metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Di­phenyl­phosphino­thio­yl)-2-[(4-methyl­phen­yl)meth­­oxy­meth­yl]ferrocene

aLaboratoire de Chimie de Coordination, UPR-8241 CNRS, 205 route de Narbonne, 31077 Toulouse Cedex, France, and bUniversité de Toulouse, UPS, Institut Universitaire de Technologie Paul Sabatier, Département de Chimie, Av. Georges Pompidou, F-81104 Castres Cedex, France
*Correspondence e-mail: daran@lcc-toulouse.fr

(Received 7 September 2010; accepted 11 October 2010; online 20 October 2010)

Following our continuing inter­est in developing new chiral phosphine-containing ferrocenyl ligands, we synthesized the title compound, [Fe(C5H5)(C26H24OPS)], in which there are two nearly identical mol­ecules in the asymmetric unit. The conformation of the cyclo­penta­dienyl (Cp) rings in each ferrocenyl group are inter­mediate between eclipsed and staggered, with twist angles of 16.6 (2) and 8.9 (2)°. The protecting S atom is located endo with respect to the substituted Cp ring. In the crystal, mol­ecules are connected through inter­molecular C—H⋯π inter­actions.

Related literature

For background to homogenous asymmetric catalysis by transition metals, see: Collins et al. (1992[Collins, A. N., Sheldrake, G. N. & Crosby, J. (1992). Chirality in Industry: The Commercial Manufacture and Applications of Optically Active Compounds. Chichester: Collins, John Wiley & Sons.]); Jacobsen et al. (1999[Jacobsen, E. N., Pfalz, A. & Yamamoto, H. (1999). Comprehensive Asymmetric Catalysis, Vols. 1-3. Berlin: Springer.]); Hawkins & Watson (2004[Hawkins, J. N. & Watson, T. J. N. (2004). Angew. Chem. Int. Ed. 43, 3224-3228.]); Blaser et al. (2007[Blaser, H.-U., Pugin, B., Spindler, F. & Thommen, M. (2007). Acc. Chem. Res. 40, 1240-1250.]); Börner (2008[Börner, A. (2008). Phosphorus Ligands in Asymmetric Catalysis, Vols. 1-3. Weinheim: Wiley-VCH.]). For the design and use of new chiral ligands, see: Atkinson et al. (2004[Atkinson, R. C. J., Gibson, V. C., Long, N. J., White, A. J. P. & Williams, D. J. (2004). Organometallics, 23, 2744-2752.]); Audin et al. (2009[Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2009). C. R. Chim. 13, 890-899.]); Breit & Breuniger (2004[Breit, B. & Breuniger, D. (2004). J. Am. Chem. Soc. 126, 10244-10245.], 2005[Breit, B. & Breuniger, D. (2005). Eur. J. Org. Chem. pp. 3916-3929.]); Diab et al. (2008[Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186-5189.]); Labande et al. (2007[Labande, A., Daran, J.-C., Manoury, E. & Poli, R. (2007). Eur. J. Inorg. Chem. pp. 1205-1209.]); Le Roux et al. (2007[Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 309-313.]); Lopez Cortes et al. (2006[Lopez Cortes, J. G., Ramon, O., Vincendeau, S., Serra, D., Lamy, F., Daran, J.-C., Manoury, E. & Gouygou, M. (2006). Eur. J. Inorg. Chem. pp. 5148-5157.]); Manoury et al. (2000[Manoury, E., Fossey, J. S., Aït-Haddou, H., Daran, J.-C. & Balavoine, G. G. A. (2000). Organometallics, 19, 3736-3739.]); Mateus et al. (2006[Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297-2310.]); Mourgues et al. (2003[Mourgues, S., Serra, D., Lamy, F., Vincendeau, S., Daran, J.-C., Manoury, E. & Gouygou, M. (2003). Eur. J. Inorg. Chem. pp. 2820-2826.]); Routaboul et al. (2005[Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685-2690.], 2007[Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064-1073.]); Teo et al. (2006[Teo, S., Wenig, Z. & Hor, T. S. A. (2006). Organometallics, 25, 1199-1205.]); Yoshida & Itami (2002[Yoshida, J. & Itami, K. (2002). Chem. Rev. 102, 3693-3716.]); Yu et al. (2007[Yu, H. W., Tong, Q. S., Peng, Y. R., Jia, L., Shi, J. C. & Jin, Z. L. (2007). Chin. Chem. Lett. 18, 37-40.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C26H24OPS)]

  • Mr = 536.43

  • Triclinic, [P \overline 1]

  • a = 9.0614 (4) Å

  • b = 14.9924 (8) Å

  • c = 19.118 (1) Å

  • α = 78.192 (3)°

  • β = 88.526 (3)°

  • γ = 86.917 (3)°

  • V = 2538.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 180 K

  • 0.38 × 0.13 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 1.0

  • 38324 measured reflections

  • 8800 independent reflections

  • 6532 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.03

  • 8800 reflections

  • 631 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C111–C116 and C211–C216 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C312—H32⋯Cg1 0.95 2.82 3.703 (3) 156
C123—H123⋯Cg2i 0.95 2.91 3.741 (4) 147
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Homogenous asymmetric catalysis by transition metals has received considerable attention over the last few decades, and numerous chiral ligands and complexes allowing high efficiency reactions have been reported (Jacobsen et al., 1999; Börner, 2008). In this field, chiral phosphines have played a significant role. The possibility to easily modify their electronic and steric properties by a judicious choice of their substituents has proven extremely useful to successfully optimized catalytic reactions. However, only few examples have been transferred to industrial processes (Collins et al., 1992;Hawkins & Watson, 2004; Blaser et al., 2007) in many cases because of the expenses associated to ligand and catalyst loss.

The efficient separation of expensive catalysts and ligands to enable reuse in subsequent cycles is a main challenge that meets both industrial economical needs and new stricter environmental regulations. We have long been interested in the design and the synthesis of new chiral catalysts for exploring new asymmetric catalytic reactions or for improving existing ones (Manoury et al., 2000; Mourgues et al., 2003; Routaboul et al., 2005; Lopez Cortes et al., 2006; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Labande et al., 2007; Diab et al., 2008). Among the numerous phosphine ligands reported to date, ferrocenyl phosphines functionalized by an oxygen atom (PO ferrocenyl phosphines) constitute a distinct class of hemilabile ligands attracting increasing interest (Breit & Breuniger, 2004; Atkinson et al., 2004; Breit & Breuniger, 2005; Teo et al., 2006; Yu et al., 2007; Mateus et al., 2006). We have recently developed promising PO ferrocenyl ligands (Mateus et al., 2006; Audin et al., 2009). In addition, we recently took interest in improving catalyst recycling using ionic liquid, water or PEG as catalyst "liquid carriers" and in investigating the influence of these media on both the catalytic reaction and the recycling efficiency. To reach this goal, we have prepared a new family of PO ferrocenyl phosphine-ethers, bearing charged (imidazolium) or neutral (monomethylether PEG 750, tetraethylbisphosphonate) polar tags (Audin et al., 2009) to increase their solubility in non conventional media. The simplest member of this new family is compound 2 b (Scheme 1) which efficiency in the Suzuki-Miyaura reaction has been demonstrated (Yoshida & Itami, 2002).

The title molecule 2a is built up from a ferrocenyl moiety in which one Cp ring is substituted by a sulfur protected phosphine and a ((4-methylphenyl)-methoxy)methyl group resulting in a planar chirality. As the space group is centrosymmetric the two enantiomers R/S are present in the crystal (Fig. 1). There are two molecules with the same configuration within the asymmetric unit. As shown by molecular fitting (Spek, 2009), the two molecules have very closely related geometry (Fig. 2).

The ether chains are roughly planar with the largest deviation being 0.034 (2)Å at C4 and 0.100 (2)Å at O1. These planes makes dihedral angle of 83.21 (13) ° or 88.03 (13)° for molecule 1 and 2 respectively. The benzyl groups are twisted with respect to these plane by dihedral angle of 49.21 (17) ° and 33.04 (23)° for molecule 1 and 2 respectively.

The Cp rings within the ferrocene moiety have intermediate conformation between eclipsed and staggered with a twist angle of 16.6 (2)° and 8.9 (2)° respectively. These Cp rings are slightly bent wit respect to each other making dihedral angles of 2.16 (24)° and 4.06 (21)° respectively. The S atom is endo with respect to the Cp ring by 0.884 (7)Å and 0.992 (6)Å respectively.

There are weak intra and intermolecular C—H···π interactions involving H atoms of phenyl rings and related phenyl rings either to the same molecule or to a symmetry related one (Table 1, Cg1 is the centroid of the C111—C116 ring whereas Cg2 is the centroid of the C211—C216 ring).

Related literature top

For background to homogenous asymmetric catalysis by transition metals, see: Collins et al. (1992); Jacobsen et al. (1999); Hawkins & Watson (2004); Blaser et al. (2007); Börner (2008). For the design and use of new chiral ligands, see Atkinson et al. (2004); Audin et al. (2009); Breit & Breuniger (2004, 2005); Diab et al. (2008); Labande et al. (2007); Le Roux et al. (2007); Lopez Cortes et al. (2006); Manoury et al. (2000); Mateus et al. (2006); Mourgues et al. (2003); Routaboul et al. (2005, 2007); Teo et al. (2006); Yoshida & Itami (2002); Yu et al. (2007).

Experimental top

In a Schlenk tube, 0.75 g of the racemic 2-thiodiphenylphosphino(hydroxymethyl)ferrocene (1.74 mmol) was dissolved in 8 ml of dry dichloromethane. A 54% solution of tetrafluoroboric acid in ether (0.73 ml, 5.30 mmol) was then added. After 1 min stirring, a solution of 2.5 g of 4-methylbenzylalcohol (20.5 mmol) in 8 mL of dry dichloromethane was added. After 1 min of stirring, the crude material was filtered on silica gel with ether as eluent. After evaporation of the solvent, 0.4 g of 2a was obtained as a yellow solid (yield = 43%). 1H NMR (200.1 MHz, CDCl3), d (p.p.m.): 7.90–7.65 (4H, m: PPh2); 7.52–7.34 (6H, m: PPh2); 7.05 (2H, d, J = 7.9 Hz: Ph); 6.95 (2H, d, J = 7.9 Hz: Ph); 4.89 (1H, d, J = 10.9 Hz: CpCH2); 4.66 (1H, m: subst Cp); 4.45 (1H, d, J = 10.9 Hz: CpCH2); 4.35 (1H, m: subst Cp); 4.33 (5H, s: Cp); 4.29 (2H, d: 2.9 Hz: PhCH2O); 3.85 (1H, m: subst Cp); 2.33 (3H, m: CH3). 13C NMR (50.3 MHz, CDCl3), d (p.p.m.): 136.8 (s: quat Ph); 135.4 (s: quat Ph); 134.8 (d, JPC = 87.1 Hz: quat PPh2); 133.6 (d, JPC = 86.1 Hz: quat PPh2); 132.2 (d, JPC = 10.7 Hz: PPh2); 132.1 (d, JPC = 10.7 Hz: PPh2); 131.2 (d, JPC = 2.2 Hz: PPh2); 131.1 (d, JPC = 2.2 Hz: PPh2); 128.8 (s: Ph); 128.1 (d, JPC = 12.3 Hz: PPh2); 128.0 (d, JPC = 12.3 Hz: PPh2); 127.7 (s: Ph); 88.3 (d, JPC = 12.1 Hz: quat Cp); 75.2 (d, JPC = 12.5 Hz: subst Cp); 75.6 (d, JPC = 94.7 Hz: quat Cp); 74.5 (d, JPC = 9.4 Hz: subst Cp); 72.4 (s, PhCH2O); 70.7 (s: Cp); 69.4 (d, JPC = 10.4 Hz: subst Cp); 66.7 (s: CpCH2O); 21.3 (s: CH3). 31P NMR (81.0 MHz, CDCl3), d (p.p.m.): 43.1. HR MS (DCI CH4), C31H29OPSFe, calcd. mass [M]: 536.1026; exp. mass [M]: 536.1039.

Refinement top

All H atoms attached to carbon were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl) or 0.99 Å (methylene) and 0.97Å (methyl) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl).

Structure description top

Homogenous asymmetric catalysis by transition metals has received considerable attention over the last few decades, and numerous chiral ligands and complexes allowing high efficiency reactions have been reported (Jacobsen et al., 1999; Börner, 2008). In this field, chiral phosphines have played a significant role. The possibility to easily modify their electronic and steric properties by a judicious choice of their substituents has proven extremely useful to successfully optimized catalytic reactions. However, only few examples have been transferred to industrial processes (Collins et al., 1992;Hawkins & Watson, 2004; Blaser et al., 2007) in many cases because of the expenses associated to ligand and catalyst loss.

The efficient separation of expensive catalysts and ligands to enable reuse in subsequent cycles is a main challenge that meets both industrial economical needs and new stricter environmental regulations. We have long been interested in the design and the synthesis of new chiral catalysts for exploring new asymmetric catalytic reactions or for improving existing ones (Manoury et al., 2000; Mourgues et al., 2003; Routaboul et al., 2005; Lopez Cortes et al., 2006; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Labande et al., 2007; Diab et al., 2008). Among the numerous phosphine ligands reported to date, ferrocenyl phosphines functionalized by an oxygen atom (PO ferrocenyl phosphines) constitute a distinct class of hemilabile ligands attracting increasing interest (Breit & Breuniger, 2004; Atkinson et al., 2004; Breit & Breuniger, 2005; Teo et al., 2006; Yu et al., 2007; Mateus et al., 2006). We have recently developed promising PO ferrocenyl ligands (Mateus et al., 2006; Audin et al., 2009). In addition, we recently took interest in improving catalyst recycling using ionic liquid, water or PEG as catalyst "liquid carriers" and in investigating the influence of these media on both the catalytic reaction and the recycling efficiency. To reach this goal, we have prepared a new family of PO ferrocenyl phosphine-ethers, bearing charged (imidazolium) or neutral (monomethylether PEG 750, tetraethylbisphosphonate) polar tags (Audin et al., 2009) to increase their solubility in non conventional media. The simplest member of this new family is compound 2 b (Scheme 1) which efficiency in the Suzuki-Miyaura reaction has been demonstrated (Yoshida & Itami, 2002).

The title molecule 2a is built up from a ferrocenyl moiety in which one Cp ring is substituted by a sulfur protected phosphine and a ((4-methylphenyl)-methoxy)methyl group resulting in a planar chirality. As the space group is centrosymmetric the two enantiomers R/S are present in the crystal (Fig. 1). There are two molecules with the same configuration within the asymmetric unit. As shown by molecular fitting (Spek, 2009), the two molecules have very closely related geometry (Fig. 2).

The ether chains are roughly planar with the largest deviation being 0.034 (2)Å at C4 and 0.100 (2)Å at O1. These planes makes dihedral angle of 83.21 (13) ° or 88.03 (13)° for molecule 1 and 2 respectively. The benzyl groups are twisted with respect to these plane by dihedral angle of 49.21 (17) ° and 33.04 (23)° for molecule 1 and 2 respectively.

The Cp rings within the ferrocene moiety have intermediate conformation between eclipsed and staggered with a twist angle of 16.6 (2)° and 8.9 (2)° respectively. These Cp rings are slightly bent wit respect to each other making dihedral angles of 2.16 (24)° and 4.06 (21)° respectively. The S atom is endo with respect to the Cp ring by 0.884 (7)Å and 0.992 (6)Å respectively.

There are weak intra and intermolecular C—H···π interactions involving H atoms of phenyl rings and related phenyl rings either to the same molecule or to a symmetry related one (Table 1, Cg1 is the centroid of the C111—C116 ring whereas Cg2 is the centroid of the C211—C216 ring).

For background to homogenous asymmetric catalysis by transition metals, see: Collins et al. (1992); Jacobsen et al. (1999); Hawkins & Watson (2004); Blaser et al. (2007); Börner (2008). For the design and use of new chiral ligands, see Atkinson et al. (2004); Audin et al. (2009); Breit & Breuniger (2004, 2005); Diab et al. (2008); Labande et al. (2007); Le Roux et al. (2007); Lopez Cortes et al. (2006); Manoury et al. (2000); Mateus et al. (2006); Mourgues et al. (2003); Routaboul et al. (2005, 2007); Teo et al. (2006); Yoshida & Itami (2002); Yu et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular view of compound (I) showing 30% probability displacement ellipsoids and the atom numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Molecular fitting of the two independent molecules building up the asymmetric unit.
[Figure 3] Fig. 3. The formation of the title compound.
1-(Diphenylphosphinothioyl)-2-[(4-methylphenyl)methoxymethyl]ferrocene top
Crystal data top
[Fe(C5H5)(C26H24OPS)]Z = 4
Mr = 536.43F(000) = 1120
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0614 (4) ÅCell parameters from 9957 reflections
b = 14.9924 (8) Åθ = 1.6–26.0°
c = 19.118 (1) ŵ = 0.76 mm1
α = 78.192 (3)°T = 180 K
β = 88.526 (3)°Flattened, yellow
γ = 86.917 (3)°0.38 × 0.13 × 0.04 mm
V = 2538.3 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8800 independent reflections
Radiation source: sealed tube6532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1010
Tmin = 0.708, Tmax = 1.0k = 1717
38324 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0519P)2 + 1.7686P]
where P = (Fo2 + 2Fc2)/3
8800 reflections(Δ/σ)max = 0.001
631 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Fe(C5H5)(C26H24OPS)]γ = 86.917 (3)°
Mr = 536.43V = 2538.3 (2) Å3
Triclinic, P1Z = 4
a = 9.0614 (4) ÅMo Kα radiation
b = 14.9924 (8) ŵ = 0.76 mm1
c = 19.118 (1) ÅT = 180 K
α = 78.192 (3)°0.38 × 0.13 × 0.04 mm
β = 88.526 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8800 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6532 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 1.0Rint = 0.050
38324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
8800 reflectionsΔρmin = 0.35 e Å3
631 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.86195 (5)0.76305 (3)0.43370 (2)0.02412 (13)
S10.46967 (9)0.68675 (6)0.34969 (4)0.0296 (2)
P10.66077 (9)0.70617 (5)0.29960 (4)0.01973 (18)
O10.7652 (2)0.48562 (14)0.42809 (11)0.0265 (5)
C110.8218 (3)0.6972 (2)0.35406 (15)0.0211 (7)
C120.8532 (3)0.6330 (2)0.42012 (15)0.0221 (7)
C130.9978 (4)0.6477 (2)0.44049 (16)0.0277 (7)
H131.04740.61430.48160.033*
C141.0566 (4)0.7201 (2)0.38963 (16)0.0304 (8)
H141.15130.74390.39110.036*
C150.9489 (3)0.7511 (2)0.33610 (16)0.0249 (7)
H150.95920.79900.29550.030*
C160.6693 (4)0.8230 (3)0.4632 (2)0.0437 (10)
H160.57330.81420.44770.052*
C170.7395 (4)0.7716 (2)0.52380 (19)0.0382 (9)
H170.69970.72200.55650.046*
C180.8798 (4)0.8065 (3)0.52788 (18)0.0395 (9)
H180.95130.78420.56350.047*
C190.8949 (5)0.8799 (3)0.4698 (2)0.0475 (10)
H190.97810.91660.45970.057*
C200.7653 (5)0.8900 (3)0.4292 (2)0.0500 (11)
H200.74610.93390.38660.060*
C10.7525 (4)0.5638 (2)0.45980 (15)0.0254 (7)
H36A0.78030.54690.51070.030*
H36B0.64920.58930.45710.030*
C30.6495 (4)0.4250 (2)0.45102 (17)0.0313 (8)
H37A0.55240.45630.43750.038*
H37B0.65080.40430.50360.038*
C1110.6993 (3)0.62643 (19)0.24091 (15)0.0216 (7)
C1120.8372 (4)0.5835 (2)0.23597 (16)0.0262 (7)
H1120.91730.59750.26220.031*
C1130.8583 (4)0.5199 (2)0.19264 (16)0.0314 (8)
H1130.95310.49070.18920.038*
C1140.7422 (4)0.4988 (2)0.15454 (16)0.0303 (8)
H1140.75640.45390.12610.036*
C1150.6057 (4)0.5429 (2)0.15788 (16)0.0305 (8)
H1150.52650.52970.13060.037*
C1160.5838 (4)0.6062 (2)0.20070 (15)0.0263 (7)
H1160.48930.63630.20290.032*
C1210.6664 (3)0.8185 (2)0.24244 (15)0.0210 (7)
C1220.5694 (4)0.8880 (2)0.25657 (17)0.0298 (8)
H1220.49890.87540.29450.036*
C1230.5750 (4)0.9750 (2)0.21573 (18)0.0365 (9)
H1230.50881.02220.22580.044*
C1240.6769 (4)0.9935 (2)0.16011 (18)0.0377 (9)
H1240.68201.05370.13270.045*
C1250.7710 (4)0.9245 (2)0.14449 (17)0.0320 (8)
H1250.83950.93700.10570.038*
C1260.7657 (4)0.8369 (2)0.18535 (16)0.0276 (7)
H1260.83010.78940.17430.033*
C3110.6746 (3)0.3453 (2)0.41541 (16)0.0265 (7)
C3120.6859 (4)0.3588 (2)0.34178 (17)0.0294 (8)
H320.67230.41880.31400.035*
C3130.7166 (4)0.2868 (2)0.30777 (17)0.0290 (8)
H330.72330.29790.25710.035*
C3140.7379 (4)0.1983 (2)0.34682 (17)0.0294 (8)
C3150.7238 (4)0.1845 (2)0.42090 (19)0.0387 (9)
H350.73540.12440.44870.046*
C3160.6934 (4)0.2567 (2)0.45458 (18)0.0356 (9)
H380.68530.24560.50520.043*
C3170.7759 (4)0.1206 (2)0.3098 (2)0.0430 (9)
H30A0.85520.08120.33550.064*
H30B0.80890.14480.26070.064*
H30C0.68840.08510.30910.064*
Fe20.42478 (5)0.23170 (3)0.05815 (2)0.02081 (12)
S20.01485 (9)0.26601 (6)0.15842 (4)0.0312 (2)
P20.20642 (9)0.26407 (5)0.20415 (4)0.02038 (18)
O20.2595 (2)0.50360 (14)0.07561 (11)0.0254 (5)
C210.3631 (3)0.2845 (2)0.14494 (15)0.0203 (7)
C220.3757 (3)0.35567 (19)0.08177 (15)0.0215 (7)
C230.5249 (3)0.3510 (2)0.05618 (16)0.0255 (7)
H230.56500.39000.01550.031*
C240.6032 (3)0.2784 (2)0.10168 (16)0.0264 (7)
H240.70430.26030.09640.032*
C250.5056 (3)0.2372 (2)0.15631 (15)0.0217 (7)
H250.52990.18700.19400.026*
C260.5004 (4)0.1334 (2)0.00378 (17)0.0313 (8)
H260.59840.10740.00430.038*
C270.3842 (4)0.1002 (2)0.05133 (17)0.0312 (8)
H270.39030.04820.08920.037*
C280.2568 (4)0.1588 (2)0.03218 (18)0.0347 (8)
H280.16260.15290.05510.042*
C290.2949 (4)0.2274 (2)0.02704 (17)0.0337 (8)
H290.23070.27560.05090.040*
C300.4457 (4)0.2116 (2)0.04452 (16)0.0317 (8)
H300.50040.24740.08210.038*
C20.2585 (4)0.4224 (2)0.04715 (15)0.0252 (7)
H41A0.27650.43740.00510.030*
H41B0.16070.39540.05610.030*
C40.1403 (4)0.5657 (2)0.04868 (16)0.0259 (7)
H42A0.04520.53700.06260.031*
H42B0.14670.58140.00410.031*
C2110.2497 (3)0.1565 (2)0.26664 (15)0.0217 (7)
C2120.1717 (4)0.0799 (2)0.26451 (17)0.0326 (8)
H2120.10150.08170.22820.039*
C2130.1970 (4)0.0005 (2)0.3159 (2)0.0425 (9)
H2130.14250.05160.31500.051*
C2140.3006 (4)0.0030 (2)0.36819 (18)0.0397 (9)
H2140.31820.05770.40270.048*
C2150.3783 (4)0.0726 (2)0.37037 (17)0.0348 (8)
H2150.44960.07000.40640.042*
C2160.3531 (4)0.1524 (2)0.32022 (16)0.0271 (7)
H2160.40640.20470.32230.033*
C2210.2101 (3)0.3491 (2)0.25909 (15)0.0209 (7)
C2220.0866 (4)0.3630 (2)0.30094 (16)0.0273 (7)
H2220.00380.32670.30130.033*
C2230.0824 (4)0.4289 (2)0.34197 (16)0.0317 (8)
H2230.00270.43800.37020.038*
C2240.2031 (4)0.4816 (2)0.34168 (16)0.0289 (8)
H2240.19960.52830.36870.035*
C2250.3280 (4)0.4669 (2)0.30249 (16)0.0303 (8)
H2250.41180.50190.30390.036*
C2260.3321 (4)0.4010 (2)0.26091 (16)0.0266 (7)
H2260.41840.39130.23360.032*
C4110.1469 (3)0.6503 (2)0.07826 (16)0.0231 (7)
C4120.1922 (4)0.6465 (2)0.14800 (17)0.0300 (8)
H440.21830.58920.17770.036*
C4130.1995 (4)0.7254 (2)0.17434 (18)0.0339 (8)
H450.23010.72120.22210.041*
C4140.1630 (4)0.8110 (2)0.13251 (19)0.0333 (8)
C4150.1155 (4)0.8136 (2)0.06389 (18)0.0341 (8)
H2000.08780.87090.03450.041*
C4160.1070 (3)0.7353 (2)0.03680 (17)0.0279 (7)
H1000.07370.73970.01050.033*
C4170.1770 (5)0.8963 (3)0.1613 (2)0.0545 (11)
H40A0.14650.94970.12480.082*
H40B0.28000.90110.17400.082*
H40C0.11360.89380.20390.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0259 (3)0.0252 (3)0.0226 (2)0.0008 (2)0.00231 (19)0.00780 (19)
S10.0216 (5)0.0388 (5)0.0292 (4)0.0049 (4)0.0050 (3)0.0089 (4)
P10.0184 (4)0.0218 (4)0.0193 (4)0.0014 (3)0.0002 (3)0.0049 (3)
O10.0250 (13)0.0276 (12)0.0287 (12)0.0059 (10)0.0066 (9)0.0095 (9)
C110.0211 (18)0.0234 (16)0.0202 (15)0.0002 (13)0.0003 (13)0.0077 (12)
C120.0256 (18)0.0223 (16)0.0191 (15)0.0036 (13)0.0003 (13)0.0068 (12)
C130.030 (2)0.0319 (18)0.0223 (16)0.0082 (15)0.0069 (14)0.0111 (14)
C140.0200 (19)0.045 (2)0.0283 (17)0.0016 (15)0.0004 (14)0.0132 (15)
C150.0200 (18)0.0311 (18)0.0241 (16)0.0062 (14)0.0007 (13)0.0056 (13)
C160.035 (2)0.046 (2)0.060 (3)0.0126 (19)0.0070 (19)0.036 (2)
C170.046 (2)0.037 (2)0.036 (2)0.0020 (18)0.0111 (17)0.0198 (16)
C180.043 (2)0.051 (2)0.0317 (19)0.0027 (19)0.0051 (16)0.0243 (18)
C190.056 (3)0.041 (2)0.054 (2)0.021 (2)0.011 (2)0.027 (2)
C200.077 (3)0.027 (2)0.047 (2)0.007 (2)0.007 (2)0.0122 (17)
C10.0307 (19)0.0253 (17)0.0201 (15)0.0034 (14)0.0036 (14)0.0060 (13)
C30.029 (2)0.038 (2)0.0281 (17)0.0101 (16)0.0063 (15)0.0069 (15)
C1110.0297 (19)0.0166 (15)0.0168 (15)0.0017 (13)0.0023 (13)0.0001 (12)
C1120.0257 (19)0.0294 (18)0.0242 (16)0.0017 (14)0.0054 (14)0.0071 (13)
C1130.036 (2)0.0303 (19)0.0264 (17)0.0070 (15)0.0019 (15)0.0040 (14)
C1140.050 (2)0.0236 (17)0.0172 (15)0.0034 (16)0.0055 (15)0.0038 (13)
C1150.035 (2)0.0347 (19)0.0230 (17)0.0097 (16)0.0031 (14)0.0070 (14)
C1160.0255 (19)0.0305 (18)0.0223 (16)0.0030 (14)0.0024 (14)0.0036 (13)
C1210.0222 (18)0.0240 (16)0.0180 (15)0.0010 (13)0.0071 (13)0.0064 (12)
C1220.028 (2)0.0303 (19)0.0313 (18)0.0004 (15)0.0012 (15)0.0078 (15)
C1230.042 (2)0.0249 (19)0.043 (2)0.0091 (16)0.0039 (18)0.0092 (16)
C1240.049 (2)0.0237 (18)0.038 (2)0.0025 (17)0.0110 (18)0.0006 (15)
C1250.038 (2)0.0305 (19)0.0250 (17)0.0057 (16)0.0009 (15)0.0001 (14)
C1260.033 (2)0.0256 (18)0.0233 (16)0.0026 (15)0.0021 (14)0.0039 (13)
C3110.0212 (18)0.0327 (19)0.0258 (17)0.0089 (14)0.0021 (13)0.0047 (14)
C3120.027 (2)0.0284 (18)0.0310 (18)0.0056 (15)0.0014 (14)0.0001 (14)
C3130.027 (2)0.0344 (19)0.0257 (17)0.0074 (15)0.0000 (14)0.0040 (14)
C3140.0223 (19)0.0284 (18)0.0375 (19)0.0073 (14)0.0033 (15)0.0053 (15)
C3150.043 (2)0.029 (2)0.042 (2)0.0092 (17)0.0085 (17)0.0020 (16)
C3160.039 (2)0.038 (2)0.0276 (18)0.0175 (17)0.0044 (15)0.0015 (15)
C3170.044 (2)0.032 (2)0.054 (2)0.0075 (17)0.0045 (19)0.0098 (17)
Fe20.0215 (3)0.0226 (2)0.0195 (2)0.00141 (19)0.00035 (18)0.00701 (18)
S20.0193 (5)0.0491 (5)0.0269 (4)0.0025 (4)0.0034 (3)0.0111 (4)
P20.0193 (5)0.0245 (4)0.0181 (4)0.0012 (3)0.0000 (3)0.0061 (3)
O20.0246 (13)0.0229 (11)0.0302 (12)0.0032 (9)0.0063 (9)0.0090 (9)
C210.0213 (18)0.0215 (16)0.0196 (15)0.0011 (13)0.0020 (13)0.0083 (12)
C220.0294 (19)0.0196 (16)0.0177 (15)0.0022 (13)0.0005 (13)0.0084 (12)
C230.028 (2)0.0266 (17)0.0236 (16)0.0067 (14)0.0052 (14)0.0083 (13)
C240.0165 (18)0.0342 (19)0.0318 (18)0.0027 (14)0.0005 (14)0.0135 (15)
C250.0219 (18)0.0243 (17)0.0200 (15)0.0014 (13)0.0018 (13)0.0078 (12)
C260.027 (2)0.0341 (19)0.0377 (19)0.0014 (15)0.0039 (15)0.0208 (16)
C270.041 (2)0.0210 (17)0.0335 (18)0.0057 (15)0.0043 (16)0.0087 (14)
C280.030 (2)0.039 (2)0.041 (2)0.0074 (16)0.0004 (16)0.0209 (17)
C290.041 (2)0.0312 (19)0.0321 (19)0.0051 (16)0.0151 (16)0.0146 (15)
C300.046 (2)0.0330 (19)0.0197 (16)0.0035 (16)0.0024 (15)0.0130 (14)
C20.034 (2)0.0233 (17)0.0189 (15)0.0001 (14)0.0033 (13)0.0054 (13)
C40.0236 (18)0.0312 (18)0.0235 (16)0.0026 (14)0.0026 (13)0.0078 (14)
C2110.0196 (17)0.0253 (17)0.0205 (15)0.0008 (13)0.0046 (13)0.0064 (13)
C2120.037 (2)0.0314 (19)0.0319 (18)0.0060 (16)0.0019 (15)0.0103 (15)
C2130.053 (3)0.0263 (19)0.049 (2)0.0114 (17)0.0082 (19)0.0071 (17)
C2140.054 (3)0.030 (2)0.0308 (19)0.0054 (18)0.0086 (18)0.0011 (15)
C2150.042 (2)0.034 (2)0.0264 (18)0.0063 (17)0.0021 (15)0.0042 (15)
C2160.029 (2)0.0267 (18)0.0267 (17)0.0016 (14)0.0037 (14)0.0072 (14)
C2210.0225 (18)0.0216 (16)0.0180 (15)0.0031 (13)0.0034 (13)0.0031 (12)
C2220.0210 (18)0.0353 (19)0.0254 (17)0.0007 (14)0.0008 (14)0.0061 (14)
C2230.030 (2)0.042 (2)0.0239 (17)0.0103 (17)0.0019 (14)0.0110 (15)
C2240.042 (2)0.0265 (18)0.0183 (15)0.0079 (16)0.0047 (15)0.0074 (13)
C2250.038 (2)0.0286 (18)0.0255 (17)0.0055 (15)0.0020 (15)0.0085 (14)
C2260.0259 (19)0.0282 (18)0.0261 (17)0.0025 (14)0.0040 (14)0.0072 (14)
C4110.0138 (17)0.0297 (18)0.0265 (16)0.0002 (13)0.0001 (13)0.0079 (13)
C4120.030 (2)0.0301 (19)0.0297 (18)0.0055 (15)0.0062 (15)0.0060 (14)
C4130.0233 (19)0.049 (2)0.0340 (19)0.0007 (16)0.0041 (15)0.0204 (17)
C4140.0197 (19)0.034 (2)0.050 (2)0.0038 (15)0.0027 (16)0.0179 (17)
C4150.032 (2)0.0278 (19)0.040 (2)0.0027 (15)0.0062 (16)0.0032 (15)
C4160.0229 (19)0.0344 (19)0.0257 (17)0.0052 (15)0.0004 (14)0.0065 (14)
C4170.047 (3)0.048 (3)0.078 (3)0.011 (2)0.003 (2)0.031 (2)
Geometric parameters (Å, º) top
Fe1—C122.024 (3)Fe2—C222.025 (3)
Fe1—C112.027 (3)Fe2—C212.034 (3)
Fe1—C202.038 (4)Fe2—C232.042 (3)
Fe1—C162.040 (4)Fe2—C292.048 (3)
Fe1—C152.044 (3)Fe2—C302.049 (3)
Fe1—C172.047 (3)Fe2—C282.049 (3)
Fe1—C182.049 (3)Fe2—C262.050 (3)
Fe1—C192.049 (4)Fe2—C252.051 (3)
Fe1—C132.052 (3)Fe2—C272.055 (3)
Fe1—C142.063 (3)Fe2—C242.056 (3)
S1—P11.9635 (11)S2—P21.9598 (11)
P1—C111.797 (3)P2—C211.792 (3)
P1—C1211.812 (3)P2—C2211.813 (3)
P1—C1111.815 (3)P2—C2111.830 (3)
O1—C11.424 (3)O2—C41.422 (4)
O1—C31.425 (4)O2—C21.432 (3)
C11—C151.436 (4)C21—C251.439 (4)
C11—C121.447 (4)C21—C221.445 (4)
C12—C131.417 (4)C22—C231.430 (4)
C12—C11.493 (4)C22—C21.489 (4)
C13—C141.419 (5)C23—C241.416 (4)
C13—H130.9500C23—H230.9500
C14—C151.423 (4)C24—C251.415 (4)
C14—H140.9500C24—H240.9500
C15—H150.9500C25—H250.9500
C16—C171.399 (5)C26—C301.411 (5)
C16—C201.410 (6)C26—C271.416 (5)
C16—H160.9500C26—H260.9500
C17—C181.410 (5)C27—C281.420 (5)
C17—H170.9500C27—H270.9500
C18—C191.404 (5)C28—C291.414 (5)
C18—H180.9500C28—H280.9500
C19—C201.409 (6)C29—C301.418 (5)
C19—H190.9500C29—H290.9500
C20—H200.9500C30—H300.9500
C1—H36A0.9900C2—H41A0.9900
C1—H36B0.9900C2—H41B0.9900
C3—C3111.496 (4)C4—C4111.495 (4)
C3—H37A0.9900C4—H42A0.9900
C3—H37B0.9900C4—H42B0.9900
C111—C1121.384 (4)C211—C2121.388 (4)
C111—C1161.396 (4)C211—C2161.396 (4)
C112—C1131.388 (4)C212—C2131.393 (5)
C112—H1120.9500C212—H2120.9500
C113—C1141.381 (5)C213—C2141.379 (5)
C113—H1130.9500C213—H2130.9500
C114—C1151.377 (5)C214—C2151.375 (5)
C114—H1140.9500C214—H2140.9500
C115—C1161.378 (4)C215—C2161.384 (4)
C115—H1150.9500C215—H2150.9500
C116—H1160.9500C216—H2160.9500
C121—C1261.389 (4)C221—C2261.391 (4)
C121—C1221.392 (4)C221—C2221.391 (4)
C122—C1231.379 (5)C222—C2231.379 (4)
C122—H1220.9500C222—H2220.9500
C123—C1241.385 (5)C223—C2241.382 (5)
C123—H1230.9500C223—H2230.9500
C124—C1251.381 (5)C224—C2251.375 (5)
C124—H1240.9500C224—H2240.9500
C125—C1261.386 (4)C225—C2261.387 (4)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
C311—C3121.383 (4)C411—C4161.392 (4)
C311—C3161.389 (5)C411—C4121.394 (4)
C312—C3131.383 (4)C412—C4131.383 (4)
C312—H320.9500C412—H440.9500
C313—C3141.388 (4)C413—C4141.394 (5)
C313—H330.9500C413—H450.9500
C314—C3151.392 (5)C414—C4151.384 (5)
C314—C3171.503 (5)C414—C4171.505 (5)
C315—C3161.381 (5)C415—C4161.383 (5)
C315—H350.9500C415—H2000.9500
C316—H380.9500C416—H1000.9500
C317—H30A0.9800C417—H40A0.9800
C317—H30B0.9800C417—H40B0.9800
C317—H30C0.9800C417—H40C0.9800
C12—Fe1—C1141.85 (11)C22—Fe2—C2141.71 (11)
C12—Fe1—C20150.62 (16)C22—Fe2—C2341.16 (12)
C11—Fe1—C20118.33 (14)C21—Fe2—C2369.24 (12)
C12—Fe1—C16116.50 (14)C22—Fe2—C29104.93 (13)
C11—Fe1—C16109.31 (13)C21—Fe2—C29126.15 (13)
C20—Fe1—C1640.45 (16)C23—Fe2—C29116.60 (13)
C12—Fe1—C1569.60 (12)C22—Fe2—C30122.93 (12)
C11—Fe1—C1541.31 (12)C21—Fe2—C30162.30 (13)
C20—Fe1—C15110.58 (15)C23—Fe2—C30104.56 (13)
C16—Fe1—C15132.23 (14)C29—Fe2—C3040.51 (14)
C12—Fe1—C17106.62 (13)C22—Fe2—C28118.92 (13)
C11—Fe1—C17129.70 (14)C21—Fe2—C28109.34 (13)
C20—Fe1—C1767.73 (16)C23—Fe2—C28152.21 (14)
C16—Fe1—C1740.04 (15)C29—Fe2—C2840.39 (14)
C15—Fe1—C17169.75 (14)C30—Fe2—C2867.99 (14)
C12—Fe1—C18127.52 (14)C22—Fe2—C26160.83 (13)
C11—Fe1—C18167.50 (14)C21—Fe2—C26156.59 (13)
C20—Fe1—C1867.81 (16)C23—Fe2—C26124.57 (13)
C16—Fe1—C1867.58 (15)C29—Fe2—C2667.88 (14)
C15—Fe1—C18149.49 (14)C30—Fe2—C2640.26 (13)
C17—Fe1—C1840.26 (14)C28—Fe2—C2667.91 (14)
C12—Fe1—C19166.25 (15)C22—Fe2—C2569.49 (12)
C11—Fe1—C19151.34 (14)C21—Fe2—C2541.26 (12)
C20—Fe1—C1940.32 (16)C23—Fe2—C2568.34 (12)
C16—Fe1—C1967.55 (16)C29—Fe2—C25165.84 (13)
C15—Fe1—C19118.39 (14)C30—Fe2—C25153.43 (13)
C17—Fe1—C1967.40 (15)C28—Fe2—C25129.93 (13)
C18—Fe1—C1940.07 (15)C26—Fe2—C25121.49 (13)
C12—Fe1—C1340.67 (12)C22—Fe2—C27155.37 (13)
C11—Fe1—C1368.95 (12)C21—Fe2—C27122.29 (13)
C20—Fe1—C13168.49 (16)C23—Fe2—C27163.39 (13)
C16—Fe1—C13148.54 (15)C29—Fe2—C2767.98 (13)
C15—Fe1—C1368.30 (12)C30—Fe2—C2767.90 (13)
C17—Fe1—C13115.49 (14)C28—Fe2—C2740.50 (14)
C18—Fe1—C13106.97 (14)C26—Fe2—C2740.34 (13)
C19—Fe1—C13129.26 (15)C25—Fe2—C27111.37 (13)
C12—Fe1—C1468.79 (13)C22—Fe2—C2468.99 (12)
C11—Fe1—C1468.92 (12)C21—Fe2—C2468.85 (12)
C20—Fe1—C14131.52 (16)C23—Fe2—C2440.44 (12)
C16—Fe1—C14170.60 (15)C29—Fe2—C24151.27 (13)
C15—Fe1—C1440.52 (12)C30—Fe2—C24117.84 (13)
C17—Fe1—C14148.11 (14)C28—Fe2—C24166.87 (14)
C18—Fe1—C14116.18 (14)C26—Fe2—C24108.25 (13)
C19—Fe1—C14109.27 (15)C25—Fe2—C2440.31 (12)
C13—Fe1—C1440.33 (13)C27—Fe2—C24128.60 (13)
C11—P1—C121104.37 (13)C21—P2—C221105.06 (14)
C11—P1—C111105.12 (14)C21—P2—C211106.42 (14)
C121—P1—C111105.35 (13)C221—P2—C211103.73 (13)
C11—P1—S1116.95 (10)C21—P2—S2115.91 (10)
C121—P1—S1112.09 (11)C221—P2—S2111.95 (10)
C111—P1—S1111.98 (11)C211—P2—S2112.76 (11)
C1—O1—C3112.1 (2)C4—O2—C2111.1 (2)
C15—C11—C12107.3 (3)C25—C21—C22107.3 (3)
C15—C11—P1124.7 (2)C25—C21—P2125.1 (2)
C12—C11—P1127.9 (2)C22—C21—P2127.3 (2)
C15—C11—Fe170.01 (17)C25—C21—Fe270.00 (16)
C12—C11—Fe168.98 (16)C22—C21—Fe268.83 (16)
P1—C11—Fe1129.02 (16)P2—C21—Fe2130.76 (16)
C13—C12—C11107.5 (3)C23—C22—C21107.3 (3)
C13—C12—C1126.0 (3)C23—C22—C2124.5 (3)
C11—C12—C1126.5 (3)C21—C22—C2128.2 (3)
C13—C12—Fe170.73 (17)C23—C22—Fe270.04 (17)
C11—C12—Fe169.16 (16)C21—C22—Fe269.46 (16)
C1—C12—Fe1125.5 (2)C2—C22—Fe2125.2 (2)
C12—C13—C14109.0 (3)C24—C23—C22108.6 (3)
C12—C13—Fe168.60 (17)C24—C23—Fe270.32 (18)
C14—C13—Fe170.25 (19)C22—C23—Fe268.80 (16)
C12—C13—H13125.5C24—C23—H23125.7
C14—C13—H13125.5C22—C23—H23125.7
Fe1—C13—H13127.3Fe2—C23—H23126.8
C13—C14—C15108.1 (3)C25—C24—C23108.6 (3)
C13—C14—Fe169.42 (18)C25—C24—Fe269.65 (17)
C15—C14—Fe169.03 (18)C23—C24—Fe269.24 (18)
C13—C14—H14126.0C25—C24—H24125.7
C15—C14—H14126.0C23—C24—H24125.7
Fe1—C14—H14127.2Fe2—C24—H24127.0
C14—C15—C11108.1 (3)C24—C25—C21108.2 (3)
C14—C15—Fe170.45 (17)C24—C25—Fe270.04 (17)
C11—C15—Fe168.68 (16)C21—C25—Fe268.74 (16)
C14—C15—H15125.9C24—C25—H25125.9
C11—C15—H15125.9C21—C25—H25125.9
Fe1—C15—H15126.5Fe2—C25—H25126.9
C17—C16—C20108.3 (4)C30—C26—C27108.3 (3)
C17—C16—Fe170.3 (2)C30—C26—Fe269.80 (18)
C20—C16—Fe169.7 (2)C27—C26—Fe270.00 (18)
C17—C16—H16125.9C30—C26—H26125.8
C20—C16—H16125.9C27—C26—H26125.8
Fe1—C16—H16125.8Fe2—C26—H26126.0
C16—C17—C18108.1 (3)C26—C27—C28107.7 (3)
C16—C17—Fe169.7 (2)C26—C27—Fe269.66 (18)
C18—C17—Fe169.93 (19)C28—C27—Fe269.54 (19)
C16—C17—H17125.9C26—C27—H27126.2
C18—C17—H17125.9C28—C27—H27126.2
Fe1—C17—H17126.0Fe2—C27—H27126.2
C19—C18—C17107.8 (3)C29—C28—C27108.0 (3)
C19—C18—Fe170.0 (2)C29—C28—Fe269.74 (19)
C17—C18—Fe169.81 (19)C27—C28—Fe269.97 (19)
C19—C18—H18126.1C29—C28—H28126.0
C17—C18—H18126.1C27—C28—H28126.0
Fe1—C18—H18125.7Fe2—C28—H28125.9
C18—C19—C20108.3 (3)C28—C29—C30108.0 (3)
C18—C19—Fe169.9 (2)C28—C29—Fe269.86 (19)
C20—C19—Fe169.4 (2)C30—C29—Fe269.78 (18)
C18—C19—H19125.9C28—C29—H29126.0
C20—C19—H19125.9C30—C29—H29126.0
Fe1—C19—H19126.4Fe2—C29—H29125.9
C19—C20—C16107.6 (3)C26—C30—C29108.0 (3)
C19—C20—Fe170.3 (2)C26—C30—Fe269.94 (18)
C16—C20—Fe169.9 (2)C29—C30—Fe269.71 (18)
C19—C20—H20126.2C26—C30—H30126.0
C16—C20—H20126.2C29—C30—H30126.0
Fe1—C20—H20125.2Fe2—C30—H30125.9
O1—C1—C12108.2 (2)O2—C2—C22109.5 (2)
O1—C1—H36A110.0O2—C2—H41A109.8
C12—C1—H36A110.0C22—C2—H41A109.8
O1—C1—H36B110.0O2—C2—H41B109.8
C12—C1—H36B110.0C22—C2—H41B109.8
H36A—C1—H36B108.4H41A—C2—H41B108.2
O1—C3—C311107.6 (2)O2—C4—C411109.6 (2)
O1—C3—H37A110.2O2—C4—H42A109.8
C311—C3—H37A110.2C411—C4—H42A109.8
O1—C3—H37B110.2O2—C4—H42B109.8
C311—C3—H37B110.2C411—C4—H42B109.8
H37A—C3—H37B108.5H42A—C4—H42B108.2
C112—C111—C116119.0 (3)C212—C211—C216119.3 (3)
C112—C111—P1122.6 (2)C212—C211—P2120.1 (2)
C116—C111—P1118.3 (2)C216—C211—P2120.4 (2)
C111—C112—C113120.0 (3)C211—C212—C213119.7 (3)
C111—C112—H112120.0C211—C212—H212120.2
C113—C112—H112120.0C213—C212—H212120.2
C114—C113—C112120.4 (3)C214—C213—C212120.5 (3)
C114—C113—H113119.8C214—C213—H213119.7
C112—C113—H113119.8C212—C213—H213119.7
C115—C114—C113119.9 (3)C215—C214—C213120.0 (3)
C115—C114—H114120.1C215—C214—H214120.0
C113—C114—H114120.1C213—C214—H214120.0
C114—C115—C116120.1 (3)C214—C215—C216120.2 (3)
C114—C115—H115119.9C214—C215—H215119.9
C116—C115—H115119.9C216—C215—H215119.9
C115—C116—C111120.5 (3)C215—C216—C211120.3 (3)
C115—C116—H116119.7C215—C216—H216119.8
C111—C116—H116119.7C211—C216—H216119.8
C126—C121—C122119.3 (3)C226—C221—C222118.8 (3)
C126—C121—P1121.7 (2)C226—C221—P2122.3 (2)
C122—C121—P1119.0 (2)C222—C221—P2118.9 (2)
C123—C122—C121120.3 (3)C223—C222—C221121.0 (3)
C123—C122—H122119.8C223—C222—H222119.5
C121—C122—H122119.8C221—C222—H222119.5
C122—C123—C124120.1 (3)C222—C223—C224119.5 (3)
C122—C123—H123120.0C222—C223—H223120.2
C124—C123—H123120.0C224—C223—H223120.2
C125—C124—C123120.0 (3)C225—C224—C223120.4 (3)
C125—C124—H124120.0C225—C224—H224119.8
C123—C124—H124120.0C223—C224—H224119.8
C124—C125—C126120.1 (3)C224—C225—C226120.2 (3)
C124—C125—H125120.0C224—C225—H225119.9
C126—C125—H125120.0C226—C225—H225119.9
C125—C126—C121120.1 (3)C225—C226—C221120.1 (3)
C125—C126—H126119.9C225—C226—H226119.9
C121—C126—H126119.9C221—C226—H226119.9
C312—C311—C316118.0 (3)C416—C411—C412118.0 (3)
C312—C311—C3120.2 (3)C416—C411—C4120.7 (3)
C316—C311—C3121.7 (3)C412—C411—C4121.3 (3)
C311—C312—C313121.3 (3)C413—C412—C411120.6 (3)
C311—C312—H32119.3C413—C412—H44119.7
C313—C312—H32119.3C411—C412—H44119.7
C312—C313—C314120.8 (3)C412—C413—C414121.6 (3)
C312—C313—H33119.6C412—C413—H45119.2
C314—C313—H33119.6C414—C413—H45119.2
C313—C314—C315117.8 (3)C415—C414—C413117.2 (3)
C313—C314—C317120.7 (3)C415—C414—C417122.0 (3)
C315—C314—C317121.5 (3)C413—C414—C417120.8 (3)
C316—C315—C314121.1 (3)C416—C415—C414121.9 (3)
C316—C315—H35119.4C416—C415—H200119.0
C314—C315—H35119.4C414—C415—H200119.0
C315—C316—C311120.9 (3)C415—C416—C411120.6 (3)
C315—C316—H38119.5C415—C416—H100119.7
C311—C316—H38119.5C411—C416—H100119.7
C314—C317—H30A109.5C414—C417—H40A109.5
C314—C317—H30B109.5C414—C417—H40B109.5
H30A—C317—H30B109.5H40A—C417—H40B109.5
C314—C317—H30C109.5C414—C417—H40C109.5
H30A—C317—H30C109.5H40A—C417—H40C109.5
H30B—C317—H30C109.5H40B—C417—H40C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C111–C116 and C211–C216 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C312—H32···Cg10.952.823.703 (3)156
C123—H123···Cg2i0.952.913.741 (4)147
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C26H24OPS)]
Mr536.43
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)9.0614 (4), 14.9924 (8), 19.118 (1)
α, β, γ (°)78.192 (3), 88.526 (3), 86.917 (3)
V3)2538.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.38 × 0.13 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.708, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
38324, 8800, 6532
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.03
No. of reflections8800
No. of parameters631
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.35

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C111–C116 and C211–C216 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C312—H32···Cg10.952.823.703 (3)156
C123—H123···Cg2i0.952.913.741 (4)147
Symmetry code: (i) x, y+1, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAtkinson, R. C. J., Gibson, V. C., Long, N. J., White, A. J. P. & Williams, D. J. (2004). Organometallics, 23, 2744–2752.  Web of Science CSD CrossRef CAS Google Scholar
First citationAudin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2009). C. R. Chim. 13, 890–899.  CrossRef Google Scholar
First citationBlaser, H.-U., Pugin, B., Spindler, F. & Thommen, M. (2007). Acc. Chem. Res. 40, 1240–1250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBörner, A. (2008). Phosphorus Ligands in Asymmetric Catalysis, Vols. 1–3. Weinheim: Wiley-VCH.  Google Scholar
First citationBreit, B. & Breuniger, D. (2004). J. Am. Chem. Soc. 126, 10244–10245.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBreit, B. & Breuniger, D. (2005). Eur. J. Org. Chem. pp. 3916–3929.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCollins, A. N., Sheldrake, G. N. & Crosby, J. (1992). Chirality in Industry: The Commercial Manufacture and Applications of Optically Active Compounds. Chichester: Collins, John Wiley & Sons.  Google Scholar
First citationDiab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHawkins, J. N. & Watson, T. J. N. (2004). Angew. Chem. Int. Ed. 43, 3224–3228.  Web of Science CrossRef CAS Google Scholar
First citationJacobsen, E. N., Pfalz, A. & Yamamoto, H. (1999). Comprehensive Asymmetric Catalysis, Vols. 1–3. Berlin: Springer.  Google Scholar
First citationLabande, A., Daran, J.-C., Manoury, E. & Poli, R. (2007). Eur. J. Inorg. Chem. pp. 1205–1209.  Web of Science CSD CrossRef Google Scholar
First citationLe Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 309–313.  Web of Science CrossRef CAS Google Scholar
First citationLopez Cortes, J. G., Ramon, O., Vincendeau, S., Serra, D., Lamy, F., Daran, J.-C., Manoury, E. & Gouygou, M. (2006). Eur. J. Inorg. Chem. pp. 5148–5157.  Google Scholar
First citationManoury, E., Fossey, J. S., Aït-Haddou, H., Daran, J.-C. & Balavoine, G. G. A. (2000). Organometallics, 19, 3736–3739.  Web of Science CSD CrossRef CAS Google Scholar
First citationMateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310.  Web of Science CSD CrossRef CAS Google Scholar
First citationMourgues, S., Serra, D., Lamy, F., Vincendeau, S., Daran, J.-C., Manoury, E. & Gouygou, M. (2003). Eur. J. Inorg. Chem. pp. 2820–2826.  Web of Science CSD CrossRef Google Scholar
First citationRoutaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690.  Web of Science CrossRef CAS Google Scholar
First citationRoutaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeo, S., Wenig, Z. & Hor, T. S. A. (2006). Organometallics, 25, 1199–1205.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoshida, J. & Itami, K. (2002). Chem. Rev. 102, 3693–3716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, H. W., Tong, Q. S., Peng, Y. R., Jia, L., Shi, J. C. & Jin, Z. L. (2007). Chin. Chem. Lett. 18, 37–40.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds