organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Bromo­phen­yl)(2,7-dimeth­­oxy-1-naphth­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 15 October 2010; accepted 20 October 2010; online 23 October 2010)

In the title compound, C19H15BrO3, the dihedral angle between the naphthalene ring system and the benzene ring is 72.02 (9)°. The bridging carbonyl C—C(=O)—C plane makes dihedral angles of 70.88 (10) and 1.87 (12)°, respectively, with the naphthalene ring system and the benzene ring. In the crystal, two types of weak inter­molecular C—H⋯O inter­actions and a short Br⋯C contact [3.345 (2) Å] are observed.

Related literature

For electrophilic aromatic substitution of naphthalene deriva­tives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For the structures of closely related compounds, see: Hijikata et al., 2010[Hijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o713.]); Kato, Nagasawa, Hijikata et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Kato, Nagasawa, Kataoka et al. (2010[Kato, Y., Nagasawa, A., Kataoka, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2795.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Watanabe, Muto et al. (2010[Watanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.]); Watanabe, Nakaema et al. (2010[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15BrO3

  • Mr = 371.22

  • Orthorhombic, P b c a

  • a = 6.58278 (12) Å

  • b = 16.1134 (3) Å

  • c = 30.2750 (6) Å

  • V = 3211.30 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.60 mm−1

  • T = 193 K

  • 0.60 × 0.60 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.161, Tmax = 0.533

  • 52243 measured reflections

  • 2922 independent reflections

  • 2724 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.082

  • S = 1.06

  • 2922 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.57 3.372 (3) 142
C17—H17⋯O2ii 0.95 2.57 3.407 (3) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly connected in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. In this course, the crystal structures of 1-monoaroylated naphthalene compounds and the β-isomers of 3-monoaroylated compounds have been also clarified such as 2-(2,7-dimethoxy-1-naphthoyl)benzoic acid (Hijikata et al., 2010), (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato, Nagasawa, Hijikata et al., 2010) and (3,6-dimethoxy-2-naphthyl)(4-fluorophenyl)methanone (Watanabe, Muto et al., 2010). The former compounds have revealed to have essentially the same non-coplanar structure with the 1,8-diaroylated naphthalenes. On the other hand, presence of bromo groups in these compounds are shown to demonstrate somewhat different as displayed for aroylated naphthalene homologues bearing bromo group, i.e., bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema et al., 2010) and (4-bromophenyl)(3,6-dimethoxy-2-naphthyl)methanone The 4-bromophenyl group is out of the plane of the naphthalene ring. (Kato, Nagasawa, Kataoka et al., 2010). In the crystal structures, the dihedral angles between naphthalene and bromophenyl rings are demonstrated to have rather small compared to the corresponding without bromo group compounds. As a part of the course of our continuous study on the molecular structures of these kinds of homologous molecules, the crystal structure of title compound, a 1-bromobenzoylated naphthalene derivative, is discussed in this paper.

The molecular structure of the title compound is displayed in Fig. 1. The 4-bromophenyl group is out of the plane of the naphthalene ring. The dihedral angle between the best planes of the bromophenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 72.02 (9)°. The carbonyl group and the 4-bromophenyl group have almost coplanar configuration [O3—C11—C12—C13 torsion angle = 2.5 (3)°]. On the other hand, the carbonyl group makes torsion angle of 70.3 (3)° with the naphthalene ring plane.

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the 2-methoxy group and one hydrogen atom (H6) of the naphthalene ring of the adjacent molecule along the a axis (C6—H6···O1i; Fig. 2 and Table 1). Moreover, there is also intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of the 7-methoxy group and one hydrogen atom (H17) of the 4-bromophenyl group of the adjacent molecule along the c axis (C17—H17···O2ii; Fig. 3 and Table 1). Furthermore, an intermolecular interaction between the bromine atom and the naphthalene ring carbon [C8···Br1iii = 3.345 (2) Å; (iii) -x + 1, -y, -z] is observed (Fig. 4).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Hijikata et al., 2010); Kato, Nagasawa, Hijikata et al. (2010); Kato, Nagasawa, Kataoka et al. (2010); Muto et al. (2010); Watanabe, Muto et al. (2010); Watanabe, Nakaema et al. (2010).

Experimental top

To a 100 ml flask, 4-bromobenzoyl chloride (11 mmol, 2.403 g), aluminium chloride (13.3 mmol, 1.769 g) and methylene chloride (25 ml) were placed and stirred at 273 K. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (9.9 mmol, 1.869 g) and methylene chloride (25 ml) were added. After the reaction mixture was stirred at 273 K for 6 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from ethanol (57% yield). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from ethanol.

Spectroscopic Data:

1H NMR δ (300 MHz, CDCl3); 3.73 (3H, s), 3.78 (3H, s), 6.78 (1H, d, J = 2.4 Hz), 7.02 (1H, dd, J = 2.4, 9.0 Hz), 7.15 (1H, d, J = 9.3 Hz), 7.56 (2H, d, J = 8.7 Hz), 7.69–7.74 (3H, m), 7.87 (1H, d, J = 9.0 Hz). 13C NMR δ (75 MHz, CDCl3); 54.90, 55.95, 101.73, 109.85, 116.84, 120.69, 124.12, 128.29, 129.57, 130.74, 131.16, 131.63, 132.74, 136.71, 154.87, 158.76, 196.67. IR (KBr); 1667 (CO), 1626, 1572, 1513 (Ar, naphthalene) cm-1. HRMS (m/z); [M + Na]+ Calcd for C19H15O3BrNa, 393.0102; found, 393.0106. m.p. = 405.2–408.7 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twistedly connected in an almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. In this course, the crystal structures of 1-monoaroylated naphthalene compounds and the β-isomers of 3-monoaroylated compounds have been also clarified such as 2-(2,7-dimethoxy-1-naphthoyl)benzoic acid (Hijikata et al., 2010), (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato, Nagasawa, Hijikata et al., 2010) and (3,6-dimethoxy-2-naphthyl)(4-fluorophenyl)methanone (Watanabe, Muto et al., 2010). The former compounds have revealed to have essentially the same non-coplanar structure with the 1,8-diaroylated naphthalenes. On the other hand, presence of bromo groups in these compounds are shown to demonstrate somewhat different as displayed for aroylated naphthalene homologues bearing bromo group, i.e., bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema et al., 2010) and (4-bromophenyl)(3,6-dimethoxy-2-naphthyl)methanone The 4-bromophenyl group is out of the plane of the naphthalene ring. (Kato, Nagasawa, Kataoka et al., 2010). In the crystal structures, the dihedral angles between naphthalene and bromophenyl rings are demonstrated to have rather small compared to the corresponding without bromo group compounds. As a part of the course of our continuous study on the molecular structures of these kinds of homologous molecules, the crystal structure of title compound, a 1-bromobenzoylated naphthalene derivative, is discussed in this paper.

The molecular structure of the title compound is displayed in Fig. 1. The 4-bromophenyl group is out of the plane of the naphthalene ring. The dihedral angle between the best planes of the bromophenyl ring (C12—C17) and the naphthalene ring (C1—C10) is 72.02 (9)°. The carbonyl group and the 4-bromophenyl group have almost coplanar configuration [O3—C11—C12—C13 torsion angle = 2.5 (3)°]. On the other hand, the carbonyl group makes torsion angle of 70.3 (3)° with the naphthalene ring plane.

In the crystal structure, the molecular packing of the title compound is stabilized mainly by van der Waals interactions. The crystal packing is additionally stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O1) of the 2-methoxy group and one hydrogen atom (H6) of the naphthalene ring of the adjacent molecule along the a axis (C6—H6···O1i; Fig. 2 and Table 1). Moreover, there is also intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of the 7-methoxy group and one hydrogen atom (H17) of the 4-bromophenyl group of the adjacent molecule along the c axis (C17—H17···O2ii; Fig. 3 and Table 1). Furthermore, an intermolecular interaction between the bromine atom and the naphthalene ring carbon [C8···Br1iii = 3.345 (2) Å; (iii) -x + 1, -y, -z] is observed (Fig. 4).

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Hijikata et al., 2010); Kato, Nagasawa, Hijikata et al. (2010); Kato, Nagasawa, Kataoka et al. (2010); Muto et al. (2010); Watanabe, Muto et al. (2010); Watanabe, Nakaema et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids at 50% probability.
[Figure 2] Fig. 2. Intermolecular C6—H6···O1 interactions, viewed along the a axis [symmetry code: (i) -x + 1/2, y - 1/2, z].
[Figure 3] Fig. 3. Intermolecular C17—H17···O2 interactions, viewed along the c axis [symmetry code: (ii) x + 1, y, z].
[Figure 4] Fig. 4. Intermolecular interactions between bromine atom Br1 and naphthalene ring carbon atom C8, viewed along the a axis [symmetry code: (iii) -x + 1, -y, -z]. .
(4-Bromophenyl)(2,7-dimethoxy-1-naphthyl)methanone top
Crystal data top
C19H15BrO3Dx = 1.536 Mg m3
Mr = 371.22Melting point = 405.2–408.7 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ac 2abCell parameters from 50764 reflections
a = 6.58278 (12) Åθ = 3.1–68.2°
b = 16.1134 (3) ŵ = 3.60 mm1
c = 30.2750 (6) ÅT = 193 K
V = 3211.30 (10) Å3Platelet, colorless
Z = 80.60 × 0.60 × 0.20 mm
F(000) = 1504
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2922 independent reflections
Radiation source: rotating anode2724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.00 pixels mm-1θmax = 68.3°, θmin = 5.5°
ω scansh = 77
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1919
Tmin = 0.161, Tmax = 0.533l = 3636
52243 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0352P)2 + 2.8492P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2922 reflectionsΔρmax = 0.73 e Å3
211 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00189 (8)
Crystal data top
C19H15BrO3V = 3211.30 (10) Å3
Mr = 371.22Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 6.58278 (12) ŵ = 3.60 mm1
b = 16.1134 (3) ÅT = 193 K
c = 30.2750 (6) Å0.60 × 0.60 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2922 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2724 reflections with I > 2σ(I)
Tmin = 0.161, Tmax = 0.533Rint = 0.033
52243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.06Δρmax = 0.73 e Å3
2922 reflectionsΔρmin = 0.67 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81329 (5)0.125182 (16)0.029041 (9)0.05922 (14)
O10.5963 (3)0.05334 (10)0.18778 (5)0.0474 (4)
O20.2447 (3)0.17865 (10)0.10564 (6)0.0520 (4)
O30.1223 (2)0.08709 (10)0.13828 (6)0.0487 (4)
C10.4972 (3)0.02136 (13)0.18754 (7)0.0374 (5)
C20.5580 (4)0.08984 (15)0.21337 (7)0.0435 (5)
H20.67410.08610.23190.052*
C30.4479 (4)0.16140 (14)0.21143 (7)0.0431 (5)
H30.49140.20780.22830.052*
C40.2719 (4)0.16887 (13)0.18527 (6)0.0366 (5)
C50.1554 (4)0.24241 (13)0.18287 (7)0.0428 (5)
H50.19680.28930.19960.051*
C60.0143 (4)0.24819 (13)0.15728 (7)0.0438 (5)
H60.08940.29850.15620.053*
C70.0776 (3)0.17878 (13)0.13235 (7)0.0388 (5)
C80.0304 (3)0.10607 (12)0.13367 (7)0.0348 (4)
H80.01510.05980.11700.042*
C90.2085 (3)0.09892 (12)0.15950 (6)0.0322 (4)
C100.3289 (3)0.02594 (12)0.16062 (6)0.0331 (4)
C110.2740 (3)0.04610 (12)0.13110 (7)0.0336 (4)
C120.4065 (3)0.06341 (12)0.09228 (6)0.0322 (4)
C130.3595 (4)0.12986 (14)0.06479 (8)0.0458 (6)
H130.24400.16320.07100.055*
C140.4791 (4)0.14768 (15)0.02861 (8)0.0514 (6)
H140.44680.19310.00990.062*
C150.6459 (4)0.09888 (14)0.01995 (7)0.0410 (5)
C160.6948 (4)0.03213 (14)0.04623 (8)0.0430 (5)
H160.81010.00120.03970.052*
C170.5735 (3)0.01439 (13)0.08224 (7)0.0385 (5)
H170.60480.03200.10040.046*
C180.7728 (4)0.06171 (18)0.21481 (8)0.0534 (6)
H18A0.83010.11740.21110.064*
H18B0.73570.05330.24580.064*
H18C0.87380.02010.20610.064*
C190.3709 (4)0.25055 (15)0.10462 (10)0.0570 (7)
H19A0.48780.24030.08530.068*
H19B0.29300.29780.09330.068*
H19C0.41880.26300.13450.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0793 (2)0.04578 (18)0.05256 (19)0.00079 (13)0.02664 (14)0.00441 (11)
O10.0446 (9)0.0476 (9)0.0499 (9)0.0074 (8)0.0127 (7)0.0077 (7)
O20.0498 (9)0.0384 (8)0.0678 (11)0.0113 (8)0.0073 (9)0.0016 (8)
O30.0400 (9)0.0376 (8)0.0684 (11)0.0100 (7)0.0141 (8)0.0134 (8)
C10.0381 (11)0.0380 (11)0.0361 (10)0.0026 (9)0.0025 (9)0.0024 (8)
C20.0434 (13)0.0516 (13)0.0356 (11)0.0099 (11)0.0031 (9)0.0046 (10)
C30.0537 (14)0.0394 (12)0.0362 (11)0.0153 (10)0.0024 (10)0.0089 (9)
C40.0465 (12)0.0311 (10)0.0323 (10)0.0095 (9)0.0099 (9)0.0034 (8)
C50.0586 (15)0.0302 (11)0.0397 (11)0.0087 (10)0.0109 (10)0.0055 (9)
C60.0570 (14)0.0272 (10)0.0474 (12)0.0015 (10)0.0151 (11)0.0008 (9)
C70.0410 (12)0.0347 (11)0.0408 (11)0.0001 (9)0.0073 (9)0.0025 (9)
C80.0383 (11)0.0290 (10)0.0370 (10)0.0030 (9)0.0049 (9)0.0024 (8)
C90.0363 (11)0.0288 (10)0.0315 (10)0.0064 (8)0.0082 (8)0.0010 (8)
C100.0341 (11)0.0313 (10)0.0337 (10)0.0052 (8)0.0035 (8)0.0036 (8)
C110.0325 (11)0.0273 (10)0.0409 (11)0.0001 (8)0.0012 (9)0.0010 (8)
C120.0343 (10)0.0264 (9)0.0359 (10)0.0003 (8)0.0025 (8)0.0003 (8)
C130.0521 (14)0.0371 (12)0.0482 (13)0.0159 (10)0.0060 (11)0.0082 (9)
C140.0690 (17)0.0387 (12)0.0464 (13)0.0149 (12)0.0109 (12)0.0121 (10)
C150.0539 (14)0.0320 (10)0.0372 (11)0.0042 (10)0.0090 (10)0.0008 (9)
C160.0441 (13)0.0392 (12)0.0457 (12)0.0076 (10)0.0060 (10)0.0015 (10)
C170.0401 (12)0.0339 (11)0.0416 (11)0.0063 (9)0.0001 (9)0.0048 (9)
C180.0423 (13)0.0665 (16)0.0515 (13)0.0103 (12)0.0106 (11)0.0061 (12)
C190.0532 (15)0.0431 (13)0.0747 (17)0.0137 (12)0.0049 (13)0.0122 (12)
Geometric parameters (Å, º) top
Br1—C151.896 (2)C8—H80.9500
O1—C11.369 (3)C9—C101.419 (3)
O1—C181.428 (3)C10—C111.509 (3)
O2—C71.365 (3)C11—C121.490 (3)
O2—C191.426 (3)C12—C171.387 (3)
O3—C111.217 (3)C12—C131.391 (3)
C1—C101.378 (3)C13—C141.380 (3)
C1—C21.410 (3)C13—H130.9500
C2—C31.363 (3)C14—C151.375 (4)
C2—H20.9500C14—H140.9500
C3—C41.409 (3)C15—C161.376 (3)
C3—H30.9500C16—C171.381 (3)
C4—C51.413 (3)C16—H160.9500
C4—C91.433 (3)C17—H170.9500
C5—C61.363 (3)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.412 (3)C18—H18C0.9800
C6—H60.9500C19—H19A0.9800
C7—C81.371 (3)C19—H19B0.9800
C8—C91.414 (3)C19—H19C0.9800
C1—O1—C18118.30 (18)O3—C11—C10120.55 (19)
C7—O2—C19118.76 (19)C12—C11—C10118.10 (17)
O1—C1—C10115.70 (18)C17—C12—C13118.9 (2)
O1—C1—C2123.3 (2)C17—C12—C11122.02 (18)
C10—C1—C2121.0 (2)C13—C12—C11119.05 (19)
C3—C2—C1119.2 (2)C14—C13—C12120.5 (2)
C3—C2—H2120.4C14—C13—H13119.7
C1—C2—H2120.4C12—C13—H13119.7
C2—C3—C4122.3 (2)C15—C14—C13119.2 (2)
C2—C3—H3118.9C15—C14—H14120.4
C4—C3—H3118.9C13—C14—H14120.4
C3—C4—C5123.16 (19)C14—C15—C16121.6 (2)
C3—C4—C9118.6 (2)C14—C15—Br1119.02 (17)
C5—C4—C9118.2 (2)C16—C15—Br1119.40 (18)
C6—C5—C4122.1 (2)C15—C16—C17118.9 (2)
C6—C5—H5118.9C15—C16—H16120.6
C4—C5—H5118.9C17—C16—H16120.6
C5—C6—C7119.4 (2)C16—C17—C12120.88 (19)
C5—C6—H6120.3C16—C17—H17119.6
C7—C6—H6120.3C12—C17—H17119.6
O2—C7—C8115.71 (19)O1—C18—H18A109.5
O2—C7—C6123.7 (2)O1—C18—H18B109.5
C8—C7—C6120.5 (2)H18A—C18—H18B109.5
C7—C8—C9121.04 (19)O1—C18—H18C109.5
C7—C8—H8119.5H18A—C18—H18C109.5
C9—C8—H8119.5H18B—C18—H18C109.5
C8—C9—C10122.95 (18)O2—C19—H19A109.5
C8—C9—C4118.61 (19)O2—C19—H19B109.5
C10—C9—C4118.44 (19)H19A—C19—H19B109.5
C1—C10—C9120.52 (18)O2—C19—H19C109.5
C1—C10—C11120.11 (19)H19A—C19—H19C109.5
C9—C10—C11119.35 (18)H19B—C19—H19C109.5
O3—C11—C12121.32 (18)
C18—O1—C1—C10179.6 (2)O1—C1—C10—C114.8 (3)
C18—O1—C1—C21.4 (3)C2—C1—C10—C11176.16 (19)
O1—C1—C2—C3179.1 (2)C8—C9—C10—C1177.79 (19)
C10—C1—C2—C30.1 (3)C4—C9—C10—C13.1 (3)
C1—C2—C3—C41.6 (3)C8—C9—C10—C113.8 (3)
C2—C3—C4—C5179.9 (2)C4—C9—C10—C11175.36 (18)
C2—C3—C4—C90.7 (3)C1—C10—C11—O3111.3 (2)
C3—C4—C5—C6179.9 (2)C9—C10—C11—O370.3 (3)
C9—C4—C5—C60.5 (3)C1—C10—C11—C1270.8 (3)
C4—C5—C6—C70.2 (3)C9—C10—C11—C12107.6 (2)
C19—O2—C7—C8176.4 (2)O3—C11—C12—C17176.3 (2)
C19—O2—C7—C64.0 (3)C10—C11—C12—C171.6 (3)
C5—C6—C7—O2179.7 (2)O3—C11—C12—C132.5 (3)
C5—C6—C7—C80.1 (3)C10—C11—C12—C13179.6 (2)
O2—C7—C8—C9178.88 (18)C17—C12—C13—C141.2 (4)
C6—C7—C8—C90.7 (3)C11—C12—C13—C14179.9 (2)
C7—C8—C9—C10177.67 (19)C12—C13—C14—C150.1 (4)
C7—C8—C9—C41.4 (3)C13—C14—C15—C160.7 (4)
C3—C4—C9—C8179.24 (18)C13—C14—C15—Br1178.6 (2)
C5—C4—C9—C81.3 (3)C14—C15—C16—C170.3 (4)
C3—C4—C9—C101.6 (3)Br1—C15—C16—C17178.97 (17)
C5—C4—C9—C10177.83 (18)C15—C16—C17—C120.9 (3)
O1—C1—C10—C9176.75 (18)C13—C12—C17—C161.6 (3)
C2—C1—C10—C92.3 (3)C11—C12—C17—C16179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.573.372 (3)142
C17—H17···O2ii0.952.573.407 (3)148
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H15BrO3
Mr371.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)6.58278 (12), 16.1134 (3), 30.2750 (6)
V3)3211.30 (10)
Z8
Radiation typeCu Kα
µ (mm1)3.60
Crystal size (mm)0.60 × 0.60 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.161, 0.533
No. of measured, independent and
observed [I > 2σ(I)] reflections
52243, 2922, 2724
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.06
No. of reflections2922
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.67

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.573.372 (3)142
C17—H17···O2ii0.952.573.407 (3)148
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Sasakawa Scientific Research Grant from The Japan Science Society.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Nakaema, K., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o713.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, Y., Nagasawa, A., Kataoka, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Muto, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o712.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds