organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Bromo­phen­yl)(1-phenyl­sulfonyl-1H-indol-2-yl)methanone

aDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, bDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 14 October 2010; accepted 16 October 2010; online 30 October 2010)

In the title compound, C21H14BrNO3S, the indole ring system forms dihedral angles of 65.64 (8) and 59.30 (8)°, respectively, with the phenyl and bromo­phenyl rings. In the crystal, mol­ecules are connected by a C—H⋯O hydrogen bond, forming a chain along [101]. The chains are further connected by weak inter­molecular C—H⋯π inter­actions, forming a layer parallel to the ac plane.

Related literature

For the biological activity of indole derivatives, see: Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.]); Poter et al. (1977[Poter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88-93.]). For related structures, see: Chakkaravarthi et al. (2007[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3698.], 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]). For details of the configuration at the S atom, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.]). For details of N-atom hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14BrNO3S

  • Mr = 440.30

  • Monoclinic, P 21 /n

  • a = 8.482 (3) Å

  • b = 25.780 (4) Å

  • c = 8.690 (3) Å

  • β = 93.388 (3)°

  • V = 1896.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 295 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.609, Tmax = 0.656

  • 18123 measured reflections

  • 4736 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.111

  • S = 1.03

  • 4736 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/C7/C8/C9/C14 and C9–C14 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O3i 0.93 2.50 3.383 (3) 158
C4—H4⋯Cg1ii 0.93 2.67 3.635 (4) 127
C4—H4⋯Cg2ii 0.93 2.76 3.681 (4) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole derivatives are found abundantly in a variety of natural plants (Poter et al., 1977). Compounds containing the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Indole derivatives are also known to exhibit anticancer and anti - HIV (Pomarnacka & Kozlarska-Kedra, 2003) activities.

In continuation of our studies of indole derivatives, we determined the crystal structure of the title compound,(I). The geometric parameters of the molecule of (I) (Fig. 1) agree well with the reported values for similar structures (Chakkaravarthi et al., 2007, 2008). Due to Thorpe–Ignold effect (Bassindale, 1984), bond angles around atom S1 show significant deviation from ideal tetrahedral value, with significant deviations in angles O2—S1—O1 [120.86 (13)°] and N1—S1—C1 [103.79 (11)°].

The phenyl ring forms the dihedral angle of 65.64 (8)° with the indole ring system and the bromophenyl ring makes the dihedral angle of 59.30 (8)° with the indole ring system. The N1—S1—C1 plane is almost orthogonal to both [dihedral angle 72.30 (9)°] indole ring and [dihedral angle 71.68 (12)°] phenyl ring.

The sum of the bond angles around N1 [341.7 (2)°] indicates that N1 atom is sp3 hybridized (Beddoes et al., 1986). The crystal packing is stabilized by weak intermolecular C—H···O and C—H···π [C4—H4···Cg1 (-1 + x, y, z) distance of 3.635 (4)Å and C4—H4···Cg2 (-1 + x, y, z) distance of 3.681 (4)Å (Cg1 and Cg2 are the centroids of the rings defined by the atoms N1/C7/C8/C9/C14 and C9—C14, respectively] interactions.

Related literature top

For the biological activity of indole derivatives, see: Joshi & Chand (1982); Pomarnacka & Kozlarska-Kedra (2003); Poter et al. (1977). For related structures, see: Chakkaravarthi et al. (2007, 2008). For details of the configuration at the S atom, see: Bassindale (1984). For details of N-atom hybridization, see: Beddoes et al. (1986).

Experimental top

To a solution of N-(2-Formylphenyl)benzenesulfonamide (0.5 g, 1.91 mmol) in dry CH3CN (20 ml), K2CO3 (0.8 g, 5.79 mmol), 2-bromo-1-(4-bromophenyl)ethanone (0.63 g, 2.26 mmol) were added. The reaction mixture was stirred at room temperature for 6 h under N2 atmosphere. The solvent was removed and the residue was quenched with ice-water (50 ml), extracted with chloroform (3 × 10 ml) and dried (Na2SO4). Removal of solvent followed by the residue was dissolved in CH3CN (20 ml), Conc. HCl (3 ml) was added. The reaction mixture was then refluxed for 2 h. It was then poured over ice-water (50 ml), extracted with CHCl3 (3 × 10 ml) and dried (Na2SO4). Removal of solvent followed by crystallization from methanol afforded the compound as a colourless crystal.

Refinement top

H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Structure description top

Indole derivatives are found abundantly in a variety of natural plants (Poter et al., 1977). Compounds containing the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Indole derivatives are also known to exhibit anticancer and anti - HIV (Pomarnacka & Kozlarska-Kedra, 2003) activities.

In continuation of our studies of indole derivatives, we determined the crystal structure of the title compound,(I). The geometric parameters of the molecule of (I) (Fig. 1) agree well with the reported values for similar structures (Chakkaravarthi et al., 2007, 2008). Due to Thorpe–Ignold effect (Bassindale, 1984), bond angles around atom S1 show significant deviation from ideal tetrahedral value, with significant deviations in angles O2—S1—O1 [120.86 (13)°] and N1—S1—C1 [103.79 (11)°].

The phenyl ring forms the dihedral angle of 65.64 (8)° with the indole ring system and the bromophenyl ring makes the dihedral angle of 59.30 (8)° with the indole ring system. The N1—S1—C1 plane is almost orthogonal to both [dihedral angle 72.30 (9)°] indole ring and [dihedral angle 71.68 (12)°] phenyl ring.

The sum of the bond angles around N1 [341.7 (2)°] indicates that N1 atom is sp3 hybridized (Beddoes et al., 1986). The crystal packing is stabilized by weak intermolecular C—H···O and C—H···π [C4—H4···Cg1 (-1 + x, y, z) distance of 3.635 (4)Å and C4—H4···Cg2 (-1 + x, y, z) distance of 3.681 (4)Å (Cg1 and Cg2 are the centroids of the rings defined by the atoms N1/C7/C8/C9/C14 and C9—C14, respectively] interactions.

For the biological activity of indole derivatives, see: Joshi & Chand (1982); Pomarnacka & Kozlarska-Kedra (2003); Poter et al. (1977). For related structures, see: Chakkaravarthi et al. (2007, 2008). For details of the configuration at the S atom, see: Bassindale (1984). For details of N-atom hybridization, see: Beddoes et al. (1986).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis. H-bonds are shown as dashed lines; H atoms not involved in hydrogen bonding have been omitted.
(4-Bromophenyl)(1-phenylsulfonyl-1H-indol-2-yl)methanone top
Crystal data top
C21H14BrNO3SF(000) = 888
Mr = 440.30Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4249 reflections
a = 8.482 (3) Åθ = 2.5–24.4°
b = 25.780 (4) ŵ = 2.30 mm1
c = 8.690 (3) ÅT = 295 K
β = 93.388 (3)°Block, colourless
V = 1896.9 (10) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
4736 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.609, Tmax = 0.656k = 2934
18123 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.6759P]
where P = (Fo2 + 2Fc2)/3
4736 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C21H14BrNO3SV = 1896.9 (10) Å3
Mr = 440.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.482 (3) ŵ = 2.30 mm1
b = 25.780 (4) ÅT = 295 K
c = 8.690 (3) Å0.24 × 0.22 × 0.20 mm
β = 93.388 (3)°
Data collection top
Bruker Kappa APEXII
diffractometer
4736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2944 reflections with I > 2σ(I)
Tmin = 0.609, Tmax = 0.656Rint = 0.035
18123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.62 e Å3
4736 reflectionsΔρmin = 0.46 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24312 (5)0.018422 (12)0.53534 (5)0.09126 (18)
S10.26404 (8)0.34303 (3)0.83609 (7)0.04855 (18)
O10.3198 (2)0.38893 (8)0.9118 (2)0.0648 (5)
O20.2576 (3)0.29550 (8)0.9169 (2)0.0737 (6)
O30.5440 (2)0.24395 (7)0.8349 (2)0.0671 (6)
N10.3837 (2)0.33357 (7)0.6910 (2)0.0421 (5)
C10.0793 (3)0.35548 (11)0.7418 (3)0.0494 (6)
C20.0204 (4)0.40492 (12)0.7428 (4)0.0703 (9)
H20.07510.43120.79650.084*
C30.1230 (4)0.41519 (17)0.6619 (5)0.0963 (12)
H30.16370.44870.65860.116*
C40.2035 (4)0.3756 (2)0.5872 (5)0.1035 (14)
H40.30000.38240.53470.124*
C50.1456 (4)0.32696 (18)0.5883 (4)0.0901 (12)
H50.20210.30060.53690.108*
C60.0021 (4)0.31602 (12)0.6658 (3)0.0650 (8)
H60.03860.28250.66650.078*
C70.4047 (3)0.28357 (9)0.6256 (3)0.0410 (5)
C80.4166 (3)0.28833 (10)0.4728 (3)0.0488 (6)
H80.43150.26120.40450.059*
C90.4027 (3)0.34192 (10)0.4327 (3)0.0477 (6)
C100.4108 (4)0.36829 (14)0.2933 (4)0.0706 (9)
H100.42630.35050.20240.085*
C110.3955 (4)0.42089 (15)0.2939 (4)0.0827 (11)
H110.40030.43910.20190.099*
C120.3731 (4)0.44741 (12)0.4272 (5)0.0769 (10)
H120.36290.48330.42300.092*
C130.3650 (3)0.42278 (11)0.5686 (4)0.0613 (7)
H130.34940.44100.65870.074*
C140.3816 (3)0.36928 (9)0.5669 (3)0.0438 (6)
C150.4561 (3)0.23788 (10)0.7209 (3)0.0471 (6)
C160.4037 (3)0.18560 (9)0.6675 (3)0.0430 (6)
C170.2741 (3)0.17786 (10)0.5660 (3)0.0486 (6)
H170.21870.20620.52440.058*
C180.2266 (3)0.12794 (11)0.5260 (3)0.0566 (7)
H180.13890.12260.45840.068*
C190.3100 (3)0.08671 (10)0.5870 (3)0.0566 (7)
C200.4411 (4)0.09344 (11)0.6858 (4)0.0656 (8)
H200.49800.06500.72460.079*
C210.4865 (3)0.14285 (10)0.7260 (3)0.0586 (7)
H210.57440.14780.79360.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1039 (3)0.04279 (18)0.1244 (4)0.01215 (17)0.0165 (2)0.00695 (18)
S10.0576 (4)0.0482 (4)0.0396 (3)0.0031 (3)0.0004 (3)0.0035 (3)
O10.0676 (13)0.0651 (12)0.0596 (11)0.0067 (10)0.0144 (10)0.0246 (10)
O20.0985 (17)0.0670 (13)0.0573 (12)0.0100 (11)0.0197 (11)0.0186 (10)
O30.0788 (14)0.0531 (11)0.0650 (12)0.0036 (10)0.0339 (11)0.0042 (9)
N10.0464 (12)0.0357 (10)0.0439 (11)0.0020 (9)0.0010 (9)0.0010 (8)
C10.0446 (15)0.0566 (15)0.0475 (14)0.0042 (12)0.0073 (12)0.0093 (12)
C20.0522 (18)0.066 (2)0.092 (2)0.0062 (15)0.0045 (16)0.0181 (17)
C30.059 (2)0.103 (3)0.125 (3)0.022 (2)0.008 (2)0.009 (3)
C40.045 (2)0.163 (5)0.102 (3)0.002 (3)0.0044 (19)0.031 (3)
C50.054 (2)0.129 (4)0.088 (3)0.031 (2)0.0063 (18)0.041 (2)
C60.0609 (19)0.0685 (19)0.0671 (19)0.0180 (15)0.0171 (16)0.0198 (15)
C70.0391 (13)0.0378 (12)0.0452 (14)0.0000 (10)0.0038 (10)0.0029 (10)
C80.0482 (15)0.0539 (15)0.0439 (15)0.0019 (12)0.0018 (12)0.0090 (12)
C90.0382 (14)0.0604 (16)0.0438 (14)0.0065 (12)0.0029 (11)0.0067 (12)
C100.071 (2)0.086 (2)0.0539 (18)0.0102 (17)0.0008 (15)0.0200 (16)
C110.079 (2)0.095 (3)0.073 (2)0.014 (2)0.0080 (18)0.041 (2)
C120.067 (2)0.0518 (17)0.110 (3)0.0056 (15)0.0073 (19)0.0329 (19)
C130.0565 (18)0.0475 (15)0.079 (2)0.0009 (13)0.0005 (15)0.0073 (14)
C140.0349 (13)0.0428 (13)0.0533 (15)0.0032 (10)0.0025 (11)0.0084 (11)
C150.0449 (14)0.0445 (13)0.0508 (15)0.0057 (11)0.0058 (12)0.0023 (11)
C160.0421 (14)0.0387 (12)0.0475 (14)0.0047 (10)0.0035 (11)0.0000 (10)
C170.0422 (14)0.0431 (13)0.0590 (16)0.0047 (11)0.0100 (12)0.0004 (11)
C180.0470 (16)0.0503 (16)0.0707 (18)0.0045 (12)0.0114 (14)0.0017 (13)
C190.0585 (17)0.0387 (13)0.0719 (19)0.0029 (12)0.0005 (14)0.0020 (12)
C200.071 (2)0.0425 (15)0.080 (2)0.0129 (14)0.0178 (16)0.0013 (14)
C210.0556 (17)0.0489 (15)0.0685 (18)0.0082 (13)0.0212 (14)0.0000 (13)
Geometric parameters (Å, º) top
Br1—C191.895 (3)C8—H80.9300
S1—O21.415 (2)C9—C141.384 (4)
S1—O11.4211 (19)C9—C101.394 (4)
S1—N11.682 (2)C10—C111.362 (5)
S1—C11.754 (3)C10—H100.9300
O3—C151.215 (3)C11—C121.368 (5)
N1—C141.417 (3)C11—H110.9300
N1—C71.424 (3)C12—C131.388 (4)
C1—C21.369 (4)C12—H120.9300
C1—C61.376 (4)C13—C141.386 (3)
C2—C31.394 (5)C13—H130.9300
C2—H20.9300C15—C161.485 (3)
C3—C41.370 (5)C16—C171.382 (3)
C3—H30.9300C16—C211.387 (3)
C4—C51.346 (6)C17—C181.387 (4)
C4—H40.9300C17—H170.9300
C5—C61.385 (5)C18—C191.367 (4)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.375 (4)
C7—C81.343 (3)C20—C211.370 (4)
C7—C151.490 (3)C20—H200.9300
C8—C91.428 (4)C21—H210.9300
O2—S1—O1120.86 (13)C11—C10—C9118.2 (3)
O2—S1—N1106.80 (11)C11—C10—H10120.9
O1—S1—N1105.58 (12)C9—C10—H10120.9
O2—S1—C1109.31 (14)C10—C11—C12121.2 (3)
O1—S1—C1109.10 (12)C10—C11—H11119.4
N1—S1—C1103.79 (11)C12—C11—H11119.4
C14—N1—C7106.31 (19)C11—C12—C13122.5 (3)
C14—N1—S1119.67 (16)C11—C12—H12118.7
C7—N1—S1121.71 (16)C13—C12—H12118.7
C2—C1—C6121.2 (3)C14—C13—C12115.8 (3)
C2—C1—S1118.9 (2)C14—C13—H13122.1
C6—C1—S1119.9 (2)C12—C13—H13122.1
C1—C2—C3118.8 (3)C9—C14—C13122.3 (2)
C1—C2—H2120.6C9—C14—N1108.3 (2)
C3—C2—H2120.6C13—C14—N1129.4 (2)
C4—C3—C2119.6 (4)O3—C15—C16122.0 (2)
C4—C3—H3120.2O3—C15—C7119.8 (2)
C2—C3—H3120.2C16—C15—C7118.1 (2)
C5—C4—C3121.3 (4)C17—C16—C21119.0 (2)
C5—C4—H4119.4C17—C16—C15122.8 (2)
C3—C4—H4119.4C21—C16—C15118.1 (2)
C4—C5—C6120.2 (3)C16—C17—C18120.2 (2)
C4—C5—H5119.9C16—C17—H17119.9
C6—C5—H5119.9C18—C17—H17119.9
C1—C6—C5119.0 (3)C19—C18—C17119.2 (2)
C1—C6—H6120.5C19—C18—H18120.4
C5—C6—H6120.5C17—C18—H18120.4
C8—C7—N1109.3 (2)C18—C19—C20121.7 (3)
C8—C7—C15125.8 (2)C18—C19—Br1119.3 (2)
N1—C7—C15122.2 (2)C20—C19—Br1119.0 (2)
C7—C8—C9108.6 (2)C21—C20—C19118.8 (3)
C7—C8—H8125.7C21—C20—H20120.6
C9—C8—H8125.7C19—C20—H20120.6
C14—C9—C10120.0 (3)C20—C21—C16121.1 (2)
C14—C9—C8107.5 (2)C20—C21—H21119.4
C10—C9—C8132.5 (3)C16—C21—H21119.4
O2—S1—N1—C14163.63 (18)C10—C11—C12—C130.1 (5)
O1—S1—N1—C1466.5 (2)C11—C12—C13—C140.2 (5)
C1—S1—N1—C1448.2 (2)C10—C9—C14—C131.2 (4)
O2—S1—N1—C726.6 (2)C8—C9—C14—C13179.6 (2)
O1—S1—N1—C7156.43 (18)C10—C9—C14—N1177.8 (2)
C1—S1—N1—C788.8 (2)C8—C9—C14—N10.6 (3)
O2—S1—C1—C2138.5 (2)C12—C13—C14—C90.9 (4)
O1—S1—C1—C24.3 (3)C12—C13—C14—N1177.9 (3)
N1—S1—C1—C2107.9 (2)C7—N1—C14—C90.8 (3)
O2—S1—C1—C642.9 (3)S1—N1—C14—C9143.64 (18)
O1—S1—C1—C6177.1 (2)C7—N1—C14—C13179.7 (2)
N1—S1—C1—C670.7 (2)S1—N1—C14—C1337.5 (3)
C6—C1—C2—C31.5 (5)C8—C7—C15—O3127.2 (3)
S1—C1—C2—C3177.1 (3)N1—C7—C15—O332.1 (4)
C1—C2—C3—C41.8 (6)C8—C7—C15—C1649.7 (4)
C2—C3—C4—C51.1 (7)N1—C7—C15—C16151.0 (2)
C3—C4—C5—C60.0 (6)O3—C15—C16—C17162.2 (3)
C2—C1—C6—C50.5 (4)C7—C15—C16—C1720.9 (4)
S1—C1—C6—C5178.1 (2)O3—C15—C16—C2116.0 (4)
C4—C5—C6—C10.3 (5)C7—C15—C16—C21160.8 (2)
C14—N1—C7—C80.7 (3)C21—C16—C17—C181.2 (4)
S1—N1—C7—C8142.63 (19)C15—C16—C17—C18177.0 (2)
C14—N1—C7—C15163.0 (2)C16—C17—C18—C190.5 (4)
S1—N1—C7—C1555.1 (3)C17—C18—C19—C200.8 (5)
N1—C7—C8—C90.4 (3)C17—C18—C19—Br1178.9 (2)
C15—C7—C8—C9161.9 (2)C18—C19—C20—C211.4 (5)
C7—C8—C9—C140.1 (3)Br1—C19—C20—C21178.3 (2)
C7—C8—C9—C10178.0 (3)C19—C20—C21—C160.7 (5)
C14—C9—C10—C110.8 (4)C17—C16—C21—C200.6 (4)
C8—C9—C10—C11178.7 (3)C15—C16—C21—C20177.7 (3)
C9—C10—C11—C120.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C7/C8/C9/C14 and C9—C14 rings, respectively
D—H···AD—HH···AD···AD—H···A
C17—H17···O3i0.932.503.383 (3)158
C4—H4···Cg1ii0.932.673.635 (4)127
C4—H4···Cg2ii0.932.763.681 (4)169
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H14BrNO3S
Mr440.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.482 (3), 25.780 (4), 8.690 (3)
β (°) 93.388 (3)
V3)1896.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.609, 0.656
No. of measured, independent and
observed [I > 2σ(I)] reflections
18123, 4736, 2944
Rint0.035
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.03
No. of reflections4736
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.46

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/C7/C8/C9/C14 and C9—C14 rings, respectively
D—H···AD—HH···AD···AD—H···A
C17—H17···O3i0.932.503.383 (3)158
C4—H4···Cg1ii0.932.673.635 (4)127
C4—H4···Cg2ii0.932.763.681 (4)169
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

The authors wish to acknowledge DV University of Madras for the data collection.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationPoter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds