metal-organic compounds
cis-Dichloridobis(2-phenylpyridine-κN)platinum(II)
aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: nobuto@chem.sci.osaka-u.ac.jp
In the title complex, cis-[PtCl2(C11H9N)2], the PtII ion is situated in a slightly distorted square-planar environment coordinated by two N atoms from two 2-phenylpyridine ligands and two Cl atoms. The two pyridyl planes are inclined with dihedral angles of 59.1 (2) and 61.84 (19)° with respect to the PtCl2N2 plane. In the crystal, the complex molecules display inter- and intramolecular π–π stacking interactions, with centroid-centroid distances of 3.806 (5)–3.845 (5) Å, which form a one-dimensional column structure along the a axis.
Related literature
For an NMR study on the title compound, see: Pazderski et al. (2009). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010); Evans et al. (2006); Mdleleni et al. (1995); Okada et al. (2001); Saito et al. (2010).
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S160053681004393X/is2622sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681004393X/is2622Isup2.hkl
The reaction of [PtCl(ppy)]2 with 1-thio-β-D-glucose sodium salt in ethanol/water (v/v = 4/1) gave a yellow solution. The reaction solution was evaporated to dryness and was recrystallized from hot ethanol to give a small amount of yellow needle crystals of (I).
H atoms bonded to C atoms were placed at calculated positions and refined as riding, with Uiso(H) = 1.2Ueq(C).
It has been well known that metal complexes with 2-phenylpyridinate (ppy = C11H8N) show intense κ2N,C)]2 with 1-thio-β-D-glucose.
especially for IrIII and PtII complexes (Evans et al., 2006; Chi & Chou, 2010). Recently, we found that the IrIII complex having both ppy and D-Hpen ligands, [IrIII(ppy)2(D-Hpen)] (D—H2pen = D-penicillamine), readily reacts with AgI ion to give a luminescent S bridged IrIIIAgIIrIII trinuclear complex, [Ag{Ir(ppy)2(D—H0.5pen)}2] (Saito et al., 2010). We report herein the of a platinum(II) complex with two monodentate 2-phenylpyridine ligands, [PtCl2(C11H9N)2] (I), which was accidentally obtained in the course of the reaction of [PtCl(ppy-The molecular structure of (I) is shown in Fig. 1. In (I), the two pyridyl planes of 2-phenylpyridine ligands are tilted to the coordination plane of Pt1; each of the dihedral angles of the pyridyl unit with respect to the Pt1/N1/N2/Cl1/Cl2 plane is 59.1 (2)° for the N1/C1–C5 plane and 61.84 (19)° for the N2/C12–C16 plane. In each 2-phenylpyridine ligand, the pyridyl and phenyl rings are inclined with angles of 40.4 (2)° for the N1/C1–C5 and C6—C11 planes and 48.1 (2)° for the N2/C12–C16 and C17—C22 planes, allowing them to form a pair of intramolecular π–π stacking interactions with the closest separations of 3.201 (9) and 3.256 (9) Å. Moreover, the complex molecule contacts to the neighboring molecules through intermolecular π–π stacking interactions with the closest separations of 3.438 (10) and 3.389 (10) Å, giving a one-dimensional columnar structure along the a axis (Fig. 2).
For an NMR study on the title compound, see: Pazderski et al. (2009). For the crystal structures of closely related metal complexes, see: Chi & Chou (2010); Evans et al. (2006); Mdleleni et al. (1995); Okada et al. (2001); Saito et al. (2010).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).[PtCl2(C11H9N)2] | F(000) = 1104 |
Mr = 576.37 | Dx = 1.859 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: C -2yc | Cell parameters from 7887 reflections |
a = 7.6457 (8) Å | θ = 3.1–27.4° |
b = 18.0712 (19) Å | µ = 7.08 mm−1 |
c = 14.9876 (12) Å | T = 200 K |
β = 96.014 (7)° | Needle, yellow |
V = 2059.4 (3) Å3 | 0.30 × 0.05 × 0.03 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 3862 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.046 |
ω scans | θmax = 27.4°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −9→9 |
Tmin = 0.329, Tmax = 0.494 | k = −23→23 |
9783 measured reflections | l = −17→19 |
4488 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0331P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4488 reflections | Δρmax = 1.71 e Å−3 |
244 parameters | Δρmin = −1.44 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 2143 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.010 (10) |
[PtCl2(C11H9N)2] | V = 2059.4 (3) Å3 |
Mr = 576.37 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 7.6457 (8) Å | µ = 7.08 mm−1 |
b = 18.0712 (19) Å | T = 200 K |
c = 14.9876 (12) Å | 0.30 × 0.05 × 0.03 mm |
β = 96.014 (7)° |
Rigaku R-AXIS RAPID diffractometer | 4488 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3862 reflections with I > 2σ(I) |
Tmin = 0.329, Tmax = 0.494 | Rint = 0.046 |
9783 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.076 | Δρmax = 1.71 e Å−3 |
S = 1.04 | Δρmin = −1.44 e Å−3 |
4488 reflections | Absolute structure: Flack (1983), 2143 Friedel pairs |
244 parameters | Absolute structure parameter: 0.010 (10) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.74923 (3) | 0.137846 (14) | 0.68733 (3) | 0.01865 (8) | |
Cl1 | 0.6380 (6) | 0.14739 (18) | 0.8241 (2) | 0.0380 (9) | |
Cl2 | 0.9250 (3) | 0.03890 (12) | 0.73490 (14) | 0.0347 (5) | |
N1 | 0.6118 (9) | 0.2302 (4) | 0.6440 (4) | 0.0241 (16) | |
C1 | 0.6562 (11) | 0.2917 (5) | 0.6883 (6) | 0.027 (2) | |
H1 | 0.7275 | 0.2878 | 0.7440 | 0.033* | |
C2 | 0.6038 (13) | 0.3623 (5) | 0.6577 (7) | 0.036 (2) | |
H2 | 0.6377 | 0.4053 | 0.6916 | 0.044* | |
C3 | 0.5000 (13) | 0.3672 (6) | 0.5756 (8) | 0.040 (3) | |
H3 | 0.4642 | 0.4140 | 0.5513 | 0.049* | |
C4 | 0.4511 (12) | 0.3037 (5) | 0.5310 (6) | 0.033 (2) | |
H4 | 0.3808 | 0.3061 | 0.4749 | 0.039* | |
C5 | 0.5031 (11) | 0.2352 (5) | 0.5670 (5) | 0.0252 (19) | |
C6 | 0.4362 (13) | 0.1654 (5) | 0.5187 (6) | 0.032 (2) | |
C7 | 0.4466 (13) | 0.1573 (6) | 0.4288 (6) | 0.040 (3) | |
H7 | 0.4962 | 0.1954 | 0.3957 | 0.047* | |
C8 | 0.3829 (14) | 0.0917 (7) | 0.3855 (7) | 0.049 (3) | |
H8 | 0.3868 | 0.0860 | 0.3228 | 0.059* | |
C9 | 0.3158 (14) | 0.0368 (6) | 0.4340 (8) | 0.053 (3) | |
H9 | 0.2755 | −0.0074 | 0.4042 | 0.064* | |
C10 | 0.3043 (13) | 0.0433 (6) | 0.5251 (8) | 0.046 (3) | |
H10 | 0.2548 | 0.0052 | 0.5582 | 0.055* | |
C11 | 0.3698 (12) | 0.1092 (5) | 0.5664 (6) | 0.032 (2) | |
H11 | 0.3677 | 0.1148 | 0.6293 | 0.039* | |
N2 | 0.8432 (15) | 0.1270 (4) | 0.5656 (7) | 0.017 (2) | |
C12 | 0.7948 (10) | 0.0630 (4) | 0.5202 (5) | 0.0176 (17) | |
H12 | 0.7352 | 0.0254 | 0.5493 | 0.021* | |
C13 | 0.8316 (11) | 0.0526 (5) | 0.4328 (5) | 0.025 (2) | |
H13 | 0.7997 | 0.0076 | 0.4025 | 0.030* | |
C14 | 0.9150 (11) | 0.1079 (5) | 0.3899 (5) | 0.025 (2) | |
H14 | 0.9378 | 0.1022 | 0.3292 | 0.030* | |
C15 | 0.9638 (11) | 0.1707 (5) | 0.4360 (5) | 0.0244 (19) | |
H15 | 1.0212 | 0.2091 | 0.4069 | 0.029* | |
C16 | 0.9313 (10) | 0.1798 (5) | 0.5246 (5) | 0.0161 (17) | |
C17 | 0.9946 (11) | 0.2464 (5) | 0.5768 (5) | 0.0215 (18) | |
C18 | 0.9717 (11) | 0.3163 (5) | 0.5396 (6) | 0.030 (2) | |
H18 | 0.9115 | 0.3221 | 0.4812 | 0.036* | |
C19 | 1.0357 (14) | 0.3774 (6) | 0.5868 (9) | 0.050 (3) | |
H19 | 1.0216 | 0.4253 | 0.5607 | 0.060* | |
C20 | 1.1213 (15) | 0.3692 (6) | 0.6731 (9) | 0.052 (3) | |
H20 | 1.1631 | 0.4116 | 0.7063 | 0.063* | |
C21 | 1.1455 (12) | 0.2999 (6) | 0.7105 (6) | 0.040 (3) | |
H21 | 1.2048 | 0.2947 | 0.7691 | 0.048* | |
C22 | 1.0845 (11) | 0.2382 (5) | 0.6636 (5) | 0.0249 (19) | |
H22 | 1.1025 | 0.1903 | 0.6892 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02321 (15) | 0.01661 (13) | 0.01658 (13) | 0.0010 (4) | 0.00416 (8) | 0.0011 (3) |
Cl1 | 0.054 (2) | 0.044 (2) | 0.0187 (15) | 0.0007 (18) | 0.0153 (13) | 0.0000 (13) |
Cl2 | 0.0444 (15) | 0.0290 (13) | 0.0301 (12) | 0.0094 (11) | 0.0017 (9) | 0.0108 (9) |
N1 | 0.018 (4) | 0.029 (4) | 0.026 (4) | 0.006 (3) | 0.004 (3) | 0.000 (3) |
C1 | 0.021 (5) | 0.026 (5) | 0.037 (5) | 0.003 (4) | 0.011 (4) | −0.004 (4) |
C2 | 0.033 (6) | 0.026 (5) | 0.052 (6) | 0.008 (5) | 0.014 (4) | 0.000 (4) |
C3 | 0.028 (6) | 0.025 (6) | 0.070 (7) | 0.015 (5) | 0.016 (5) | 0.004 (5) |
C4 | 0.023 (5) | 0.039 (6) | 0.036 (5) | 0.005 (5) | 0.006 (4) | 0.014 (4) |
C5 | 0.021 (5) | 0.026 (5) | 0.031 (5) | −0.001 (4) | 0.013 (3) | 0.006 (4) |
C6 | 0.040 (6) | 0.027 (5) | 0.027 (5) | 0.011 (4) | 0.000 (4) | 0.003 (4) |
C7 | 0.026 (5) | 0.063 (8) | 0.029 (5) | 0.014 (5) | 0.000 (4) | −0.001 (4) |
C8 | 0.041 (7) | 0.050 (7) | 0.052 (6) | 0.022 (6) | −0.019 (5) | −0.015 (6) |
C9 | 0.031 (6) | 0.037 (7) | 0.085 (9) | 0.011 (5) | −0.021 (6) | −0.019 (6) |
C10 | 0.028 (6) | 0.041 (7) | 0.067 (8) | 0.012 (5) | −0.007 (5) | 0.004 (5) |
C11 | 0.035 (6) | 0.021 (5) | 0.042 (6) | 0.002 (4) | 0.006 (4) | −0.015 (4) |
N2 | 0.021 (5) | 0.004 (4) | 0.026 (6) | 0.006 (3) | −0.001 (4) | 0.002 (3) |
C12 | 0.018 (4) | 0.007 (4) | 0.028 (4) | 0.000 (3) | 0.002 (3) | −0.005 (3) |
C13 | 0.024 (5) | 0.024 (5) | 0.028 (5) | 0.009 (4) | 0.003 (3) | −0.008 (3) |
C14 | 0.027 (5) | 0.036 (5) | 0.013 (4) | 0.008 (4) | 0.001 (3) | −0.002 (3) |
C15 | 0.024 (5) | 0.025 (5) | 0.024 (5) | 0.009 (4) | 0.002 (3) | 0.007 (4) |
C16 | 0.014 (4) | 0.018 (5) | 0.017 (4) | −0.001 (4) | 0.005 (3) | 0.006 (3) |
C17 | 0.020 (5) | 0.020 (5) | 0.026 (4) | −0.002 (4) | 0.008 (3) | 0.002 (3) |
C18 | 0.024 (5) | 0.021 (5) | 0.045 (5) | 0.001 (4) | 0.007 (4) | 0.004 (4) |
C19 | 0.029 (6) | 0.025 (6) | 0.098 (10) | −0.004 (5) | 0.018 (6) | 0.007 (5) |
C20 | 0.035 (6) | 0.038 (7) | 0.086 (9) | −0.020 (6) | 0.019 (6) | −0.031 (6) |
C21 | 0.032 (6) | 0.058 (8) | 0.032 (5) | −0.012 (5) | 0.013 (4) | −0.022 (5) |
C22 | 0.031 (5) | 0.018 (5) | 0.026 (5) | −0.001 (4) | 0.009 (3) | −0.010 (3) |
Pt1—N2 | 2.039 (10) | C10—H10 | 0.9500 |
Pt1—N1 | 2.041 (7) | C11—H11 | 0.9500 |
Pt1—Cl2 | 2.304 (2) | N2—C16 | 1.352 (11) |
Pt1—Cl1 | 2.306 (4) | N2—C12 | 1.373 (11) |
N1—C1 | 1.321 (11) | C12—C13 | 1.381 (11) |
N1—C5 | 1.353 (10) | C12—H12 | 0.9500 |
C1—C2 | 1.400 (12) | C13—C14 | 1.381 (12) |
C1—H1 | 0.9500 | C13—H13 | 0.9500 |
C2—C3 | 1.396 (15) | C14—C15 | 1.361 (12) |
C2—H2 | 0.9500 | C14—H14 | 0.9500 |
C3—C4 | 1.360 (14) | C15—C16 | 1.386 (11) |
C3—H3 | 0.9500 | C15—H15 | 0.9500 |
C4—C5 | 1.392 (12) | C16—C17 | 1.489 (11) |
C4—H4 | 0.9500 | C17—C18 | 1.385 (12) |
C5—C6 | 1.515 (12) | C17—C22 | 1.414 (11) |
C6—C7 | 1.366 (13) | C18—C19 | 1.374 (14) |
C6—C11 | 1.370 (13) | C18—H18 | 0.9500 |
C7—C8 | 1.413 (15) | C19—C20 | 1.396 (16) |
C7—H7 | 0.9500 | C19—H19 | 0.9500 |
C8—C9 | 1.361 (16) | C20—C21 | 1.376 (15) |
C8—H8 | 0.9500 | C20—H20 | 0.9500 |
C9—C10 | 1.383 (15) | C21—C22 | 1.374 (12) |
C9—H9 | 0.9500 | C21—H21 | 0.9500 |
C10—C11 | 1.409 (13) | C22—H22 | 0.9500 |
N2—Pt1—N1 | 90.7 (3) | C6—C11—C10 | 122.1 (9) |
N2—Pt1—Cl2 | 87.3 (3) | C6—C11—H11 | 118.9 |
N1—Pt1—Cl2 | 175.3 (2) | C10—C11—H11 | 118.9 |
N2—Pt1—Cl1 | 178.4 (3) | C16—N2—C12 | 119.4 (9) |
N1—Pt1—Cl1 | 89.8 (2) | C16—N2—Pt1 | 125.3 (7) |
Cl2—Pt1—Cl1 | 92.32 (11) | C12—N2—Pt1 | 115.0 (7) |
C1—N1—C5 | 118.4 (8) | N2—C12—C13 | 120.9 (8) |
C1—N1—Pt1 | 115.5 (6) | N2—C12—H12 | 119.5 |
C5—N1—Pt1 | 125.2 (6) | C13—C12—H12 | 119.5 |
N1—C1—C2 | 123.5 (9) | C12—C13—C14 | 119.5 (8) |
N1—C1—H1 | 118.3 | C12—C13—H13 | 120.2 |
C2—C1—H1 | 118.3 | C14—C13—H13 | 120.2 |
C3—C2—C1 | 117.6 (10) | C15—C14—C13 | 118.9 (8) |
C3—C2—H2 | 121.2 | C15—C14—H14 | 120.5 |
C1—C2—H2 | 121.2 | C13—C14—H14 | 120.5 |
C4—C3—C2 | 118.8 (9) | C14—C15—C16 | 121.2 (8) |
C4—C3—H3 | 120.6 | C14—C15—H15 | 119.4 |
C2—C3—H3 | 120.6 | C16—C15—H15 | 119.4 |
C3—C4—C5 | 120.5 (9) | N2—C16—C15 | 120.0 (9) |
C3—C4—H4 | 119.8 | N2—C16—C17 | 118.8 (8) |
C5—C4—H4 | 119.8 | C15—C16—C17 | 121.2 (8) |
N1—C5—C4 | 121.0 (8) | C18—C17—C22 | 119.7 (8) |
N1—C5—C6 | 119.9 (8) | C18—C17—C16 | 120.4 (7) |
C4—C5—C6 | 119.1 (8) | C22—C17—C16 | 119.8 (7) |
C7—C6—C11 | 119.9 (9) | C19—C18—C17 | 120.2 (9) |
C7—C6—C5 | 120.6 (9) | C19—C18—H18 | 119.9 |
C11—C6—C5 | 119.6 (8) | C17—C18—H18 | 119.9 |
C6—C7—C8 | 119.3 (10) | C18—C19—C20 | 119.9 (10) |
C6—C7—H7 | 120.3 | C18—C19—H19 | 120.0 |
C8—C7—H7 | 120.3 | C20—C19—H19 | 120.0 |
C9—C8—C7 | 119.9 (10) | C21—C20—C19 | 120.3 (10) |
C9—C8—H8 | 120.1 | C21—C20—H20 | 119.8 |
C7—C8—H8 | 120.1 | C19—C20—H20 | 119.8 |
C8—C9—C10 | 122.1 (10) | C22—C21—C20 | 120.4 (9) |
C8—C9—H9 | 118.9 | C22—C21—H21 | 119.8 |
C10—C9—H9 | 118.9 | C20—C21—H21 | 119.8 |
C9—C10—C11 | 116.7 (11) | C21—C22—C17 | 119.5 (9) |
C9—C10—H10 | 121.7 | C21—C22—H22 | 120.3 |
C11—C10—H10 | 121.7 | C17—C22—H22 | 120.3 |
N2—Pt1—N1—C1 | −118.5 (6) | N1—Pt1—N2—C16 | 55.4 (9) |
Cl1—Pt1—N1—C1 | 63.0 (6) | Cl2—Pt1—N2—C16 | −120.4 (9) |
N2—Pt1—N1—C5 | 50.4 (7) | N1—Pt1—N2—C12 | −117.8 (7) |
Cl1—Pt1—N1—C5 | −128.1 (7) | Cl2—Pt1—N2—C12 | 66.4 (7) |
C5—N1—C1—C2 | −3.3 (12) | C16—N2—C12—C13 | −1.4 (14) |
Pt1—N1—C1—C2 | 166.4 (7) | Pt1—N2—C12—C13 | 172.2 (6) |
N1—C1—C2—C3 | −0.3 (13) | N2—C12—C13—C14 | −1.3 (13) |
C1—C2—C3—C4 | 1.8 (14) | C12—C13—C14—C15 | 2.0 (12) |
C2—C3—C4—C5 | 0.3 (14) | C13—C14—C15—C16 | 0.0 (12) |
C1—N1—C5—C4 | 5.5 (12) | C12—N2—C16—C15 | 3.4 (14) |
Pt1—N1—C5—C4 | −163.1 (6) | Pt1—N2—C16—C15 | −169.5 (7) |
C1—N1—C5—C6 | −174.5 (8) | C12—N2—C16—C17 | −175.5 (8) |
Pt1—N1—C5—C6 | 16.9 (11) | Pt1—N2—C16—C17 | 11.5 (13) |
C3—C4—C5—N1 | −4.0 (13) | C14—C15—C16—N2 | −2.8 (13) |
C3—C4—C5—C6 | 175.9 (8) | C14—C15—C16—C17 | 176.2 (8) |
N1—C5—C6—C7 | −130.7 (9) | N2—C16—C17—C18 | −135.0 (9) |
C4—C5—C6—C7 | 49.3 (12) | C15—C16—C17—C18 | 46.0 (11) |
N1—C5—C6—C11 | 47.3 (12) | N2—C16—C17—C22 | 47.4 (12) |
C4—C5—C6—C11 | −132.7 (9) | C15—C16—C17—C22 | −131.6 (8) |
C11—C6—C7—C8 | 2.1 (14) | C22—C17—C18—C19 | −0.1 (13) |
C5—C6—C7—C8 | −179.9 (8) | C16—C17—C18—C19 | −177.7 (8) |
C6—C7—C8—C9 | −1.5 (14) | C17—C18—C19—C20 | −1.1 (14) |
C7—C8—C9—C10 | 1.2 (16) | C18—C19—C20—C21 | 1.5 (16) |
C8—C9—C10—C11 | −1.5 (15) | C19—C20—C21—C22 | −0.5 (15) |
C7—C6—C11—C10 | −2.5 (15) | C20—C21—C22—C17 | −0.7 (13) |
C5—C6—C11—C10 | 179.5 (8) | C18—C17—C22—C21 | 1.1 (12) |
C9—C10—C11—C6 | 2.1 (14) | C16—C17—C22—C21 | 178.7 (8) |
Experimental details
Crystal data | |
Chemical formula | [PtCl2(C11H9N)2] |
Mr | 576.37 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 200 |
a, b, c (Å) | 7.6457 (8), 18.0712 (19), 14.9876 (12) |
β (°) | 96.014 (7) |
V (Å3) | 2059.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.08 |
Crystal size (mm) | 0.30 × 0.05 × 0.03 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.329, 0.494 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9783, 4488, 3862 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.076, 1.04 |
No. of reflections | 4488 |
No. of parameters | 244 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.71, −1.44 |
Absolute structure | Flack (1983), 2143 Friedel pairs |
Absolute structure parameter | 0.010 (10) |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).
References
Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638–655. Web of Science CrossRef CAS PubMed Google Scholar
Evans, R. C., Douglas, P. & Winscom, C. J. (2006). Coord. Chem. Rev. 250, 2093–2126. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mdleleni, M. M., Bridgewater, J. S., Watts, R. J. & Ford, P. C. (1995). Inorg. Chem. 34, 2334–2342. CrossRef CAS Web of Science Google Scholar
Okada, T., El-Mehasseb, I. M., Kodaka, M., Tomohiro, T., Okamoto, K. & Okuno, H. (2001). J. Med. Chem. 44, 4661–4667. Web of Science CSD CrossRef PubMed CAS Google Scholar
Pazderski, L., Toušek, J., Sitkowski, J., Kozerski, L. & Szłyk, E. (2009). Magn. Reson. Chem. 47, 658–665. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Saito, K., Sarukawa, Y., Tsuge, K. & Konno, T. (2010). Eur. J. Inorg. Chem. 25, 3909–3913. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It has been well known that metal complexes with 2-phenylpyridinate (ppy = C11H8N) show intense photoluminescence, especially for IrIII and PtII complexes (Evans et al., 2006; Chi & Chou, 2010). Recently, we found that the IrIII complex having both ppy and D-Hpen ligands, [IrIII(ppy)2(D-Hpen)] (D—H2pen = D-penicillamine), readily reacts with AgI ion to give a luminescent S bridged IrIIIAgIIrIII trinuclear complex, [Ag{Ir(ppy)2(D—H0.5pen)}2] (Saito et al., 2010). We report herein the crystal structure of a platinum(II) complex with two monodentate 2-phenylpyridine ligands, [PtCl2(C11H9N)2] (I), which was accidentally obtained in the course of the reaction of [PtCl(ppy-κ2N,C)]2 with 1-thio-β-D-glucose.
The molecular structure of (I) is shown in Fig. 1. In (I), the two pyridyl planes of 2-phenylpyridine ligands are tilted to the coordination plane of Pt1; each of the dihedral angles of the pyridyl unit with respect to the Pt1/N1/N2/Cl1/Cl2 plane is 59.1 (2)° for the N1/C1–C5 plane and 61.84 (19)° for the N2/C12–C16 plane. In each 2-phenylpyridine ligand, the pyridyl and phenyl rings are inclined with angles of 40.4 (2)° for the N1/C1–C5 and C6—C11 planes and 48.1 (2)° for the N2/C12–C16 and C17—C22 planes, allowing them to form a pair of intramolecular π–π stacking interactions with the closest separations of 3.201 (9) and 3.256 (9) Å. Moreover, the complex molecule contacts to the neighboring molecules through intermolecular π–π stacking interactions with the closest separations of 3.438 (10) and 3.389 (10) Å, giving a one-dimensional columnar structure along the a axis (Fig. 2).