = 103.158 (3)°

  • V = 1995.60 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 150 K

  • 0.60 × 0.27 × 0.20 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.451, Tmax = 0.875

  • 23992 measured reflections

  • 5395 independent reflections

  • 3921 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.052

  • S = 0.86

  • 5395 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, Cp*2TiI, was first synthesized by Pattiasina et al. (1987) via salt metathesis of Cp*2TiCl. Using Cp*2TiF as starting material we obtained Cp*2TiI in high yields and single crystals by recrystallization from n-pentane at -78 °C. The X-ray crystal structure analysis of Cp*2TiI confirms its monomeric structure probably due to the steric demand of the pentamethylcyclopentadienyl ligands. The trivalent paramagnetic titanium center is coordinated by one iodide ligand and by two Cp*-ligands in a η5-coordination mode. The Cp*-ligands are in a staggered orientation. The coordination geometry at the titanium is distorted trigonal planar (CE1—Ti1—CE2 = 142.4, CE1—Ti1—I1 = 109.2 and CE2—Ti1—I1 = 108.4°; CE1 = centroid of C1—C5 and CE2 = centroid of C11—C15). A similar distortion is observed for the known bis(η5-pentamethylcyclopentadienyl)-titanium(III) halides Cp*2TiF (Herzog et al., 1994) and Cp*2TiCl (Pattiasina et al., 1987). The Ti1—I1 bond length of 2.7508 (3) Å is close to that in the related complex (η5-C5HMe4)2TiI [Ti1—I1 = 2.759 (2) Å] (Troyanov et al., 1993).

Related literature top

For related bis(η5-pentamethylcyclopentadienyl)titanium(III) halides, Cp*2TiX, see: Pattiasina et al. (1987) (X = Cl); Herzog et al. (1994) (X = F). For the molecular structure of Cp*2TiF, see: Lukens et al. (1996). For bis(η5-tetramethylcyclopentadienyl)titanium(III) halides, see: Troyanov et al. (1993).

Experimental top

A mixture of Cp*2TiF (0.350 g, 1.04 mmol) and LiI (0.223 g, 1.67 mmol) was suspended in 25 ml diethyl ether and stirred at room temperature overnight. The solvent was removed in vacuo and the dark green residue was extracted with n-hexane. The filtrate was concentrated to dryness in vacuo and the solid residue was recrystallized from n-pentane to give dark blue-green needles. Yield: 0.431 g (0.97 mmol, 93%).

Refinement top

All H atoms were placed in idealized positions with d(C—H) = 0.98 and refined using a riding model, with Uiso(H) fixed at 1.5Ueq(C).

Structure description top

The title compound, Cp*2TiI, was first synthesized by Pattiasina et al. (1987) via salt metathesis of Cp*2TiCl. Using Cp*2TiF as starting material we obtained Cp*2TiI in high yields and single crystals by recrystallization from n-pentane at -78 °C. The X-ray crystal structure analysis of Cp*2TiI confirms its monomeric structure probably due to the steric demand of the pentamethylcyclopentadienyl ligands. The trivalent paramagnetic titanium center is coordinated by one iodide ligand and by two Cp*-ligands in a η5-coordination mode. The Cp*-ligands are in a staggered orientation. The coordination geometry at the titanium is distorted trigonal planar (CE1—Ti1—CE2 = 142.4, CE1—Ti1—I1 = 109.2 and CE2—Ti1—I1 = 108.4°; CE1 = centroid of C1—C5 and CE2 = centroid of C11—C15). A similar distortion is observed for the known bis(η5-pentamethylcyclopentadienyl)-titanium(III) halides Cp*2TiF (Herzog et al., 1994) and Cp*2TiCl (Pattiasina et al., 1987). The Ti1—I1 bond length of 2.7508 (3) Å is close to that in the related complex (η5-C5HMe4)2TiI [Ti1—I1 = 2.759 (2) Å] (Troyanov et al., 1993).

For related bis(η5-pentamethylcyclopentadienyl)titanium(III) halides, Cp*2TiX, see: Pattiasina et al. (1987) (X = Cl); Herzog et al. (1994) (X = F). For the molecular structure of Cp*2TiF, see: Lukens et al. (1996). For bis(η5-tetramethylcyclopentadienyl)titanium(III) halides, see: Troyanov et al. (1993).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.
Iodidobis(η5-pentamethylcyclopentadienyl)titanium(III) top
Crystal data top
[Ti(C10H15)2I]F(000) = 900
Mr = 445.24Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5078 reflections
a = 8.5513 (3) Åθ = 1.8–29.6°
b = 14.1353 (5) ŵ = 1.97 mm1
c = 16.9547 (6) ÅT = 150 K
β = 103.158 (3)°Needle, dark blue-green
V = 1995.60 (12) Å30.60 × 0.27 × 0.20 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
5395 independent reflections
Radiation source: fine-focus sealed tube3921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 29.2°, θmin = 1.9°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
h = 1111
Tmin = 0.451, Tmax = 0.875k = 1919
23992 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
5395 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ti(C10H15)2I]V = 1995.60 (12) Å3
Mr = 445.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5513 (3) ŵ = 1.97 mm1
b = 14.1353 (5) ÅT = 150 K
c = 16.9547 (6) Å0.60 × 0.27 × 0.20 mm
β = 103.158 (3)°
Data collection top
Stoe IPDS II
diffractometer
5395 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
3921 reflections with I > 2σ(I)
Tmin = 0.451, Tmax = 0.875Rint = 0.036
23992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 0.86Δρmax = 0.65 e Å3
5395 reflectionsΔρmin = 0.43 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1702 (2)0.69392 (15)0.10016 (11)0.0231 (4)
C20.1239 (2)0.78575 (13)0.07150 (11)0.0200 (4)
C30.2412 (2)0.82110 (13)0.03163 (11)0.0207 (4)
C40.3572 (2)0.74932 (15)0.03365 (12)0.0239 (4)
C50.3119 (2)0.67040 (14)0.07461 (13)0.0253 (4)
C60.0717 (3)0.62684 (17)0.13752 (15)0.0376 (5)
H6A0.00900.66270.16910.056*
H6B0.14300.58260.17320.056*
H6C0.00120.59140.09470.056*
C70.0419 (2)0.82456 (16)0.06611 (14)0.0310 (5)
H7A0.12020.78680.02760.047*
H7B0.04640.89040.04760.047*
H7C0.06730.82180.11960.047*
C80.2339 (3)0.91097 (16)0.01645 (13)0.0309 (5)
H8A0.34130.93910.00710.046*
H8B0.16010.95550.00060.046*
H8C0.19540.89690.07420.046*
C90.4955 (3)0.7556 (2)0.00683 (16)0.0401 (6)
H9A0.45660.74650.06530.060*
H9B0.57450.70650.01490.060*
H9C0.54600.81800.00350.060*
C100.3827 (3)0.57250 (16)0.07894 (18)0.0431 (6)
H10A0.31710.53280.03670.065*
H10B0.38480.54490.13220.065*
H10C0.49240.57610.07080.065*
C110.2539 (2)0.87291 (14)0.26881 (12)0.0220 (4)
C120.2530 (2)0.94111 (14)0.20774 (12)0.0218 (4)
C130.4142 (2)0.96209 (13)0.20569 (12)0.0223 (4)
C140.5137 (2)0.91117 (14)0.26920 (13)0.0246 (4)
C150.4160 (2)0.85547 (14)0.30742 (12)0.0242 (4)
C160.1122 (3)0.83399 (18)0.29660 (16)0.0381 (6)
H16A0.09460.87130.34250.057*
H16B0.13300.76790.31330.057*
H16C0.01640.83730.25210.057*
C170.1126 (3)1.00169 (16)0.16858 (16)0.0369 (5)
H17A0.01250.96930.17110.055*
H17B0.11511.01300.11190.055*
H17C0.11851.06230.19720.055*
C180.4682 (3)1.03754 (16)0.15589 (15)0.0381 (5)
H18A0.50411.09300.18990.057*
H18B0.37881.05540.11120.057*
H18C0.55721.01360.13400.057*
C190.6924 (2)0.92654 (18)0.29768 (18)0.0445 (6)
H19A0.74120.92940.25070.067*
H19B0.73970.87410.33290.067*
H19C0.71220.98610.32780.067*
C200.4730 (3)0.79563 (19)0.38119 (14)0.0437 (6)
H20A0.58270.77390.38320.065*
H20B0.40200.74080.37890.065*
H20C0.47160.83300.42970.065*
I10.651593 (15)0.699360 (11)0.219599 (10)0.03611 (5)
Ti10.37146 (3)0.80034 (2)0.169855 (19)0.01689 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (8)0.0231 (9)0.0196 (9)0.0047 (8)0.0047 (7)0.0004 (9)
C20.0195 (7)0.0234 (10)0.0167 (9)0.0002 (7)0.0032 (6)0.0020 (7)
C30.0237 (8)0.0228 (10)0.0146 (8)0.0018 (7)0.0023 (7)0.0009 (7)
C40.0244 (9)0.0291 (11)0.0195 (10)0.0003 (7)0.0077 (7)0.0042 (8)
C50.0296 (9)0.0219 (10)0.0235 (10)0.0026 (7)0.0039 (8)0.0041 (8)
C60.0409 (12)0.0350 (13)0.0372 (14)0.0143 (10)0.0098 (10)0.0050 (10)
C70.0192 (8)0.0413 (13)0.0307 (12)0.0032 (8)0.0018 (8)0.0043 (9)
C80.0388 (11)0.0311 (11)0.0209 (11)0.0015 (9)0.0031 (8)0.0079 (9)
C90.0353 (11)0.0577 (16)0.0329 (13)0.0027 (11)0.0195 (10)0.0042 (12)
C100.0495 (13)0.0252 (12)0.0514 (16)0.0078 (10)0.0048 (12)0.0082 (11)
C110.0245 (8)0.0241 (10)0.0196 (10)0.0020 (7)0.0096 (7)0.0052 (8)
C120.0240 (8)0.0210 (9)0.0192 (10)0.0044 (7)0.0029 (7)0.0038 (8)
C130.0298 (9)0.0175 (9)0.0211 (10)0.0025 (7)0.0086 (8)0.0017 (8)
C140.0215 (8)0.0242 (10)0.0269 (11)0.0005 (7)0.0030 (7)0.0053 (8)
C150.0324 (10)0.0217 (10)0.0169 (10)0.0020 (8)0.0022 (8)0.0003 (8)
C160.0411 (12)0.0407 (13)0.0405 (14)0.0130 (10)0.0260 (11)0.0125 (11)
C170.0380 (11)0.0302 (12)0.0378 (14)0.0153 (10)0.0013 (10)0.0073 (10)
C180.0557 (14)0.0270 (12)0.0348 (13)0.0109 (10)0.0173 (11)0.0016 (10)
C190.0242 (10)0.0397 (14)0.0631 (18)0.0047 (9)0.0033 (10)0.0152 (13)
C200.0665 (15)0.0384 (13)0.0216 (11)0.0077 (12)0.0008 (10)0.0085 (11)
I10.02397 (6)0.03285 (8)0.04797 (10)0.01242 (6)0.00080 (5)0.00121 (8)
Ti10.01598 (12)0.01732 (15)0.01722 (15)0.00272 (12)0.00345 (11)0.00109 (14)
Geometric parameters (Å, º) top
C1—C21.411 (3)C11—C121.414 (3)
C1—C51.416 (3)C11—C161.501 (3)
C1—C61.501 (3)C11—Ti12.3760 (18)
C1—Ti12.3864 (19)C12—C131.417 (3)
C2—C31.422 (2)C12—C171.501 (3)
C2—C71.504 (2)C12—Ti12.3862 (19)
C2—Ti12.3869 (17)C13—C141.409 (3)
C3—C41.413 (3)C13—C181.497 (3)
C3—C81.503 (3)C13—Ti12.3726 (19)
C3—Ti12.3729 (19)C14—C151.409 (3)
C4—C51.414 (3)C14—C191.509 (3)
C4—C91.500 (3)C14—Ti12.416 (2)
C4—Ti12.396 (2)C15—C201.497 (3)
C5—C101.506 (3)C15—Ti12.406 (2)
C5—Ti12.422 (2)C16—H16A0.9800
C6—H6A0.9800C16—H16B0.9800
C6—H6B0.9800C16—H16C0.9800
C6—H6C0.9800C17—H17A0.9800
C7—H7A0.9800C17—H17B0.9800
C7—H7B0.9800C17—H17C0.9800
C7—H7C0.9800C18—H18A0.9800
C8—H8A0.9800C18—H18B0.9800
C8—H8B0.9800C18—H18C0.9800
C8—H8C0.9800C19—H19A0.9800
C9—H9A0.9800C19—H19B0.9800
C9—H9B0.9800C19—H19C0.9800
C9—H9C0.9800C20—H20A0.9800
C10—H10A0.9800C20—H20B0.9800
C10—H10B0.9800C20—H20C0.9800
C10—H10C0.9800I1—Ti12.7508 (3)
C11—C151.413 (3)
C2—C1—C5107.64 (16)C11—C15—Ti171.66 (11)
C2—C1—C6125.89 (18)C20—C15—Ti1125.22 (15)
C5—C1—C6125.6 (2)C11—C16—H16A109.5
C2—C1—Ti172.83 (11)C11—C16—H16B109.5
C5—C1—Ti174.25 (11)H16A—C16—H16B109.5
C6—C1—Ti1126.88 (14)C11—C16—H16C109.5
C1—C2—C3108.31 (15)H16A—C16—H16C109.5
C1—C2—C7122.90 (17)H16B—C16—H16C109.5
C3—C2—C7126.92 (18)C12—C17—H17A109.5
C1—C2—Ti172.79 (10)C12—C17—H17B109.5
C3—C2—Ti172.08 (10)H17A—C17—H17B109.5
C7—C2—Ti1133.24 (13)C12—C17—H17C109.5
C4—C3—C2107.64 (17)H17A—C17—H17C109.5
C4—C3—C8124.22 (18)H17B—C17—H17C109.5
C2—C3—C8127.44 (17)C13—C18—H18A109.5
C4—C3—Ti173.64 (11)C13—C18—H18B109.5
C2—C3—Ti173.16 (11)H18A—C18—H18B109.5
C8—C3—Ti1126.33 (13)C13—C18—H18C109.5
C3—C4—C5108.02 (17)H18A—C18—H18C109.5
C3—C4—C9124.64 (19)H18B—C18—H18C109.5
C5—C4—C9127.19 (19)C14—C19—H19A109.5
C3—C4—Ti171.88 (11)C14—C19—H19B109.5
C5—C4—Ti173.95 (12)H19A—C19—H19B109.5
C9—C4—Ti1123.42 (14)C14—C19—H19C109.5
C4—C5—C1108.31 (17)H19A—C19—H19C109.5
C4—C5—C10126.7 (2)H19B—C19—H19C109.5
C1—C5—C10124.3 (2)C15—C20—H20A109.5
C4—C5—Ti171.92 (11)C15—C20—H20B109.5
C1—C5—Ti171.50 (11)H20A—C20—H20B109.5
C10—C5—Ti1130.03 (16)C15—C20—H20C109.5
C1—C6—H6A109.5H20A—C20—H20C109.5
C1—C6—H6B109.5H20B—C20—H20C109.5
H6A—C6—H6B109.5C13—Ti1—C398.28 (7)
C1—C6—H6C109.5C13—Ti1—C1157.88 (6)
H6A—C6—H6C109.5C3—Ti1—C11117.72 (7)
H6B—C6—H6C109.5C13—Ti1—C1234.66 (6)
C2—C7—H7A109.5C3—Ti1—C1291.73 (7)
C2—C7—H7B109.5C11—Ti1—C1234.53 (7)
H7A—C7—H7B109.5C13—Ti1—C1141.80 (7)
C2—C7—H7C109.5C3—Ti1—C157.69 (6)
H7A—C7—H7C109.5C11—Ti1—C1104.38 (6)
H7B—C7—H7C109.5C12—Ti1—C1110.89 (7)
C3—C8—H8A109.5C13—Ti1—C2108.81 (7)
C3—C8—H8B109.5C3—Ti1—C234.76 (6)
H8A—C8—H8B109.5C11—Ti1—C294.60 (6)
C3—C8—H8C109.5C12—Ti1—C284.08 (6)
H8A—C8—H8C109.5C1—Ti1—C234.38 (6)
H8B—C8—H8C109.5C13—Ti1—C4120.53 (7)
C4—C9—H9A109.5C3—Ti1—C434.48 (7)
C4—C9—H9B109.5C11—Ti1—C4150.89 (7)
H9A—C9—H9B109.5C12—Ti1—C4125.37 (7)
C4—C9—H9C109.5C1—Ti1—C457.33 (7)
H9A—C9—H9C109.5C2—Ti1—C457.18 (6)
H9B—C9—H9C109.5C13—Ti1—C1557.21 (7)
C5—C10—H10A109.5C3—Ti1—C15148.49 (7)
C5—C10—H10B109.5C11—Ti1—C1534.37 (6)
H10A—C10—H10B109.5C12—Ti1—C1556.77 (7)
C5—C10—H10C109.5C1—Ti1—C15128.41 (7)
H10A—C10—H10C109.5C2—Ti1—C15128.66 (6)
H10B—C10—H10C109.5C4—Ti1—C15173.78 (7)
C15—C11—C12107.42 (16)C13—Ti1—C1434.20 (7)
C15—C11—C16124.58 (19)C3—Ti1—C14131.07 (7)
C12—C11—C16127.57 (19)C11—Ti1—C1456.95 (6)
C15—C11—Ti173.97 (11)C12—Ti1—C1456.55 (6)
C12—C11—Ti173.13 (11)C1—Ti1—C14161.04 (7)
C16—C11—Ti1124.40 (14)C2—Ti1—C14140.24 (6)
C11—C12—C13108.52 (16)C4—Ti1—C14140.74 (7)
C11—C12—C17125.67 (18)C15—Ti1—C1433.98 (7)
C13—C12—C17123.65 (19)C13—Ti1—C5153.93 (7)
C11—C12—Ti172.34 (11)C3—Ti1—C556.98 (7)
C13—C12—Ti172.15 (11)C11—Ti1—C5137.70 (7)
C17—C12—Ti1134.62 (14)C12—Ti1—C5140.73 (7)
C14—C13—C12107.21 (17)C1—Ti1—C534.24 (6)
C14—C13—C18125.77 (18)C2—Ti1—C556.64 (6)
C12—C13—C18126.13 (19)C4—Ti1—C534.13 (7)
C14—C13—Ti174.60 (11)C15—Ti1—C5148.74 (7)
C12—C13—Ti173.20 (11)C14—Ti1—C5162.29 (6)
C18—C13—Ti1126.25 (15)C13—Ti1—I1110.43 (5)
C13—C14—C15108.57 (16)C3—Ti1—I1123.17 (5)
C13—C14—C19124.2 (2)C11—Ti1—I1119.10 (5)
C15—C14—C19126.6 (2)C12—Ti1—I1138.03 (5)
C13—C14—Ti171.20 (11)C1—Ti1—I1107.72 (5)
C15—C14—Ti172.60 (11)C2—Ti1—I1137.84 (5)
C19—C14—Ti1128.94 (15)C4—Ti1—I189.38 (5)
C14—C15—C11108.14 (17)C15—Ti1—I186.35 (5)
C14—C15—C20125.85 (19)C14—Ti1—I181.82 (5)
C11—C15—C20125.8 (2)C5—Ti1—I181.21 (5)
C14—C15—Ti173.42 (12)

Experimental details

Crystal data
Chemical formula[Ti(C10H15)2I]
Mr445.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)8.5513 (3), 14.1353 (5), 16.9547 (6)
β (°) 103.158 (3)
V3)1995.60 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.60 × 0.27 × 0.20
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2005)
Tmin, Tmax0.451, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
23992, 5395, 3921
Rint0.036
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.052, 0.86
No. of reflections5395
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.43

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank our technical and analytical staff for assistance. This work was supported by the BMBF.

References

First citationHerzog, A., Liu, F.-Q., Roesky, H. W., Demsar, A., Keller, K., Noltemeyer, M. & Pauer, F. (1994). Organometallics, 13, 1251–1256.  CSD CrossRef CAS Web of Science Google Scholar
First citationLukens, W. W. Jr, Smith, M. R. III & Andersen, R. A. (1996). J. Am. Chem. Soc. 118, 1719–1728.  CSD CrossRef CAS Web of Science Google Scholar
First citationPattiasina, J. W., Heeres, H. J., van Bolhuis, F., Meetsma, A. Teuben, J. H. & Spek, A. L. (1987). Organometallics, 6, 1004–1010.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTroyanov, S. I., Rybakov, V. B., Thewalt, U., Varga, V. & Mach, K. (1993). J. Organomet. Chem. 447, 221–225.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds