organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-[(E)-4-Bromo­benzyl­­idene]-8-(4-bromo­phen­yl)-14-hy­dr­oxy-3,13-di­aza­hepta­cyclo­[13.7.1.19,13.02,9.02,14.03,7.019,23]tetra­cosa-1(22),15,17,19(23),20-pentaen-10-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 October 2010; accepted 17 October 2010; online 23 October 2010)

In the title compound, C35H28Br2N2O2, the piperidone ring adopts a chair conformation and the five-membered ring of the pyrrolidine ring adopts an envelope conformation. The naphthalene ring system makes dihedral angles of 37.12 (8) and 50.62 (9)° with the terminal bromo-substituted benzene rings. The dihedral angle between the two bromo-substituted benzene rings is 72.54 (10)°. In the crystal, adjacent mol­ecules are connected by a pair of inter­molecular C—H⋯O hydrogen bonds, forming an inversion dimer. An intra­molecular O—H⋯N hydrogen bond is also present.

Related literature

For details of cyclo­addition, see: Babu & Raghunathan (2007[Babu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 305-308.]); Boruah et al. (2007[Boruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett. 48, 4535-4537.]); Dondas et al. (2004[Dondas, H. A., Fishwick, C. W. G., Grigg, R. & Kilner, C. (2004). Tetrahedron, 60, 3473-3485.]); Hong et al. (2007[Hong, X., France, S. & Padwa, A. (2007). Tetrahedron, 63, 5962-5976.]); Karthikeyan et al. (2007[Karthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581-10586.]); Liddell (1998[Liddell, J. R. (1998). Nat. Prod. Rep. 15, 363-370.]); Ramesh et al. (2007[Ramesh, E., Kathiresan, M. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 1835-1839.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C35H28Br2N2O2

  • Mr = 668.41

  • Triclinic, [P \overline 1]

  • a = 8.4833 (10) Å

  • b = 11.8334 (13) Å

  • c = 14.8942 (17) Å

  • α = 79.868 (2)°

  • β = 80.705 (2)°

  • γ = 77.359 (2)°

  • V = 1424.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.88 mm−1

  • T = 100 K

  • 0.44 × 0.17 × 0.16 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.364, Tmax = 0.657

  • 14706 measured reflections

  • 6459 independent reflections

  • 5384 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.07

  • 6459 reflections

  • 374 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2 0.81 (3) 2.01 (2) 2.578 (2) 127 (3)
C20—H20A⋯O2i 0.98 2.46 3.130 (3) 125
Symmetry code: (i) -x, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007; Hong et al., 2007). In particular, the cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of five membered heterocycles (Dondas et al., 2004; Boruah et al., 2007). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various l-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007; Ramesh et al., 2007). The pyrrolidine substructure occurs in many natural products of potential use in medicine and agriculture (Liddell, 1998).

The molecular structure of the title compound is shown in Fig. 1. The piperidine (N1/C8–C12) ring adopts a chair conformation [Q = 0.611 (2) Å, Θ = 139.77 (19) °, φ = 241.0 (3) ° ; Cremer & Pople, 1975]. The pyrrolidine ring (N2/C20–C23) adopts an envelope conformation [puckering parameters Q = 0.385 (2) Å, Θ = 112.7 (3) °]. The naphthalene (C25–34) ring makes dihedral angles of 37.12 (8)° and 50.62 (9)° with the terminal bromo-substituted benzene (C1–C6) and (C13–C18) rings. The dihedral angle between the two bromo-substituted benzene (C1–C6) and (C13–C18) rings is 72.54 (10)°.

In the crystal packing (Fig. 2), adjacent molecules are connected by intermolecular C20—H20A···O2 hydrogen bonds, forming dimers arranged in sheets parallel to the bc-plane. An intramolecular O—H···N hydrogen bond is also present.

Related literature top

For details of cycloaddition, see: Babu & Raghunathan (2007); Boruah et al. (2007); Dondas et al. (2004); Hong et al. (2007); Karthikeyan et al. (2007); Liddell (1998); Ramesh et al. (2007). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3,5-bis[(E)-(4-bromophenyl)methylidene]tetrahydro-4(1H)-pyridinone (0.100 g, 0.231 mmol), acenaphthenequinone (0.042 g, 0.231 mmol) and proline (0.027 g, 0.231 mmol) were dissolved in methanol (5 ml) and refluxed for 30 minutes. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml). The precipitated solid was filtered and washed with water to afford the product which was recrystallised from ethyl acetate to reveal the title compound as colourless crystals.

Refinement top

The hydroxyl H atom H1O2 was located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C—H = 0.93 or 0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007; Hong et al., 2007). In particular, the cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of five membered heterocycles (Dondas et al., 2004; Boruah et al., 2007). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various l-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007; Ramesh et al., 2007). The pyrrolidine substructure occurs in many natural products of potential use in medicine and agriculture (Liddell, 1998).

The molecular structure of the title compound is shown in Fig. 1. The piperidine (N1/C8–C12) ring adopts a chair conformation [Q = 0.611 (2) Å, Θ = 139.77 (19) °, φ = 241.0 (3) ° ; Cremer & Pople, 1975]. The pyrrolidine ring (N2/C20–C23) adopts an envelope conformation [puckering parameters Q = 0.385 (2) Å, Θ = 112.7 (3) °]. The naphthalene (C25–34) ring makes dihedral angles of 37.12 (8)° and 50.62 (9)° with the terminal bromo-substituted benzene (C1–C6) and (C13–C18) rings. The dihedral angle between the two bromo-substituted benzene (C1–C6) and (C13–C18) rings is 72.54 (10)°.

In the crystal packing (Fig. 2), adjacent molecules are connected by intermolecular C20—H20A···O2 hydrogen bonds, forming dimers arranged in sheets parallel to the bc-plane. An intramolecular O—H···N hydrogen bond is also present.

For details of cycloaddition, see: Babu & Raghunathan (2007); Boruah et al. (2007); Dondas et al. (2004); Hong et al. (2007); Karthikeyan et al. (2007); Liddell (1998); Ramesh et al. (2007). For puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme (H atoms are omitted for clarity).
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) dimers. H atoms are not involving the hydrogen bond interactions are omitted for clarity.
11-[(E)-4-Bromobenzylidene]-8-(4-bromophenyl)-14-hydroxy-3,13- diazaheptacyclo[13.7.1.19,13.02,9.02,14.03,7.019,23]tetracosa- 1(22),15,17,19 (23),20-pentaen-10-one top
Crystal data top
C35H28Br2N2O2Z = 2
Mr = 668.41F(000) = 676
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4833 (10) ÅCell parameters from 6649 reflections
b = 11.8334 (13) Åθ = 2.4–28.4°
c = 14.8942 (17) ŵ = 2.88 mm1
α = 79.868 (2)°T = 100 K
β = 80.705 (2)°Block, colourless
γ = 77.359 (2)°0.44 × 0.17 × 0.16 mm
V = 1424.4 (3) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6459 independent reflections
Radiation source: fine-focus sealed tube5384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1110
Tmin = 0.364, Tmax = 0.657k = 1515
14706 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.030P)2 + 0.5557P]
where P = (Fo2 + 2Fc2)/3
6459 reflections(Δ/σ)max = 0.003
374 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C35H28Br2N2O2γ = 77.359 (2)°
Mr = 668.41V = 1424.4 (3) Å3
Triclinic, P1Z = 2
a = 8.4833 (10) ÅMo Kα radiation
b = 11.8334 (13) ŵ = 2.88 mm1
c = 14.8942 (17) ÅT = 100 K
α = 79.868 (2)°0.44 × 0.17 × 0.16 mm
β = 80.705 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6459 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5384 reflections with I > 2σ(I)
Tmin = 0.364, Tmax = 0.657Rint = 0.030
14706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.45 e Å3
6459 reflectionsΔρmin = 0.48 e Å3
374 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.95912 (3)0.70022 (2)0.375928 (15)0.03029 (7)
Br20.50038 (3)0.80345 (2)1.346623 (16)0.03079 (8)
O10.36372 (17)0.90896 (12)0.88975 (10)0.0203 (3)
O20.11709 (19)0.50546 (13)0.90383 (10)0.0213 (3)
N10.3708 (2)0.56045 (14)0.88753 (11)0.0159 (3)
N20.02666 (19)0.70855 (14)0.94557 (11)0.0157 (3)
C10.7446 (3)0.66951 (19)0.64742 (15)0.0225 (4)
H1A0.75010.61240.69900.027*
C20.8377 (3)0.64507 (19)0.56501 (15)0.0254 (5)
H2A0.90440.57200.56100.030*
C30.8299 (3)0.7308 (2)0.48903 (14)0.0228 (4)
C40.7332 (3)0.84159 (19)0.49339 (14)0.0225 (4)
H4A0.73100.89900.44190.027*
C50.6406 (3)0.86453 (18)0.57587 (14)0.0213 (4)
H5A0.57580.93840.57940.026*
C60.6419 (2)0.77957 (18)0.65411 (13)0.0182 (4)
C70.5367 (2)0.81193 (17)0.73743 (13)0.0174 (4)
H7A0.50860.89190.74000.021*
C80.4743 (2)0.74428 (17)0.81089 (13)0.0157 (4)
C90.3618 (2)0.80907 (17)0.88225 (13)0.0150 (4)
C100.2428 (2)0.73992 (16)0.94201 (13)0.0136 (4)
C110.3388 (2)0.61511 (16)0.97163 (13)0.0158 (4)
H11A0.43990.61810.99290.019*
H11B0.27460.57241.02030.019*
C120.4976 (2)0.61138 (17)0.82450 (13)0.0168 (4)
H12A0.50390.58690.76500.020*
H12B0.60140.57870.84720.020*
C130.2392 (2)0.70348 (18)1.17155 (14)0.0192 (4)
H13A0.19530.63861.16970.023*
C140.3250 (3)0.70395 (19)1.24397 (14)0.0217 (4)
H14A0.33970.63961.28980.026*
C150.3874 (2)0.80129 (18)1.24641 (14)0.0201 (4)
C160.3701 (3)0.89758 (19)1.17861 (14)0.0228 (4)
H16A0.41370.96241.18100.027*
C170.2856 (2)0.89479 (18)1.10674 (14)0.0189 (4)
H17A0.27370.95891.06050.023*
C180.2184 (2)0.79958 (16)1.10161 (13)0.0151 (4)
C190.1330 (2)0.80060 (16)1.01924 (13)0.0145 (4)
H19A0.09370.88240.99400.017*
C200.0118 (2)0.73723 (17)1.03739 (13)0.0157 (4)
H20A0.01350.66471.08020.019*
C210.1792 (2)0.80658 (19)1.07021 (14)0.0216 (4)
H21A0.18060.89001.05860.026*
H21B0.20990.78361.13540.026*
C220.2933 (3)0.7743 (2)1.01281 (15)0.0237 (4)
H22A0.32520.70051.03980.028*
H22B0.39040.83481.00720.028*
C230.1894 (2)0.76447 (19)0.91974 (15)0.0218 (4)
H23A0.22850.71630.88520.026*
H23B0.18840.84100.88360.026*
C240.1223 (2)0.71519 (16)0.88158 (13)0.0137 (4)
C250.1053 (2)0.78952 (17)0.78823 (13)0.0165 (4)
C260.0509 (3)0.90806 (18)0.76295 (15)0.0220 (4)
H26A0.01550.95790.80710.026*
C270.0505 (3)0.9519 (2)0.66793 (17)0.0302 (5)
H27A0.01141.03130.65070.036*
C280.1049 (3)0.8824 (2)0.60051 (16)0.0333 (5)
H28A0.10340.91520.53910.040*
C290.1642 (3)0.7598 (2)0.62403 (15)0.0253 (5)
C300.2261 (3)0.6766 (2)0.56313 (15)0.0330 (6)
H30A0.23320.70080.50000.040*
C310.2762 (3)0.5598 (2)0.59660 (16)0.0326 (6)
H31A0.31430.50630.55540.039*
C320.2708 (3)0.5194 (2)0.69231 (15)0.0257 (5)
H32A0.30410.44040.71390.031*
C330.2154 (2)0.59901 (18)0.75230 (14)0.0186 (4)
C340.1594 (2)0.71801 (18)0.71875 (14)0.0187 (4)
C350.2080 (2)0.58723 (16)0.85513 (13)0.0156 (4)
H1O20.035 (4)0.538 (2)0.9321 (19)0.037 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02851 (13)0.03823 (14)0.02268 (12)0.00510 (10)0.00563 (9)0.01058 (9)
Br20.03305 (14)0.03556 (14)0.02841 (13)0.00501 (10)0.01459 (10)0.00954 (10)
O10.0203 (8)0.0184 (7)0.0235 (7)0.0077 (6)0.0010 (6)0.0048 (6)
O20.0213 (8)0.0153 (7)0.0275 (8)0.0092 (6)0.0025 (6)0.0015 (6)
N10.0155 (8)0.0147 (8)0.0164 (8)0.0019 (6)0.0024 (6)0.0002 (6)
N20.0117 (8)0.0177 (8)0.0184 (8)0.0053 (6)0.0026 (6)0.0006 (6)
C10.0177 (11)0.0235 (11)0.0230 (10)0.0020 (8)0.0011 (8)0.0004 (8)
C20.0218 (11)0.0233 (11)0.0289 (11)0.0033 (9)0.0038 (9)0.0057 (9)
C30.0185 (10)0.0330 (12)0.0182 (10)0.0077 (9)0.0028 (8)0.0084 (9)
C40.0254 (11)0.0249 (11)0.0177 (10)0.0079 (9)0.0022 (8)0.0017 (8)
C50.0228 (11)0.0196 (10)0.0216 (10)0.0051 (8)0.0021 (8)0.0031 (8)
C60.0154 (10)0.0223 (10)0.0179 (10)0.0068 (8)0.0007 (8)0.0032 (8)
C70.0161 (10)0.0180 (9)0.0192 (10)0.0049 (8)0.0027 (8)0.0032 (8)
C80.0095 (9)0.0199 (10)0.0182 (9)0.0022 (7)0.0028 (7)0.0041 (8)
C90.0129 (9)0.0165 (9)0.0161 (9)0.0025 (7)0.0050 (7)0.0011 (7)
C100.0118 (9)0.0146 (9)0.0142 (9)0.0021 (7)0.0031 (7)0.0014 (7)
C110.0156 (10)0.0142 (9)0.0164 (9)0.0012 (7)0.0037 (7)0.0002 (7)
C120.0136 (10)0.0169 (9)0.0194 (9)0.0018 (7)0.0022 (7)0.0029 (8)
C130.0195 (10)0.0199 (10)0.0189 (10)0.0065 (8)0.0011 (8)0.0032 (8)
C140.0222 (11)0.0246 (11)0.0166 (10)0.0020 (9)0.0030 (8)0.0010 (8)
C150.0162 (10)0.0259 (11)0.0195 (10)0.0018 (8)0.0032 (8)0.0090 (8)
C160.0216 (11)0.0246 (11)0.0250 (11)0.0071 (9)0.0034 (9)0.0076 (9)
C170.0181 (10)0.0183 (10)0.0201 (10)0.0042 (8)0.0012 (8)0.0027 (8)
C180.0119 (9)0.0157 (9)0.0165 (9)0.0011 (7)0.0001 (7)0.0030 (7)
C190.0127 (9)0.0128 (9)0.0171 (9)0.0022 (7)0.0013 (7)0.0007 (7)
C200.0139 (10)0.0157 (9)0.0171 (9)0.0039 (8)0.0018 (7)0.0004 (7)
C210.0129 (10)0.0273 (11)0.0222 (10)0.0020 (8)0.0011 (8)0.0026 (8)
C220.0135 (10)0.0265 (11)0.0298 (11)0.0034 (8)0.0023 (8)0.0021 (9)
C230.0127 (10)0.0257 (11)0.0282 (11)0.0029 (8)0.0063 (8)0.0046 (9)
C240.0120 (9)0.0121 (9)0.0172 (9)0.0037 (7)0.0031 (7)0.0001 (7)
C250.0121 (9)0.0200 (10)0.0172 (9)0.0055 (8)0.0044 (7)0.0029 (8)
C260.0199 (11)0.0185 (10)0.0263 (11)0.0045 (8)0.0043 (8)0.0026 (8)
C270.0277 (13)0.0243 (11)0.0343 (13)0.0051 (10)0.0081 (10)0.0109 (10)
C280.0298 (13)0.0455 (15)0.0213 (11)0.0106 (11)0.0075 (10)0.0115 (10)
C290.0211 (11)0.0355 (12)0.0210 (10)0.0105 (9)0.0066 (9)0.0009 (9)
C300.0293 (13)0.0566 (16)0.0163 (10)0.0149 (12)0.0037 (9)0.0050 (10)
C310.0305 (13)0.0462 (15)0.0266 (12)0.0114 (11)0.0012 (10)0.0172 (11)
C320.0251 (12)0.0286 (12)0.0270 (11)0.0082 (9)0.0037 (9)0.0095 (9)
C330.0143 (10)0.0240 (10)0.0194 (10)0.0072 (8)0.0029 (8)0.0031 (8)
C340.0165 (10)0.0231 (10)0.0185 (10)0.0081 (8)0.0060 (8)0.0002 (8)
C350.0148 (10)0.0139 (9)0.0182 (9)0.0044 (7)0.0013 (7)0.0012 (7)
Geometric parameters (Å, º) top
Br1—C31.901 (2)C15—C161.382 (3)
Br2—C151.9063 (19)C16—C171.390 (3)
O1—C91.210 (2)C16—H16A0.9300
O2—C351.399 (2)C17—C181.388 (3)
O2—H1O20.81 (3)C17—H17A0.9300
N1—C111.470 (2)C18—C191.519 (3)
N1—C121.470 (3)C19—C201.539 (3)
N1—C351.487 (2)C19—H19A0.9800
N2—C241.463 (2)C20—C211.529 (3)
N2—C231.474 (2)C20—H20A0.9800
N2—C201.496 (2)C21—C221.536 (3)
C1—C21.388 (3)C21—H21A0.9700
C1—C61.409 (3)C21—H21B0.9700
C1—H1A0.9300C22—C231.526 (3)
C2—C31.380 (3)C22—H22A0.9700
C2—H2A0.9300C22—H22B0.9700
C3—C41.392 (3)C23—H23A0.9700
C4—C51.383 (3)C23—H23B0.9700
C4—H4A0.9300C24—C251.519 (3)
C5—C61.398 (3)C24—C351.616 (3)
C5—H5A0.9300C25—C261.382 (3)
C6—C71.464 (3)C25—C341.408 (3)
C7—C81.345 (3)C26—C271.419 (3)
C7—H7A0.9300C26—H26A0.9300
C8—C91.506 (3)C27—C281.368 (4)
C8—C121.523 (3)C27—H27A0.9300
C9—C101.515 (3)C28—C291.428 (3)
C10—C191.536 (2)C28—H28A0.9300
C10—C111.549 (3)C29—C341.408 (3)
C10—C241.569 (2)C29—C301.415 (3)
C11—H11A0.9700C30—C311.382 (4)
C11—H11B0.9700C30—H30A0.9300
C12—H12A0.9700C31—C321.418 (3)
C12—H12B0.9700C31—H31A0.9300
C13—C141.397 (3)C32—C331.369 (3)
C13—C181.401 (3)C32—H32A0.9300
C13—H13A0.9300C33—C341.412 (3)
C14—C151.377 (3)C33—C351.505 (3)
C14—H14A0.9300
C35—O2—H1O2110 (2)C18—C19—C20116.38 (16)
C11—N1—C12108.25 (15)C10—C19—C20101.97 (14)
C11—N1—C35102.77 (14)C18—C19—H19A108.0
C12—N1—C35115.10 (15)C10—C19—H19A108.0
C24—N2—C23122.19 (16)C20—C19—H19A108.0
C24—N2—C20111.43 (14)N2—C20—C21105.40 (15)
C23—N2—C20109.51 (15)N2—C20—C19104.64 (15)
C2—C1—C6121.0 (2)C21—C20—C19117.58 (16)
C2—C1—H1A119.5N2—C20—H20A109.6
C6—C1—H1A119.5C21—C20—H20A109.6
C3—C2—C1119.1 (2)C19—C20—H20A109.6
C3—C2—H2A120.5C20—C21—C22103.60 (16)
C1—C2—H2A120.5C20—C21—H21A111.0
C2—C3—C4121.69 (19)C22—C21—H21A111.0
C2—C3—Br1119.80 (16)C20—C21—H21B111.0
C4—C3—Br1118.47 (16)C22—C21—H21B111.0
C5—C4—C3118.6 (2)H21A—C21—H21B109.0
C5—C4—H4A120.7C23—C22—C21103.12 (16)
C3—C4—H4A120.7C23—C22—H22A111.1
C4—C5—C6121.70 (19)C21—C22—H22A111.1
C4—C5—H5A119.1C23—C22—H22B111.1
C6—C5—H5A119.1C21—C22—H22B111.1
C5—C6—C1117.91 (18)H22A—C22—H22B109.1
C5—C6—C7117.39 (18)N2—C23—C22102.76 (16)
C1—C6—C7124.70 (19)N2—C23—H23A111.2
C8—C7—C6130.21 (19)C22—C23—H23A111.2
C8—C7—H7A114.9N2—C23—H23B111.2
C6—C7—H7A114.9C22—C23—H23B111.2
C7—C8—C9115.48 (17)H23A—C23—H23B109.1
C7—C8—C12126.23 (17)N2—C24—C25117.47 (15)
C9—C8—C12118.14 (17)N2—C24—C10103.75 (14)
O1—C9—C8122.78 (18)C25—C24—C10118.48 (16)
O1—C9—C10122.87 (17)N2—C24—C35110.44 (15)
C8—C9—C10114.33 (16)C25—C24—C35102.85 (15)
C9—C10—C19115.73 (15)C10—C24—C35102.89 (14)
C9—C10—C11107.62 (15)C26—C25—C34118.66 (18)
C19—C10—C11115.94 (16)C26—C25—C24131.91 (18)
C9—C10—C24109.71 (15)C34—C25—C24109.42 (17)
C19—C10—C24104.93 (15)C25—C26—C27118.3 (2)
C11—C10—C24101.86 (14)C25—C26—H26A120.8
N1—C11—C10103.98 (14)C27—C26—H26A120.8
N1—C11—H11A111.0C28—C27—C26122.9 (2)
C10—C11—H11A111.0C28—C27—H27A118.6
N1—C11—H11B111.0C26—C27—H27A118.6
C10—C11—H11B111.0C27—C28—C29120.3 (2)
H11A—C11—H11B109.0C27—C28—H28A119.8
N1—C12—C8116.06 (16)C29—C28—H28A119.8
N1—C12—H12A108.3C34—C29—C30116.9 (2)
C8—C12—H12A108.3C34—C29—C28115.7 (2)
N1—C12—H12B108.3C30—C29—C28127.4 (2)
C8—C12—H12B108.3C31—C30—C29120.6 (2)
H12A—C12—H12B107.4C31—C30—H30A119.7
C14—C13—C18120.83 (19)C29—C30—H30A119.7
C14—C13—H13A119.6C30—C31—C32121.6 (2)
C18—C13—H13A119.6C30—C31—H31A119.2
C15—C14—C13118.9 (2)C32—C31—H31A119.2
C15—C14—H14A120.5C33—C32—C31118.6 (2)
C13—C14—H14A120.5C33—C32—H32A120.7
C14—C15—C16122.01 (18)C31—C32—H32A120.7
C14—C15—Br2118.98 (16)C32—C33—C34120.08 (19)
C16—C15—Br2119.01 (15)C32—C33—C35131.8 (2)
C15—C16—C17118.09 (19)C34—C33—C35108.01 (16)
C15—C16—H16A121.0C29—C34—C25124.07 (19)
C17—C16—H16A121.0C29—C34—C33122.07 (19)
C18—C17—C16122.2 (2)C25—C34—C33113.82 (17)
C18—C17—H17A118.9O2—C35—N1108.74 (15)
C16—C17—H17A118.9O2—C35—C33113.94 (15)
C17—C18—C13117.91 (17)N1—C35—C33113.66 (16)
C17—C18—C19119.40 (17)O2—C35—C24108.79 (15)
C13—C18—C19122.62 (17)N1—C35—C24105.65 (14)
C18—C19—C10113.92 (15)C33—C35—C24105.59 (15)
C6—C1—C2—C30.6 (3)C23—N2—C24—C254.1 (2)
C1—C2—C3—C41.1 (3)C20—N2—C24—C25128.02 (17)
C1—C2—C3—Br1178.94 (16)C23—N2—C24—C10137.01 (17)
C2—C3—C4—C51.3 (3)C20—N2—C24—C104.87 (19)
Br1—C3—C4—C5179.23 (15)C23—N2—C24—C35113.35 (18)
C3—C4—C5—C60.1 (3)C20—N2—C24—C35114.51 (16)
C4—C5—C6—C11.7 (3)C9—C10—C24—N2150.70 (15)
C4—C5—C6—C7178.66 (19)C19—C10—C24—N225.76 (18)
C2—C1—C6—C52.0 (3)C11—C10—C24—N295.48 (16)
C2—C1—C6—C7178.4 (2)C9—C10—C24—C2518.4 (2)
C5—C6—C7—C8157.1 (2)C19—C10—C24—C25106.54 (18)
C1—C6—C7—C823.3 (3)C11—C10—C24—C25132.22 (17)
C6—C7—C8—C9176.58 (18)C9—C10—C24—C3594.16 (17)
C6—C7—C8—C121.1 (3)C19—C10—C24—C35140.89 (15)
C7—C8—C9—O121.9 (3)C11—C10—C24—C3519.66 (18)
C12—C8—C9—O1162.27 (18)N2—C24—C25—C2663.1 (3)
C7—C8—C9—C10156.46 (17)C10—C24—C25—C2662.8 (3)
C12—C8—C9—C1019.4 (2)C35—C24—C25—C26175.4 (2)
O1—C9—C10—C195.1 (3)N2—C24—C25—C34117.82 (18)
C8—C9—C10—C19176.55 (15)C10—C24—C25—C34116.24 (18)
O1—C9—C10—C11136.63 (19)C35—C24—C25—C343.7 (2)
C8—C9—C10—C1145.05 (19)C34—C25—C26—C270.7 (3)
O1—C9—C10—C24113.3 (2)C24—C25—C26—C27179.7 (2)
C8—C9—C10—C2465.00 (19)C25—C26—C27—C281.6 (3)
C12—N1—C11—C1073.46 (18)C26—C27—C28—C290.7 (4)
C35—N1—C11—C1048.73 (18)C27—C28—C29—C341.0 (3)
C9—C10—C11—N172.90 (17)C27—C28—C29—C30179.3 (2)
C19—C10—C11—N1155.71 (15)C34—C29—C30—C311.1 (3)
C24—C10—C11—N142.46 (18)C28—C29—C30—C31178.6 (2)
C11—N1—C12—C847.2 (2)C29—C30—C31—C321.3 (4)
C35—N1—C12—C867.1 (2)C30—C31—C32—C330.5 (3)
C7—C8—C12—N1155.72 (18)C31—C32—C33—C342.4 (3)
C9—C8—C12—N119.6 (2)C31—C32—C33—C35174.0 (2)
C18—C13—C14—C150.8 (3)C30—C29—C34—C25178.4 (2)
C13—C14—C15—C161.1 (3)C28—C29—C34—C251.8 (3)
C13—C14—C15—Br2178.65 (15)C30—C29—C34—C330.8 (3)
C14—C15—C16—C170.5 (3)C28—C29—C34—C33179.4 (2)
Br2—C15—C16—C17179.23 (15)C26—C25—C34—C291.0 (3)
C15—C16—C17—C180.4 (3)C24—C25—C34—C29178.22 (18)
C16—C17—C18—C130.6 (3)C26—C25—C34—C33178.72 (18)
C16—C17—C18—C19177.76 (18)C24—C25—C34—C330.5 (2)
C14—C13—C18—C170.0 (3)C32—C33—C34—C292.6 (3)
C14—C13—C18—C19177.05 (18)C35—C33—C34—C29174.52 (18)
C17—C18—C19—C1094.5 (2)C32—C33—C34—C25179.59 (19)
C13—C18—C19—C1082.5 (2)C35—C33—C34—C253.3 (2)
C17—C18—C19—C20147.24 (18)C11—N1—C35—O281.90 (17)
C13—C18—C19—C2035.7 (3)C12—N1—C35—O2160.66 (15)
C9—C10—C19—C1876.7 (2)C11—N1—C35—C33150.04 (16)
C11—C10—C19—C1850.8 (2)C12—N1—C35—C3332.6 (2)
C24—C10—C19—C18162.24 (15)C11—N1—C35—C2434.74 (18)
C9—C10—C19—C20157.07 (15)C12—N1—C35—C2482.70 (18)
C11—C10—C19—C2075.47 (19)C32—C33—C35—O258.7 (3)
C24—C10—C19—C2036.01 (18)C34—C33—C35—O2124.68 (18)
C24—N2—C20—C21142.38 (16)C32—C33—C35—N166.7 (3)
C23—N2—C20—C214.1 (2)C34—C33—C35—N1109.99 (18)
C24—N2—C20—C1917.7 (2)C32—C33—C35—C24178.0 (2)
C23—N2—C20—C19120.52 (17)C34—C33—C35—C245.4 (2)
C18—C19—C20—N2157.36 (15)N2—C24—C35—O21.9 (2)
C10—C19—C20—N232.76 (18)C25—C24—C35—O2128.07 (16)
C18—C19—C20—C2186.1 (2)C10—C24—C35—O2108.29 (16)
C10—C19—C20—C21149.26 (17)N2—C24—C35—N1118.52 (16)
N2—C20—C21—C2220.2 (2)C25—C24—C35—N1115.33 (16)
C19—C20—C21—C22136.26 (18)C10—C24—C35—N18.31 (19)
C20—C21—C22—C2336.4 (2)N2—C24—C35—C33120.76 (16)
C24—N2—C23—C22159.72 (16)C25—C24—C35—C335.39 (19)
C20—N2—C23—C2226.8 (2)C10—C24—C35—C33129.03 (16)
C21—C22—C23—N238.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.81 (3)2.01 (2)2.578 (2)127 (3)
C20—H20A···O2i0.982.463.130 (3)125
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC35H28Br2N2O2
Mr668.41
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.4833 (10), 11.8334 (13), 14.8942 (17)
α, β, γ (°)79.868 (2), 80.705 (2), 77.359 (2)
V3)1424.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.88
Crystal size (mm)0.44 × 0.17 × 0.16
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.364, 0.657
No. of measured, independent and
observed [I > 2σ(I)] reflections
14706, 6459, 5384
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.07
No. of reflections6459
No. of parameters374
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N20.81 (3)2.01 (2)2.578 (2)127 (3)
C20—H20A···O2i0.982.463.130 (3)125
Symmetry code: (i) x, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant No. 1001/PKIMIA/811133 and RSK thanks Universiti Sains Malaysia for the award of a post doctoral fellowship. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBabu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 305–308.  CAS Google Scholar
First citationBoruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett. 48, 4535–4537.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDondas, H. A., Fishwick, C. W. G., Grigg, R. & Kilner, C. (2004). Tetrahedron, 60, 3473–3485.  Web of Science CSD CrossRef CAS Google Scholar
First citationHong, X., France, S. & Padwa, A. (2007). Tetrahedron, 63, 5962–5976.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581–10586.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiddell, J. R. (1998). Nat. Prod. Rep. 15, 363–370.  CrossRef CAS PubMed Google Scholar
First citationRamesh, E., Kathiresan, M. & Raghunathan, R. (2007). Tetrahedron Lett. 48, 1835–1839.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds