metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chloridobis(2-phenyl­pyridine-κN)platinum(II)

aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: nobuto@chem.sci.osaka-u.ac.jp

(Received 25 October 2010; accepted 27 October 2010; online 31 October 2010)

In the title complex, cis-[PtCl2(C11H9N)2], the PtII ion is situated in a slightly distorted square-planar environment coordinated by two N atoms from two 2-phenyl­pyridine ligands and two Cl atoms. The two pyridyl planes are inclined with dihedral angles of 59.1 (2) and 61.84 (19)° with respect to the PtCl2N2 plane. In the crystal, the complex mol­ecules display inter- and intra­molecular ππ stacking inter­actions, with centroid-centroid distances of 3.806 (5)–3.845 (5) Å, which form a one-dimensional column structure along the a axis.

Related literature

For an NMR study on the title compound, see: Pazderski et al. (2009[Pazderski, L., Toušek, J., Sitkowski, J., Kozerski, L. & Szłyk, E. (2009). Magn. Reson. Chem. 47, 658-665.]). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010[Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638-655.]); Evans et al. (2006[Evans, R. C., Douglas, P. & Winscom, C. J. (2006). Coord. Chem. Rev. 250, 2093-2126.]); Mdleleni et al. (1995[Mdleleni, M. M., Bridgewater, J. S., Watts, R. J. & Ford, P. C. (1995). Inorg. Chem. 34, 2334-2342.]); Okada et al. (2001[Okada, T., El-Mehasseb, I. M., Kodaka, M., Tomohiro, T., Okamoto, K. & Okuno, H. (2001). J. Med. Chem. 44, 4661-4667.]); Saito et al. (2010[Saito, K., Sarukawa, Y., Tsuge, K. & Konno, T. (2010). Eur. J. Inorg. Chem. 25, 3909-3913.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C11H9N)2]

  • Mr = 576.37

  • Monoclinic, C c

  • a = 7.6457 (8) Å

  • b = 18.0712 (19) Å

  • c = 14.9876 (12) Å

  • β = 96.014 (7)°

  • V = 2059.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.08 mm−1

  • T = 200 K

  • 0.30 × 0.05 × 0.03 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.329, Tmax = 0.494

  • 9783 measured reflections

  • 4488 independent reflections

  • 3862 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.076

  • S = 1.04

  • 4488 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.71 e Å−3

  • Δρmin = −1.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2143 Friedel pairs

  • Flack parameter: 0.010 (10)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It has been well known that metal complexes with 2-phenylpyridinate (ppy = C11H8N) show intense photoluminescence, especially for IrIII and PtII complexes (Evans et al., 2006; Chi & Chou, 2010). Recently, we found that the IrIII complex having both ppy and D-Hpen ligands, [IrIII(ppy)2(D-Hpen)] (D—H2pen = D-penicillamine), readily reacts with AgI ion to give a luminescent S bridged IrIIIAgIIrIII trinuclear complex, [Ag{Ir(ppy)2(D—H0.5pen)}2] (Saito et al., 2010). We report herein the crystal structure of a platinum(II) complex with two monodentate 2-phenylpyridine ligands, [PtCl2(C11H9N)2] (I), which was accidentally obtained in the course of the reaction of [PtCl(ppy-κ2N,C)]2 with 1-thio-β-D-glucose.

The molecular structure of (I) is shown in Fig. 1. In (I), the two pyridyl planes of 2-phenylpyridine ligands are tilted to the coordination plane of Pt1; each of the dihedral angles of the pyridyl unit with respect to the Pt1/N1/N2/Cl1/Cl2 plane is 59.1 (2)° for the N1/C1–C5 plane and 61.84 (19)° for the N2/C12–C16 plane. In each 2-phenylpyridine ligand, the pyridyl and phenyl rings are inclined with angles of 40.4 (2)° for the N1/C1–C5 and C6—C11 planes and 48.1 (2)° for the N2/C12–C16 and C17—C22 planes, allowing them to form a pair of intramolecular ππ stacking interactions with the closest separations of 3.201 (9) and 3.256 (9) Å. Moreover, the complex molecule contacts to the neighboring molecules through intermolecular ππ stacking interactions with the closest separations of 3.438 (10) and 3.389 (10) Å, giving a one-dimensional columnar structure along the a axis (Fig. 2).

Related literature top

For an NMR study on the title compound, see: Pazderski et al. (2009). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010); Evans et al. (2006); Mdleleni et al. (1995); Okada et al. (2001); Saito et al. (2010).

Experimental top

The reaction of [PtCl(ppy)]2 with 1-thio-β-D-glucose sodium salt in ethanol/water (v/v = 4/1) gave a yellow solution. The reaction solution was evaporated to dryness and was recrystallized from hot ethanol to give a small amount of yellow needle crystals of (I).

Refinement top

H atoms bonded to C atoms were placed at calculated positions and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

It has been well known that metal complexes with 2-phenylpyridinate (ppy = C11H8N) show intense photoluminescence, especially for IrIII and PtII complexes (Evans et al., 2006; Chi & Chou, 2010). Recently, we found that the IrIII complex having both ppy and D-Hpen ligands, [IrIII(ppy)2(D-Hpen)] (D—H2pen = D-penicillamine), readily reacts with AgI ion to give a luminescent S bridged IrIIIAgIIrIII trinuclear complex, [Ag{Ir(ppy)2(D—H0.5pen)}2] (Saito et al., 2010). We report herein the crystal structure of a platinum(II) complex with two monodentate 2-phenylpyridine ligands, [PtCl2(C11H9N)2] (I), which was accidentally obtained in the course of the reaction of [PtCl(ppy-κ2N,C)]2 with 1-thio-β-D-glucose.

The molecular structure of (I) is shown in Fig. 1. In (I), the two pyridyl planes of 2-phenylpyridine ligands are tilted to the coordination plane of Pt1; each of the dihedral angles of the pyridyl unit with respect to the Pt1/N1/N2/Cl1/Cl2 plane is 59.1 (2)° for the N1/C1–C5 plane and 61.84 (19)° for the N2/C12–C16 plane. In each 2-phenylpyridine ligand, the pyridyl and phenyl rings are inclined with angles of 40.4 (2)° for the N1/C1–C5 and C6—C11 planes and 48.1 (2)° for the N2/C12–C16 and C17—C22 planes, allowing them to form a pair of intramolecular ππ stacking interactions with the closest separations of 3.201 (9) and 3.256 (9) Å. Moreover, the complex molecule contacts to the neighboring molecules through intermolecular ππ stacking interactions with the closest separations of 3.438 (10) and 3.389 (10) Å, giving a one-dimensional columnar structure along the a axis (Fig. 2).

For an NMR study on the title compound, see: Pazderski et al. (2009). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010); Evans et al. (2006); Mdleleni et al. (1995); Okada et al. (2001); Saito et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the one-dimensional columnar structure formed along the a axis in (I).
cis-Dichloridobis(2-phenylpyridine-κN)platinum(II) top
Crystal data top
[PtCl2(C11H9N)2]F(000) = 1104
Mr = 576.37Dx = 1.859 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71075 Å
Hall symbol: C -2ycCell parameters from 7887 reflections
a = 7.6457 (8) Åθ = 3.1–27.4°
b = 18.0712 (19) ŵ = 7.08 mm1
c = 14.9876 (12) ÅT = 200 K
β = 96.014 (7)°Needle, yellow
V = 2059.4 (3) Å30.30 × 0.05 × 0.03 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3862 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.046
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.329, Tmax = 0.494k = 2323
9783 measured reflectionsl = 1719
4488 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0331P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4488 reflectionsΔρmax = 1.71 e Å3
244 parametersΔρmin = 1.44 e Å3
2 restraintsAbsolute structure: Flack (1983), 2143 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (10)
Crystal data top
[PtCl2(C11H9N)2]V = 2059.4 (3) Å3
Mr = 576.37Z = 4
Monoclinic, CcMo Kα radiation
a = 7.6457 (8) ŵ = 7.08 mm1
b = 18.0712 (19) ÅT = 200 K
c = 14.9876 (12) Å0.30 × 0.05 × 0.03 mm
β = 96.014 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4488 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3862 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.494Rint = 0.046
9783 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.076Δρmax = 1.71 e Å3
S = 1.04Δρmin = 1.44 e Å3
4488 reflectionsAbsolute structure: Flack (1983), 2143 Friedel pairs
244 parametersAbsolute structure parameter: 0.010 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.74923 (3)0.137846 (14)0.68733 (3)0.01865 (8)
Cl10.6380 (6)0.14739 (18)0.8241 (2)0.0380 (9)
Cl20.9250 (3)0.03890 (12)0.73490 (14)0.0347 (5)
N10.6118 (9)0.2302 (4)0.6440 (4)0.0241 (16)
C10.6562 (11)0.2917 (5)0.6883 (6)0.027 (2)
H10.72750.28780.74400.033*
C20.6038 (13)0.3623 (5)0.6577 (7)0.036 (2)
H20.63770.40530.69160.044*
C30.5000 (13)0.3672 (6)0.5756 (8)0.040 (3)
H30.46420.41400.55130.049*
C40.4511 (12)0.3037 (5)0.5310 (6)0.033 (2)
H40.38080.30610.47490.039*
C50.5031 (11)0.2352 (5)0.5670 (5)0.0252 (19)
C60.4362 (13)0.1654 (5)0.5187 (6)0.032 (2)
C70.4466 (13)0.1573 (6)0.4288 (6)0.040 (3)
H70.49620.19540.39570.047*
C80.3829 (14)0.0917 (7)0.3855 (7)0.049 (3)
H80.38680.08600.32280.059*
C90.3158 (14)0.0368 (6)0.4340 (8)0.053 (3)
H90.27550.00740.40420.064*
C100.3043 (13)0.0433 (6)0.5251 (8)0.046 (3)
H100.25480.00520.55820.055*
C110.3698 (12)0.1092 (5)0.5664 (6)0.032 (2)
H110.36770.11480.62930.039*
N20.8432 (15)0.1270 (4)0.5656 (7)0.017 (2)
C120.7948 (10)0.0630 (4)0.5202 (5)0.0176 (17)
H120.73520.02540.54930.021*
C130.8316 (11)0.0526 (5)0.4328 (5)0.025 (2)
H130.79970.00760.40250.030*
C140.9150 (11)0.1079 (5)0.3899 (5)0.025 (2)
H140.93780.10220.32920.030*
C150.9638 (11)0.1707 (5)0.4360 (5)0.0244 (19)
H151.02120.20910.40690.029*
C160.9313 (10)0.1798 (5)0.5246 (5)0.0161 (17)
C170.9946 (11)0.2464 (5)0.5768 (5)0.0215 (18)
C180.9717 (11)0.3163 (5)0.5396 (6)0.030 (2)
H180.91150.32210.48120.036*
C191.0357 (14)0.3774 (6)0.5868 (9)0.050 (3)
H191.02160.42530.56070.060*
C201.1213 (15)0.3692 (6)0.6731 (9)0.052 (3)
H201.16310.41160.70630.063*
C211.1455 (12)0.2999 (6)0.7105 (6)0.040 (3)
H211.20480.29470.76910.048*
C221.0845 (11)0.2382 (5)0.6636 (5)0.0249 (19)
H221.10250.19030.68920.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02321 (15)0.01661 (13)0.01658 (13)0.0010 (4)0.00416 (8)0.0011 (3)
Cl10.054 (2)0.044 (2)0.0187 (15)0.0007 (18)0.0153 (13)0.0000 (13)
Cl20.0444 (15)0.0290 (13)0.0301 (12)0.0094 (11)0.0017 (9)0.0108 (9)
N10.018 (4)0.029 (4)0.026 (4)0.006 (3)0.004 (3)0.000 (3)
C10.021 (5)0.026 (5)0.037 (5)0.003 (4)0.011 (4)0.004 (4)
C20.033 (6)0.026 (5)0.052 (6)0.008 (5)0.014 (4)0.000 (4)
C30.028 (6)0.025 (6)0.070 (7)0.015 (5)0.016 (5)0.004 (5)
C40.023 (5)0.039 (6)0.036 (5)0.005 (5)0.006 (4)0.014 (4)
C50.021 (5)0.026 (5)0.031 (5)0.001 (4)0.013 (3)0.006 (4)
C60.040 (6)0.027 (5)0.027 (5)0.011 (4)0.000 (4)0.003 (4)
C70.026 (5)0.063 (8)0.029 (5)0.014 (5)0.000 (4)0.001 (4)
C80.041 (7)0.050 (7)0.052 (6)0.022 (6)0.019 (5)0.015 (6)
C90.031 (6)0.037 (7)0.085 (9)0.011 (5)0.021 (6)0.019 (6)
C100.028 (6)0.041 (7)0.067 (8)0.012 (5)0.007 (5)0.004 (5)
C110.035 (6)0.021 (5)0.042 (6)0.002 (4)0.006 (4)0.015 (4)
N20.021 (5)0.004 (4)0.026 (6)0.006 (3)0.001 (4)0.002 (3)
C120.018 (4)0.007 (4)0.028 (4)0.000 (3)0.002 (3)0.005 (3)
C130.024 (5)0.024 (5)0.028 (5)0.009 (4)0.003 (3)0.008 (3)
C140.027 (5)0.036 (5)0.013 (4)0.008 (4)0.001 (3)0.002 (3)
C150.024 (5)0.025 (5)0.024 (5)0.009 (4)0.002 (3)0.007 (4)
C160.014 (4)0.018 (5)0.017 (4)0.001 (4)0.005 (3)0.006 (3)
C170.020 (5)0.020 (5)0.026 (4)0.002 (4)0.008 (3)0.002 (3)
C180.024 (5)0.021 (5)0.045 (5)0.001 (4)0.007 (4)0.004 (4)
C190.029 (6)0.025 (6)0.098 (10)0.004 (5)0.018 (6)0.007 (5)
C200.035 (6)0.038 (7)0.086 (9)0.020 (6)0.019 (6)0.031 (6)
C210.032 (6)0.058 (8)0.032 (5)0.012 (5)0.013 (4)0.022 (5)
C220.031 (5)0.018 (5)0.026 (5)0.001 (4)0.009 (3)0.010 (3)
Geometric parameters (Å, º) top
Pt1—N22.039 (10)C10—H100.9500
Pt1—N12.041 (7)C11—H110.9500
Pt1—Cl22.304 (2)N2—C161.352 (11)
Pt1—Cl12.306 (4)N2—C121.373 (11)
N1—C11.321 (11)C12—C131.381 (11)
N1—C51.353 (10)C12—H120.9500
C1—C21.400 (12)C13—C141.381 (12)
C1—H10.9500C13—H130.9500
C2—C31.396 (15)C14—C151.361 (12)
C2—H20.9500C14—H140.9500
C3—C41.360 (14)C15—C161.386 (11)
C3—H30.9500C15—H150.9500
C4—C51.392 (12)C16—C171.489 (11)
C4—H40.9500C17—C181.385 (12)
C5—C61.515 (12)C17—C221.414 (11)
C6—C71.366 (13)C18—C191.374 (14)
C6—C111.370 (13)C18—H180.9500
C7—C81.413 (15)C19—C201.396 (16)
C7—H70.9500C19—H190.9500
C8—C91.361 (16)C20—C211.376 (15)
C8—H80.9500C20—H200.9500
C9—C101.383 (15)C21—C221.374 (12)
C9—H90.9500C21—H210.9500
C10—C111.409 (13)C22—H220.9500
N2—Pt1—N190.7 (3)C6—C11—C10122.1 (9)
N2—Pt1—Cl287.3 (3)C6—C11—H11118.9
N1—Pt1—Cl2175.3 (2)C10—C11—H11118.9
N2—Pt1—Cl1178.4 (3)C16—N2—C12119.4 (9)
N1—Pt1—Cl189.8 (2)C16—N2—Pt1125.3 (7)
Cl2—Pt1—Cl192.32 (11)C12—N2—Pt1115.0 (7)
C1—N1—C5118.4 (8)N2—C12—C13120.9 (8)
C1—N1—Pt1115.5 (6)N2—C12—H12119.5
C5—N1—Pt1125.2 (6)C13—C12—H12119.5
N1—C1—C2123.5 (9)C12—C13—C14119.5 (8)
N1—C1—H1118.3C12—C13—H13120.2
C2—C1—H1118.3C14—C13—H13120.2
C3—C2—C1117.6 (10)C15—C14—C13118.9 (8)
C3—C2—H2121.2C15—C14—H14120.5
C1—C2—H2121.2C13—C14—H14120.5
C4—C3—C2118.8 (9)C14—C15—C16121.2 (8)
C4—C3—H3120.6C14—C15—H15119.4
C2—C3—H3120.6C16—C15—H15119.4
C3—C4—C5120.5 (9)N2—C16—C15120.0 (9)
C3—C4—H4119.8N2—C16—C17118.8 (8)
C5—C4—H4119.8C15—C16—C17121.2 (8)
N1—C5—C4121.0 (8)C18—C17—C22119.7 (8)
N1—C5—C6119.9 (8)C18—C17—C16120.4 (7)
C4—C5—C6119.1 (8)C22—C17—C16119.8 (7)
C7—C6—C11119.9 (9)C19—C18—C17120.2 (9)
C7—C6—C5120.6 (9)C19—C18—H18119.9
C11—C6—C5119.6 (8)C17—C18—H18119.9
C6—C7—C8119.3 (10)C18—C19—C20119.9 (10)
C6—C7—H7120.3C18—C19—H19120.0
C8—C7—H7120.3C20—C19—H19120.0
C9—C8—C7119.9 (10)C21—C20—C19120.3 (10)
C9—C8—H8120.1C21—C20—H20119.8
C7—C8—H8120.1C19—C20—H20119.8
C8—C9—C10122.1 (10)C22—C21—C20120.4 (9)
C8—C9—H9118.9C22—C21—H21119.8
C10—C9—H9118.9C20—C21—H21119.8
C9—C10—C11116.7 (11)C21—C22—C17119.5 (9)
C9—C10—H10121.7C21—C22—H22120.3
C11—C10—H10121.7C17—C22—H22120.3
N2—Pt1—N1—C1118.5 (6)N1—Pt1—N2—C1655.4 (9)
Cl1—Pt1—N1—C163.0 (6)Cl2—Pt1—N2—C16120.4 (9)
N2—Pt1—N1—C550.4 (7)N1—Pt1—N2—C12117.8 (7)
Cl1—Pt1—N1—C5128.1 (7)Cl2—Pt1—N2—C1266.4 (7)
C5—N1—C1—C23.3 (12)C16—N2—C12—C131.4 (14)
Pt1—N1—C1—C2166.4 (7)Pt1—N2—C12—C13172.2 (6)
N1—C1—C2—C30.3 (13)N2—C12—C13—C141.3 (13)
C1—C2—C3—C41.8 (14)C12—C13—C14—C152.0 (12)
C2—C3—C4—C50.3 (14)C13—C14—C15—C160.0 (12)
C1—N1—C5—C45.5 (12)C12—N2—C16—C153.4 (14)
Pt1—N1—C5—C4163.1 (6)Pt1—N2—C16—C15169.5 (7)
C1—N1—C5—C6174.5 (8)C12—N2—C16—C17175.5 (8)
Pt1—N1—C5—C616.9 (11)Pt1—N2—C16—C1711.5 (13)
C3—C4—C5—N14.0 (13)C14—C15—C16—N22.8 (13)
C3—C4—C5—C6175.9 (8)C14—C15—C16—C17176.2 (8)
N1—C5—C6—C7130.7 (9)N2—C16—C17—C18135.0 (9)
C4—C5—C6—C749.3 (12)C15—C16—C17—C1846.0 (11)
N1—C5—C6—C1147.3 (12)N2—C16—C17—C2247.4 (12)
C4—C5—C6—C11132.7 (9)C15—C16—C17—C22131.6 (8)
C11—C6—C7—C82.1 (14)C22—C17—C18—C190.1 (13)
C5—C6—C7—C8179.9 (8)C16—C17—C18—C19177.7 (8)
C6—C7—C8—C91.5 (14)C17—C18—C19—C201.1 (14)
C7—C8—C9—C101.2 (16)C18—C19—C20—C211.5 (16)
C8—C9—C10—C111.5 (15)C19—C20—C21—C220.5 (15)
C7—C6—C11—C102.5 (15)C20—C21—C22—C170.7 (13)
C5—C6—C11—C10179.5 (8)C18—C17—C22—C211.1 (12)
C9—C10—C11—C62.1 (14)C16—C17—C22—C21178.7 (8)

Experimental details

Crystal data
Chemical formula[PtCl2(C11H9N)2]
Mr576.37
Crystal system, space groupMonoclinic, Cc
Temperature (K)200
a, b, c (Å)7.6457 (8), 18.0712 (19), 14.9876 (12)
β (°) 96.014 (7)
V3)2059.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.08
Crystal size (mm)0.30 × 0.05 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.329, 0.494
No. of measured, independent and
observed [I > 2σ(I)] reflections
9783, 4488, 3862
Rint0.046
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.076, 1.04
No. of reflections4488
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.71, 1.44
Absolute structureFlack (1983), 2143 Friedel pairs
Absolute structure parameter0.010 (10)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

 

References

First citationChi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638–655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEvans, R. C., Douglas, P. & Winscom, C. J. (2006). Coord. Chem. Rev. 250, 2093–2126.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMdleleni, M. M., Bridgewater, J. S., Watts, R. J. & Ford, P. C. (1995). Inorg. Chem. 34, 2334–2342.  CrossRef CAS Web of Science Google Scholar
First citationOkada, T., El-Mehasseb, I. M., Kodaka, M., Tomohiro, T., Okamoto, K. & Okuno, H. (2001). J. Med. Chem. 44, 4661–4667.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPazderski, L., Toušek, J., Sitkowski, J., Kozerski, L. & Szłyk, E. (2009). Magn. Reson. Chem. 47, 658–665.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSaito, K., Sarukawa, Y., Tsuge, K. & Konno, T. (2010). Eur. J. Inorg. Chem. 25, 3909–3913.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds