metal-organic compounds
1-(Diphenylphosphinothioyl)-2-[(4-methylphenyl)methoxymethyl]ferrocene
aLaboratoire de Chimie de Coordination, UPR-8241 CNRS, 205 route de Narbonne, 31077 Toulouse Cedex, France, and bUniversité de Toulouse, UPS, Institut Universitaire de Technologie Paul Sabatier, Département de Chimie, Av. Georges Pompidou, F-81104 Castres Cedex, France
*Correspondence e-mail: daran@lcc-toulouse.fr
Following our continuing interest in developing new chiral phosphine-containing ferrocenyl ligands, we synthesized the title compound, [Fe(C5H5)(C26H24OPS)], in which there are two nearly identical molecules in the The conformation of the cyclopentadienyl (Cp) rings in each ferrocenyl group are intermediate between eclipsed and staggered, with twist angles of 16.6 (2) and 8.9 (2)°. The protecting S atom is located endo with respect to the substituted Cp ring. In the crystal, molecules are connected through intermolecular C—H⋯π interactions.
Related literature
For background to homogenous asymmetric catalysis by transition metals, see: Collins et al. (1992); Jacobsen et al. (1999); Hawkins & Watson (2004); Blaser et al. (2007); Börner (2008). For the design and use of new chiral ligands, see: Atkinson et al. (2004); Audin et al. (2009); Breit & Breuniger (2004, 2005); Diab et al. (2008); Labande et al. (2007); Le Roux et al. (2007); Lopez Cortes et al. (2006); Manoury et al. (2000); Mateus et al. (2006); Mourgues et al. (2003); Routaboul et al. (2005, 2007); Teo et al. (2006); Yoshida & Itami (2002); Yu et al. (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810040791/jh2205sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810040791/jh2205Isup2.hkl
In a Schlenk tube, 0.75 g of the racemic 2-thiodiphenylphosphino(hydroxymethyl)ferrocene (1.74 mmol) was dissolved in 8 ml of dry dichloromethane. A 54% solution of tetrafluoroboric acid in ether (0.73 ml, 5.30 mmol) was then added. After 1 min stirring, a solution of 2.5 g of 4-methylbenzylalcohol (20.5 mmol) in 8 mL of dry dichloromethane was added. After 1 min of stirring, the crude material was filtered on silica gel with ether as
After evaporation of the solvent, 0.4 g of 2a was obtained as a yellow solid (yield = 43%). 1H NMR (200.1 MHz, CDCl3), d (p.p.m.): 7.90–7.65 (4H, m: PPh2); 7.52–7.34 (6H, m: PPh2); 7.05 (2H, d, J = 7.9 Hz: Ph); 6.95 (2H, d, J = 7.9 Hz: Ph); 4.89 (1H, d, J = 10.9 Hz: CpCH2); 4.66 (1H, m: subst Cp); 4.45 (1H, d, J = 10.9 Hz: CpCH2); 4.35 (1H, m: subst Cp); 4.33 (5H, s: Cp); 4.29 (2H, d: 2.9 Hz: PhCH2O); 3.85 (1H, m: subst Cp); 2.33 (3H, m: CH3). 13C NMR (50.3 MHz, CDCl3), d (p.p.m.): 136.8 (s: quat Ph); 135.4 (s: quat Ph); 134.8 (d, JPC = 87.1 Hz: quat PPh2); 133.6 (d, JPC = 86.1 Hz: quat PPh2); 132.2 (d, JPC = 10.7 Hz: PPh2); 132.1 (d, JPC = 10.7 Hz: PPh2); 131.2 (d, JPC = 2.2 Hz: PPh2); 131.1 (d, JPC = 2.2 Hz: PPh2); 128.8 (s: Ph); 128.1 (d, JPC = 12.3 Hz: PPh2); 128.0 (d, JPC = 12.3 Hz: PPh2); 127.7 (s: Ph); 88.3 (d, JPC = 12.1 Hz: quat Cp); 75.2 (d, JPC = 12.5 Hz: subst Cp); 75.6 (d, JPC = 94.7 Hz: quat Cp); 74.5 (d, JPC = 9.4 Hz: subst Cp); 72.4 (s, PhCH2O); 70.7 (s: Cp); 69.4 (d, JPC = 10.4 Hz: subst Cp); 66.7 (s: CpCH2O); 21.3 (s: CH3). 31P NMR (81.0 MHz, CDCl3), d (p.p.m.): 43.1. HR MS (DCI CH4), C31H29OPSFe, calcd. mass [M]: 536.1026; exp. mass [M]: 536.1039.All H atoms attached to carbon were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl) or 0.99 Å (methylene) and 0.97Å (methyl) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl).
Homogenous asymmetric catalysis by transition metals has received considerable attention over the last few decades, and numerous chiral ligands and complexes allowing high efficiency reactions have been reported (Jacobsen et al., 1999; Börner, 2008). In this field, chiral
have played a significant role. The possibility to easily modify their electronic and steric properties by a judicious choice of their substituents has proven extremely useful to successfully optimized catalytic reactions. However, only few examples have been transferred to industrial processes (Collins et al., 1992;Hawkins & Watson, 2004; Blaser et al., 2007) in many cases because of the expenses associated to ligand and catalyst loss.The efficient separation of expensive catalysts and ligands to enable reuse in subsequent cycles is a main challenge that meets both industrial economical needs and new stricter environmental regulations. We have long been interested in the design and the synthesis of new chiral catalysts for exploring new asymmetric catalytic reactions or for improving existing ones (Manoury et al., 2000; Mourgues et al., 2003; Routaboul et al., 2005; Lopez Cortes et al., 2006; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Labande et al., 2007; Diab et al., 2008). Among the numerous phosphine ligands reported to date, ferrocenyl
functionalized by an oxygen atom (PO ferrocenyl phosphines) constitute a distinct class of hemilabile ligands attracting increasing interest (Breit & Breuniger, 2004; Atkinson et al., 2004; Breit & Breuniger, 2005; Teo et al., 2006; Yu et al., 2007; Mateus et al., 2006). We have recently developed promising PO ferrocenyl ligands (Mateus et al., 2006; Audin et al., 2009). In addition, we recently took interest in improving catalyst recycling using ionic liquid, water or PEG as catalyst "liquid carriers" and in investigating the influence of these media on both the catalytic reaction and the recycling efficiency. To reach this goal, we have prepared a new family of PO ferrocenyl phosphine-ethers, bearing charged (imidazolium) or neutral (monomethylether PEG 750, tetraethylbisphosphonate) polar tags (Audin et al., 2009) to increase their solubility in non conventional media. The simplest member of this new family is compound 2 b (Scheme 1) which efficiency in the Suzuki-Miyaura reaction has been demonstrated (Yoshida & Itami, 2002).The title molecule 2a is built up from a ferrocenyl moiety in which one Cp ring is substituted by a sulfur protected phosphine and a ((4-methylphenyl)-methoxy)methyl group resulting in a
As the is centrosymmetric the two enantiomers R/S are present in the crystal (Fig. 1). There are two molecules with the same configuration within the As shown by molecular fitting (Spek, 2009), the two molecules have very closely related geometry (Fig. 2).The ether chains are roughly planar with the largest deviation being 0.034 (2)Å at C4 and 0.100 (2)Å at O1. These planes makes dihedral angle of 83.21 (13) ° or 88.03 (13)° for molecule 1 and 2 respectively. The benzyl groups are twisted with respect to these plane by dihedral angle of 49.21 (17) ° and 33.04 (23)° for molecule 1 and 2 respectively.
The Cp rings within the ferrocene moiety have intermediate conformation between eclipsed and staggered with a twist angle of 16.6 (2)° and 8.9 (2)° respectively. These Cp rings are slightly bent wit respect to each other making dihedral angles of 2.16 (24)° and 4.06 (21)° respectively. The S atom is endo with respect to the Cp ring by 0.884 (7)Å and 0.992 (6)Å respectively.
There are weak intra and intermolecular C—H···π interactions involving H atoms of phenyl rings and related phenyl rings either to the same molecule or to a symmetry related one (Table 1, Cg1 is the centroid of the C111—C116 ring whereas Cg2 is the centroid of the C211—C216 ring).
For background to homogenous asymmetric catalysis by transition metals, see: Collins et al. (1992); Jacobsen et al. (1999); Hawkins & Watson (2004); Blaser et al. (2007); Börner (2008). For the design and use of new chiral ligands, see Atkinson et al. (2004); Audin et al. (2009); Breit & Breuniger (2004, 2005); Diab et al. (2008); Labande et al. (2007); Le Roux et al. (2007); Lopez Cortes et al. (2006); Manoury et al. (2000); Mateus et al. (2006); Mourgues et al. (2003); Routaboul et al. (2005, 2007); Teo et al. (2006); Yoshida & Itami (2002); Yu et al. (2007).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).[Fe(C5H5)(C26H24OPS)] | Z = 4 |
Mr = 536.43 | F(000) = 1120 |
Triclinic, P1 | Dx = 1.404 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0614 (4) Å | Cell parameters from 9957 reflections |
b = 14.9924 (8) Å | θ = 1.6–26.0° |
c = 19.118 (1) Å | µ = 0.76 mm−1 |
α = 78.192 (3)° | T = 180 K |
β = 88.526 (3)° | Flattened, yellow |
γ = 86.917 (3)° | 0.38 × 0.13 × 0.04 mm |
V = 2538.3 (2) Å3 |
Bruker APEXII CCD area-detector diffractometer | 8800 independent reflections |
Radiation source: sealed tube | 6532 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
φ and ω scans | θmax = 25.0°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −10→10 |
Tmin = 0.708, Tmax = 1.0 | k = −17→17 |
38324 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0519P)2 + 1.7686P] where P = (Fo2 + 2Fc2)/3 |
8800 reflections | (Δ/σ)max = 0.001 |
631 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Fe(C5H5)(C26H24OPS)] | γ = 86.917 (3)° |
Mr = 536.43 | V = 2538.3 (2) Å3 |
Triclinic, P1 | Z = 4 |
a = 9.0614 (4) Å | Mo Kα radiation |
b = 14.9924 (8) Å | µ = 0.76 mm−1 |
c = 19.118 (1) Å | T = 180 K |
α = 78.192 (3)° | 0.38 × 0.13 × 0.04 mm |
β = 88.526 (3)° |
Bruker APEXII CCD area-detector diffractometer | 8800 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 6532 reflections with I > 2σ(I) |
Tmin = 0.708, Tmax = 1.0 | Rint = 0.050 |
38324 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.47 e Å−3 |
8800 reflections | Δρmin = −0.35 e Å−3 |
631 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.86195 (5) | 0.76305 (3) | 0.43370 (2) | 0.02412 (13) | |
S1 | 0.46967 (9) | 0.68675 (6) | 0.34969 (4) | 0.0296 (2) | |
P1 | 0.66077 (9) | 0.70617 (5) | 0.29960 (4) | 0.01973 (18) | |
O1 | 0.7652 (2) | 0.48562 (14) | 0.42809 (11) | 0.0265 (5) | |
C11 | 0.8218 (3) | 0.6972 (2) | 0.35406 (15) | 0.0211 (7) | |
C12 | 0.8532 (3) | 0.6330 (2) | 0.42012 (15) | 0.0221 (7) | |
C13 | 0.9978 (4) | 0.6477 (2) | 0.44049 (16) | 0.0277 (7) | |
H13 | 1.0474 | 0.6143 | 0.4816 | 0.033* | |
C14 | 1.0566 (4) | 0.7201 (2) | 0.38963 (16) | 0.0304 (8) | |
H14 | 1.1513 | 0.7439 | 0.3911 | 0.036* | |
C15 | 0.9489 (3) | 0.7511 (2) | 0.33610 (16) | 0.0249 (7) | |
H15 | 0.9592 | 0.7990 | 0.2955 | 0.030* | |
C16 | 0.6693 (4) | 0.8230 (3) | 0.4632 (2) | 0.0437 (10) | |
H16 | 0.5733 | 0.8142 | 0.4477 | 0.052* | |
C17 | 0.7395 (4) | 0.7716 (2) | 0.52380 (19) | 0.0382 (9) | |
H17 | 0.6997 | 0.7220 | 0.5565 | 0.046* | |
C18 | 0.8798 (4) | 0.8065 (3) | 0.52788 (18) | 0.0395 (9) | |
H18 | 0.9513 | 0.7842 | 0.5635 | 0.047* | |
C19 | 0.8949 (5) | 0.8799 (3) | 0.4698 (2) | 0.0475 (10) | |
H19 | 0.9781 | 0.9166 | 0.4597 | 0.057* | |
C20 | 0.7653 (5) | 0.8900 (3) | 0.4292 (2) | 0.0500 (11) | |
H20 | 0.7461 | 0.9339 | 0.3866 | 0.060* | |
C1 | 0.7525 (4) | 0.5638 (2) | 0.45980 (15) | 0.0254 (7) | |
H36A | 0.7803 | 0.5469 | 0.5107 | 0.030* | |
H36B | 0.6492 | 0.5893 | 0.4571 | 0.030* | |
C3 | 0.6495 (4) | 0.4250 (2) | 0.45102 (17) | 0.0313 (8) | |
H37A | 0.5524 | 0.4563 | 0.4375 | 0.038* | |
H37B | 0.6508 | 0.4043 | 0.5036 | 0.038* | |
C111 | 0.6993 (3) | 0.62643 (19) | 0.24091 (15) | 0.0216 (7) | |
C112 | 0.8372 (4) | 0.5835 (2) | 0.23597 (16) | 0.0262 (7) | |
H112 | 0.9173 | 0.5975 | 0.2622 | 0.031* | |
C113 | 0.8583 (4) | 0.5199 (2) | 0.19264 (16) | 0.0314 (8) | |
H113 | 0.9531 | 0.4907 | 0.1892 | 0.038* | |
C114 | 0.7422 (4) | 0.4988 (2) | 0.15454 (16) | 0.0303 (8) | |
H114 | 0.7564 | 0.4539 | 0.1261 | 0.036* | |
C115 | 0.6057 (4) | 0.5429 (2) | 0.15788 (16) | 0.0305 (8) | |
H115 | 0.5265 | 0.5297 | 0.1306 | 0.037* | |
C116 | 0.5838 (4) | 0.6062 (2) | 0.20070 (15) | 0.0263 (7) | |
H116 | 0.4893 | 0.6363 | 0.2029 | 0.032* | |
C121 | 0.6664 (3) | 0.8185 (2) | 0.24244 (15) | 0.0210 (7) | |
C122 | 0.5694 (4) | 0.8880 (2) | 0.25657 (17) | 0.0298 (8) | |
H122 | 0.4989 | 0.8754 | 0.2945 | 0.036* | |
C123 | 0.5750 (4) | 0.9750 (2) | 0.21573 (18) | 0.0365 (9) | |
H123 | 0.5088 | 1.0222 | 0.2258 | 0.044* | |
C124 | 0.6769 (4) | 0.9935 (2) | 0.16011 (18) | 0.0377 (9) | |
H124 | 0.6820 | 1.0537 | 0.1327 | 0.045* | |
C125 | 0.7710 (4) | 0.9245 (2) | 0.14449 (17) | 0.0320 (8) | |
H125 | 0.8395 | 0.9370 | 0.1057 | 0.038* | |
C126 | 0.7657 (4) | 0.8369 (2) | 0.18535 (16) | 0.0276 (7) | |
H126 | 0.8301 | 0.7894 | 0.1743 | 0.033* | |
C311 | 0.6746 (3) | 0.3453 (2) | 0.41541 (16) | 0.0265 (7) | |
C312 | 0.6859 (4) | 0.3588 (2) | 0.34178 (17) | 0.0294 (8) | |
H32 | 0.6723 | 0.4188 | 0.3140 | 0.035* | |
C313 | 0.7166 (4) | 0.2868 (2) | 0.30777 (17) | 0.0290 (8) | |
H33 | 0.7233 | 0.2979 | 0.2571 | 0.035* | |
C314 | 0.7379 (4) | 0.1983 (2) | 0.34682 (17) | 0.0294 (8) | |
C315 | 0.7238 (4) | 0.1845 (2) | 0.42090 (19) | 0.0387 (9) | |
H35 | 0.7354 | 0.1244 | 0.4487 | 0.046* | |
C316 | 0.6934 (4) | 0.2567 (2) | 0.45458 (18) | 0.0356 (9) | |
H38 | 0.6853 | 0.2456 | 0.5052 | 0.043* | |
C317 | 0.7759 (4) | 0.1206 (2) | 0.3098 (2) | 0.0430 (9) | |
H30A | 0.8552 | 0.0812 | 0.3355 | 0.064* | |
H30B | 0.8089 | 0.1448 | 0.2607 | 0.064* | |
H30C | 0.6884 | 0.0851 | 0.3091 | 0.064* | |
Fe2 | 0.42478 (5) | 0.23170 (3) | 0.05815 (2) | 0.02081 (12) | |
S2 | 0.01485 (9) | 0.26601 (6) | 0.15842 (4) | 0.0312 (2) | |
P2 | 0.20642 (9) | 0.26407 (5) | 0.20415 (4) | 0.02038 (18) | |
O2 | 0.2595 (2) | 0.50360 (14) | 0.07561 (11) | 0.0254 (5) | |
C21 | 0.3631 (3) | 0.2845 (2) | 0.14494 (15) | 0.0203 (7) | |
C22 | 0.3757 (3) | 0.35567 (19) | 0.08177 (15) | 0.0215 (7) | |
C23 | 0.5249 (3) | 0.3510 (2) | 0.05618 (16) | 0.0255 (7) | |
H23 | 0.5650 | 0.3900 | 0.0155 | 0.031* | |
C24 | 0.6032 (3) | 0.2784 (2) | 0.10168 (16) | 0.0264 (7) | |
H24 | 0.7043 | 0.2603 | 0.0964 | 0.032* | |
C25 | 0.5056 (3) | 0.2372 (2) | 0.15631 (15) | 0.0217 (7) | |
H25 | 0.5299 | 0.1870 | 0.1940 | 0.026* | |
C26 | 0.5004 (4) | 0.1334 (2) | 0.00378 (17) | 0.0313 (8) | |
H26 | 0.5984 | 0.1074 | 0.0043 | 0.038* | |
C27 | 0.3842 (4) | 0.1002 (2) | 0.05133 (17) | 0.0312 (8) | |
H27 | 0.3903 | 0.0482 | 0.0892 | 0.037* | |
C28 | 0.2568 (4) | 0.1588 (2) | 0.03218 (18) | 0.0347 (8) | |
H28 | 0.1626 | 0.1529 | 0.0551 | 0.042* | |
C29 | 0.2949 (4) | 0.2274 (2) | −0.02704 (17) | 0.0337 (8) | |
H29 | 0.2307 | 0.2756 | −0.0509 | 0.040* | |
C30 | 0.4457 (4) | 0.2116 (2) | −0.04452 (16) | 0.0317 (8) | |
H30 | 0.5004 | 0.2474 | −0.0821 | 0.038* | |
C2 | 0.2585 (4) | 0.4224 (2) | 0.04715 (15) | 0.0252 (7) | |
H41A | 0.2765 | 0.4374 | −0.0051 | 0.030* | |
H41B | 0.1607 | 0.3954 | 0.0561 | 0.030* | |
C4 | 0.1403 (4) | 0.5657 (2) | 0.04868 (16) | 0.0259 (7) | |
H42A | 0.0452 | 0.5370 | 0.0626 | 0.031* | |
H42B | 0.1467 | 0.5814 | −0.0041 | 0.031* | |
C211 | 0.2497 (3) | 0.1565 (2) | 0.26664 (15) | 0.0217 (7) | |
C212 | 0.1717 (4) | 0.0799 (2) | 0.26451 (17) | 0.0326 (8) | |
H212 | 0.1015 | 0.0817 | 0.2282 | 0.039* | |
C213 | 0.1970 (4) | 0.0005 (2) | 0.3159 (2) | 0.0425 (9) | |
H213 | 0.1425 | −0.0516 | 0.3150 | 0.051* | |
C214 | 0.3006 (4) | −0.0030 (2) | 0.36819 (18) | 0.0397 (9) | |
H214 | 0.3182 | −0.0577 | 0.4027 | 0.048* | |
C215 | 0.3783 (4) | 0.0726 (2) | 0.37037 (17) | 0.0348 (8) | |
H215 | 0.4496 | 0.0700 | 0.4064 | 0.042* | |
C216 | 0.3531 (4) | 0.1524 (2) | 0.32022 (16) | 0.0271 (7) | |
H216 | 0.4064 | 0.2047 | 0.3223 | 0.033* | |
C221 | 0.2101 (3) | 0.3491 (2) | 0.25909 (15) | 0.0209 (7) | |
C222 | 0.0866 (4) | 0.3630 (2) | 0.30094 (16) | 0.0273 (7) | |
H222 | 0.0038 | 0.3267 | 0.3013 | 0.033* | |
C223 | 0.0824 (4) | 0.4289 (2) | 0.34197 (16) | 0.0317 (8) | |
H223 | −0.0027 | 0.4380 | 0.3702 | 0.038* | |
C224 | 0.2031 (4) | 0.4816 (2) | 0.34168 (16) | 0.0289 (8) | |
H224 | 0.1996 | 0.5283 | 0.3687 | 0.035* | |
C225 | 0.3280 (4) | 0.4669 (2) | 0.30249 (16) | 0.0303 (8) | |
H225 | 0.4118 | 0.5019 | 0.3039 | 0.036* | |
C226 | 0.3321 (4) | 0.4010 (2) | 0.26091 (16) | 0.0266 (7) | |
H226 | 0.4184 | 0.3913 | 0.2336 | 0.032* | |
C411 | 0.1469 (3) | 0.6503 (2) | 0.07826 (16) | 0.0231 (7) | |
C412 | 0.1922 (4) | 0.6465 (2) | 0.14800 (17) | 0.0300 (8) | |
H44 | 0.2183 | 0.5892 | 0.1777 | 0.036* | |
C413 | 0.1995 (4) | 0.7254 (2) | 0.17434 (18) | 0.0339 (8) | |
H45 | 0.2301 | 0.7212 | 0.2221 | 0.041* | |
C414 | 0.1630 (4) | 0.8110 (2) | 0.13251 (19) | 0.0333 (8) | |
C415 | 0.1155 (4) | 0.8136 (2) | 0.06389 (18) | 0.0341 (8) | |
H200 | 0.0878 | 0.8709 | 0.0345 | 0.041* | |
C416 | 0.1070 (3) | 0.7353 (2) | 0.03680 (17) | 0.0279 (7) | |
H100 | 0.0737 | 0.7397 | −0.0105 | 0.033* | |
C417 | 0.1770 (5) | 0.8963 (3) | 0.1613 (2) | 0.0545 (11) | |
H40A | 0.1465 | 0.9497 | 0.1248 | 0.082* | |
H40B | 0.2800 | 0.9011 | 0.1740 | 0.082* | |
H40C | 0.1136 | 0.8938 | 0.2039 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0259 (3) | 0.0252 (3) | 0.0226 (2) | −0.0008 (2) | −0.00231 (19) | −0.00780 (19) |
S1 | 0.0216 (5) | 0.0388 (5) | 0.0292 (4) | −0.0049 (4) | 0.0050 (3) | −0.0089 (4) |
P1 | 0.0184 (4) | 0.0218 (4) | 0.0193 (4) | −0.0014 (3) | −0.0002 (3) | −0.0049 (3) |
O1 | 0.0250 (13) | 0.0276 (12) | 0.0287 (12) | −0.0059 (10) | 0.0066 (9) | −0.0095 (9) |
C11 | 0.0211 (18) | 0.0234 (16) | 0.0202 (15) | −0.0002 (13) | −0.0003 (13) | −0.0077 (12) |
C12 | 0.0256 (18) | 0.0223 (16) | 0.0191 (15) | 0.0036 (13) | −0.0003 (13) | −0.0068 (12) |
C13 | 0.030 (2) | 0.0319 (18) | 0.0223 (16) | 0.0082 (15) | −0.0069 (14) | −0.0111 (14) |
C14 | 0.0200 (19) | 0.045 (2) | 0.0283 (17) | −0.0016 (15) | −0.0004 (14) | −0.0132 (15) |
C15 | 0.0200 (18) | 0.0311 (18) | 0.0241 (16) | −0.0062 (14) | 0.0007 (13) | −0.0056 (13) |
C16 | 0.035 (2) | 0.046 (2) | 0.060 (3) | 0.0126 (19) | −0.0070 (19) | −0.036 (2) |
C17 | 0.046 (2) | 0.037 (2) | 0.036 (2) | −0.0020 (18) | 0.0111 (17) | −0.0198 (16) |
C18 | 0.043 (2) | 0.051 (2) | 0.0317 (19) | 0.0027 (19) | −0.0051 (16) | −0.0243 (18) |
C19 | 0.056 (3) | 0.041 (2) | 0.054 (2) | −0.021 (2) | 0.011 (2) | −0.027 (2) |
C20 | 0.077 (3) | 0.027 (2) | 0.047 (2) | 0.007 (2) | −0.007 (2) | −0.0122 (17) |
C1 | 0.0307 (19) | 0.0253 (17) | 0.0201 (15) | 0.0034 (14) | 0.0036 (14) | −0.0060 (13) |
C3 | 0.029 (2) | 0.038 (2) | 0.0281 (17) | −0.0101 (16) | 0.0063 (15) | −0.0069 (15) |
C111 | 0.0297 (19) | 0.0166 (15) | 0.0168 (15) | −0.0017 (13) | 0.0023 (13) | 0.0001 (12) |
C112 | 0.0257 (19) | 0.0294 (18) | 0.0242 (16) | 0.0017 (14) | −0.0054 (14) | −0.0071 (13) |
C113 | 0.036 (2) | 0.0303 (19) | 0.0264 (17) | 0.0070 (15) | 0.0019 (15) | −0.0040 (14) |
C114 | 0.050 (2) | 0.0236 (17) | 0.0172 (15) | −0.0034 (16) | 0.0055 (15) | −0.0038 (13) |
C115 | 0.035 (2) | 0.0347 (19) | 0.0230 (17) | −0.0097 (16) | −0.0031 (14) | −0.0070 (14) |
C116 | 0.0255 (19) | 0.0305 (18) | 0.0223 (16) | −0.0030 (14) | −0.0024 (14) | −0.0036 (13) |
C121 | 0.0222 (18) | 0.0240 (16) | 0.0180 (15) | −0.0010 (13) | −0.0071 (13) | −0.0064 (12) |
C122 | 0.028 (2) | 0.0303 (19) | 0.0313 (18) | 0.0004 (15) | −0.0012 (15) | −0.0078 (15) |
C123 | 0.042 (2) | 0.0249 (19) | 0.043 (2) | 0.0091 (16) | −0.0039 (18) | −0.0092 (16) |
C124 | 0.049 (2) | 0.0237 (18) | 0.038 (2) | −0.0025 (17) | −0.0110 (18) | −0.0006 (15) |
C125 | 0.038 (2) | 0.0305 (19) | 0.0250 (17) | −0.0057 (16) | 0.0009 (15) | 0.0001 (14) |
C126 | 0.033 (2) | 0.0256 (18) | 0.0233 (16) | 0.0026 (15) | −0.0021 (14) | −0.0039 (13) |
C311 | 0.0212 (18) | 0.0327 (19) | 0.0258 (17) | −0.0089 (14) | 0.0021 (13) | −0.0047 (14) |
C312 | 0.027 (2) | 0.0284 (18) | 0.0310 (18) | −0.0056 (15) | 0.0014 (14) | −0.0001 (14) |
C313 | 0.027 (2) | 0.0344 (19) | 0.0257 (17) | −0.0074 (15) | 0.0000 (14) | −0.0040 (14) |
C314 | 0.0223 (19) | 0.0284 (18) | 0.0375 (19) | −0.0073 (14) | −0.0033 (15) | −0.0053 (15) |
C315 | 0.043 (2) | 0.029 (2) | 0.042 (2) | −0.0092 (17) | −0.0085 (17) | 0.0020 (16) |
C316 | 0.039 (2) | 0.038 (2) | 0.0276 (18) | −0.0175 (17) | −0.0044 (15) | 0.0015 (15) |
C317 | 0.044 (2) | 0.032 (2) | 0.054 (2) | −0.0075 (17) | 0.0045 (19) | −0.0098 (17) |
Fe2 | 0.0215 (3) | 0.0226 (2) | 0.0195 (2) | −0.00141 (19) | 0.00035 (18) | −0.00701 (18) |
S2 | 0.0193 (5) | 0.0491 (5) | 0.0269 (4) | −0.0025 (4) | −0.0034 (3) | −0.0111 (4) |
P2 | 0.0193 (5) | 0.0245 (4) | 0.0181 (4) | −0.0012 (3) | 0.0000 (3) | −0.0061 (3) |
O2 | 0.0246 (13) | 0.0229 (11) | 0.0302 (12) | 0.0032 (9) | −0.0063 (9) | −0.0090 (9) |
C21 | 0.0213 (18) | 0.0215 (16) | 0.0196 (15) | 0.0011 (13) | −0.0020 (13) | −0.0083 (12) |
C22 | 0.0294 (19) | 0.0196 (16) | 0.0177 (15) | −0.0022 (13) | −0.0005 (13) | −0.0084 (12) |
C23 | 0.028 (2) | 0.0266 (17) | 0.0236 (16) | −0.0067 (14) | 0.0052 (14) | −0.0083 (13) |
C24 | 0.0165 (18) | 0.0342 (19) | 0.0318 (18) | −0.0027 (14) | −0.0005 (14) | −0.0135 (15) |
C25 | 0.0219 (18) | 0.0243 (17) | 0.0200 (15) | 0.0014 (13) | −0.0018 (13) | −0.0078 (12) |
C26 | 0.027 (2) | 0.0341 (19) | 0.0377 (19) | 0.0014 (15) | 0.0039 (15) | −0.0208 (16) |
C27 | 0.041 (2) | 0.0210 (17) | 0.0335 (18) | −0.0057 (15) | −0.0043 (16) | −0.0087 (14) |
C28 | 0.030 (2) | 0.039 (2) | 0.041 (2) | −0.0074 (16) | −0.0004 (16) | −0.0209 (17) |
C29 | 0.041 (2) | 0.0312 (19) | 0.0321 (19) | 0.0051 (16) | −0.0151 (16) | −0.0146 (15) |
C30 | 0.046 (2) | 0.0330 (19) | 0.0197 (16) | −0.0035 (16) | 0.0024 (15) | −0.0130 (14) |
C2 | 0.034 (2) | 0.0233 (17) | 0.0189 (15) | −0.0001 (14) | −0.0033 (13) | −0.0054 (13) |
C4 | 0.0236 (18) | 0.0312 (18) | 0.0235 (16) | 0.0026 (14) | −0.0026 (13) | −0.0078 (14) |
C211 | 0.0196 (17) | 0.0253 (17) | 0.0205 (15) | 0.0008 (13) | 0.0046 (13) | −0.0064 (13) |
C212 | 0.037 (2) | 0.0314 (19) | 0.0319 (18) | −0.0060 (16) | −0.0019 (15) | −0.0103 (15) |
C213 | 0.053 (3) | 0.0263 (19) | 0.049 (2) | −0.0114 (17) | 0.0082 (19) | −0.0071 (17) |
C214 | 0.054 (3) | 0.030 (2) | 0.0308 (19) | 0.0054 (18) | 0.0086 (18) | 0.0011 (15) |
C215 | 0.042 (2) | 0.034 (2) | 0.0264 (18) | 0.0063 (17) | −0.0021 (15) | −0.0042 (15) |
C216 | 0.029 (2) | 0.0267 (18) | 0.0267 (17) | −0.0016 (14) | 0.0037 (14) | −0.0072 (14) |
C221 | 0.0225 (18) | 0.0216 (16) | 0.0180 (15) | 0.0031 (13) | −0.0034 (13) | −0.0031 (12) |
C222 | 0.0210 (18) | 0.0353 (19) | 0.0254 (17) | −0.0007 (14) | 0.0008 (14) | −0.0061 (14) |
C223 | 0.030 (2) | 0.042 (2) | 0.0239 (17) | 0.0103 (17) | 0.0019 (14) | −0.0110 (15) |
C224 | 0.042 (2) | 0.0265 (18) | 0.0183 (15) | 0.0079 (16) | −0.0047 (15) | −0.0074 (13) |
C225 | 0.038 (2) | 0.0286 (18) | 0.0255 (17) | −0.0055 (15) | 0.0020 (15) | −0.0085 (14) |
C226 | 0.0259 (19) | 0.0282 (18) | 0.0261 (17) | −0.0025 (14) | 0.0040 (14) | −0.0072 (14) |
C411 | 0.0138 (17) | 0.0297 (18) | 0.0265 (16) | −0.0002 (13) | −0.0001 (13) | −0.0079 (13) |
C412 | 0.030 (2) | 0.0301 (19) | 0.0297 (18) | 0.0055 (15) | −0.0062 (15) | −0.0060 (14) |
C413 | 0.0233 (19) | 0.049 (2) | 0.0340 (19) | −0.0007 (16) | −0.0041 (15) | −0.0204 (17) |
C414 | 0.0197 (19) | 0.034 (2) | 0.050 (2) | −0.0038 (15) | 0.0027 (16) | −0.0179 (17) |
C415 | 0.032 (2) | 0.0278 (19) | 0.040 (2) | 0.0027 (15) | 0.0062 (16) | −0.0032 (15) |
C416 | 0.0229 (19) | 0.0344 (19) | 0.0257 (17) | 0.0052 (15) | 0.0004 (14) | −0.0065 (14) |
C417 | 0.047 (3) | 0.048 (3) | 0.078 (3) | −0.011 (2) | 0.003 (2) | −0.031 (2) |
Fe1—C12 | 2.024 (3) | Fe2—C22 | 2.025 (3) |
Fe1—C11 | 2.027 (3) | Fe2—C21 | 2.034 (3) |
Fe1—C20 | 2.038 (4) | Fe2—C23 | 2.042 (3) |
Fe1—C16 | 2.040 (4) | Fe2—C29 | 2.048 (3) |
Fe1—C15 | 2.044 (3) | Fe2—C30 | 2.049 (3) |
Fe1—C17 | 2.047 (3) | Fe2—C28 | 2.049 (3) |
Fe1—C18 | 2.049 (3) | Fe2—C26 | 2.050 (3) |
Fe1—C19 | 2.049 (4) | Fe2—C25 | 2.051 (3) |
Fe1—C13 | 2.052 (3) | Fe2—C27 | 2.055 (3) |
Fe1—C14 | 2.063 (3) | Fe2—C24 | 2.056 (3) |
S1—P1 | 1.9635 (11) | S2—P2 | 1.9598 (11) |
P1—C11 | 1.797 (3) | P2—C21 | 1.792 (3) |
P1—C121 | 1.812 (3) | P2—C221 | 1.813 (3) |
P1—C111 | 1.815 (3) | P2—C211 | 1.830 (3) |
O1—C1 | 1.424 (3) | O2—C4 | 1.422 (4) |
O1—C3 | 1.425 (4) | O2—C2 | 1.432 (3) |
C11—C15 | 1.436 (4) | C21—C25 | 1.439 (4) |
C11—C12 | 1.447 (4) | C21—C22 | 1.445 (4) |
C12—C13 | 1.417 (4) | C22—C23 | 1.430 (4) |
C12—C1 | 1.493 (4) | C22—C2 | 1.489 (4) |
C13—C14 | 1.419 (5) | C23—C24 | 1.416 (4) |
C13—H13 | 0.9500 | C23—H23 | 0.9500 |
C14—C15 | 1.423 (4) | C24—C25 | 1.415 (4) |
C14—H14 | 0.9500 | C24—H24 | 0.9500 |
C15—H15 | 0.9500 | C25—H25 | 0.9500 |
C16—C17 | 1.399 (5) | C26—C30 | 1.411 (5) |
C16—C20 | 1.410 (6) | C26—C27 | 1.416 (5) |
C16—H16 | 0.9500 | C26—H26 | 0.9500 |
C17—C18 | 1.410 (5) | C27—C28 | 1.420 (5) |
C17—H17 | 0.9500 | C27—H27 | 0.9500 |
C18—C19 | 1.404 (5) | C28—C29 | 1.414 (5) |
C18—H18 | 0.9500 | C28—H28 | 0.9500 |
C19—C20 | 1.409 (6) | C29—C30 | 1.418 (5) |
C19—H19 | 0.9500 | C29—H29 | 0.9500 |
C20—H20 | 0.9500 | C30—H30 | 0.9500 |
C1—H36A | 0.9900 | C2—H41A | 0.9900 |
C1—H36B | 0.9900 | C2—H41B | 0.9900 |
C3—C311 | 1.496 (4) | C4—C411 | 1.495 (4) |
C3—H37A | 0.9900 | C4—H42A | 0.9900 |
C3—H37B | 0.9900 | C4—H42B | 0.9900 |
C111—C112 | 1.384 (4) | C211—C212 | 1.388 (4) |
C111—C116 | 1.396 (4) | C211—C216 | 1.396 (4) |
C112—C113 | 1.388 (4) | C212—C213 | 1.393 (5) |
C112—H112 | 0.9500 | C212—H212 | 0.9500 |
C113—C114 | 1.381 (5) | C213—C214 | 1.379 (5) |
C113—H113 | 0.9500 | C213—H213 | 0.9500 |
C114—C115 | 1.377 (5) | C214—C215 | 1.375 (5) |
C114—H114 | 0.9500 | C214—H214 | 0.9500 |
C115—C116 | 1.378 (4) | C215—C216 | 1.384 (4) |
C115—H115 | 0.9500 | C215—H215 | 0.9500 |
C116—H116 | 0.9500 | C216—H216 | 0.9500 |
C121—C126 | 1.389 (4) | C221—C226 | 1.391 (4) |
C121—C122 | 1.392 (4) | C221—C222 | 1.391 (4) |
C122—C123 | 1.379 (5) | C222—C223 | 1.379 (4) |
C122—H122 | 0.9500 | C222—H222 | 0.9500 |
C123—C124 | 1.385 (5) | C223—C224 | 1.382 (5) |
C123—H123 | 0.9500 | C223—H223 | 0.9500 |
C124—C125 | 1.381 (5) | C224—C225 | 1.375 (5) |
C124—H124 | 0.9500 | C224—H224 | 0.9500 |
C125—C126 | 1.386 (4) | C225—C226 | 1.387 (4) |
C125—H125 | 0.9500 | C225—H225 | 0.9500 |
C126—H126 | 0.9500 | C226—H226 | 0.9500 |
C311—C312 | 1.383 (4) | C411—C416 | 1.392 (4) |
C311—C316 | 1.389 (5) | C411—C412 | 1.394 (4) |
C312—C313 | 1.383 (4) | C412—C413 | 1.383 (4) |
C312—H32 | 0.9500 | C412—H44 | 0.9500 |
C313—C314 | 1.388 (4) | C413—C414 | 1.394 (5) |
C313—H33 | 0.9500 | C413—H45 | 0.9500 |
C314—C315 | 1.392 (5) | C414—C415 | 1.384 (5) |
C314—C317 | 1.503 (5) | C414—C417 | 1.505 (5) |
C315—C316 | 1.381 (5) | C415—C416 | 1.383 (5) |
C315—H35 | 0.9500 | C415—H200 | 0.9500 |
C316—H38 | 0.9500 | C416—H100 | 0.9500 |
C317—H30A | 0.9800 | C417—H40A | 0.9800 |
C317—H30B | 0.9800 | C417—H40B | 0.9800 |
C317—H30C | 0.9800 | C417—H40C | 0.9800 |
C12—Fe1—C11 | 41.85 (11) | C22—Fe2—C21 | 41.71 (11) |
C12—Fe1—C20 | 150.62 (16) | C22—Fe2—C23 | 41.16 (12) |
C11—Fe1—C20 | 118.33 (14) | C21—Fe2—C23 | 69.24 (12) |
C12—Fe1—C16 | 116.50 (14) | C22—Fe2—C29 | 104.93 (13) |
C11—Fe1—C16 | 109.31 (13) | C21—Fe2—C29 | 126.15 (13) |
C20—Fe1—C16 | 40.45 (16) | C23—Fe2—C29 | 116.60 (13) |
C12—Fe1—C15 | 69.60 (12) | C22—Fe2—C30 | 122.93 (12) |
C11—Fe1—C15 | 41.31 (12) | C21—Fe2—C30 | 162.30 (13) |
C20—Fe1—C15 | 110.58 (15) | C23—Fe2—C30 | 104.56 (13) |
C16—Fe1—C15 | 132.23 (14) | C29—Fe2—C30 | 40.51 (14) |
C12—Fe1—C17 | 106.62 (13) | C22—Fe2—C28 | 118.92 (13) |
C11—Fe1—C17 | 129.70 (14) | C21—Fe2—C28 | 109.34 (13) |
C20—Fe1—C17 | 67.73 (16) | C23—Fe2—C28 | 152.21 (14) |
C16—Fe1—C17 | 40.04 (15) | C29—Fe2—C28 | 40.39 (14) |
C15—Fe1—C17 | 169.75 (14) | C30—Fe2—C28 | 67.99 (14) |
C12—Fe1—C18 | 127.52 (14) | C22—Fe2—C26 | 160.83 (13) |
C11—Fe1—C18 | 167.50 (14) | C21—Fe2—C26 | 156.59 (13) |
C20—Fe1—C18 | 67.81 (16) | C23—Fe2—C26 | 124.57 (13) |
C16—Fe1—C18 | 67.58 (15) | C29—Fe2—C26 | 67.88 (14) |
C15—Fe1—C18 | 149.49 (14) | C30—Fe2—C26 | 40.26 (13) |
C17—Fe1—C18 | 40.26 (14) | C28—Fe2—C26 | 67.91 (14) |
C12—Fe1—C19 | 166.25 (15) | C22—Fe2—C25 | 69.49 (12) |
C11—Fe1—C19 | 151.34 (14) | C21—Fe2—C25 | 41.26 (12) |
C20—Fe1—C19 | 40.32 (16) | C23—Fe2—C25 | 68.34 (12) |
C16—Fe1—C19 | 67.55 (16) | C29—Fe2—C25 | 165.84 (13) |
C15—Fe1—C19 | 118.39 (14) | C30—Fe2—C25 | 153.43 (13) |
C17—Fe1—C19 | 67.40 (15) | C28—Fe2—C25 | 129.93 (13) |
C18—Fe1—C19 | 40.07 (15) | C26—Fe2—C25 | 121.49 (13) |
C12—Fe1—C13 | 40.67 (12) | C22—Fe2—C27 | 155.37 (13) |
C11—Fe1—C13 | 68.95 (12) | C21—Fe2—C27 | 122.29 (13) |
C20—Fe1—C13 | 168.49 (16) | C23—Fe2—C27 | 163.39 (13) |
C16—Fe1—C13 | 148.54 (15) | C29—Fe2—C27 | 67.98 (13) |
C15—Fe1—C13 | 68.30 (12) | C30—Fe2—C27 | 67.90 (13) |
C17—Fe1—C13 | 115.49 (14) | C28—Fe2—C27 | 40.50 (14) |
C18—Fe1—C13 | 106.97 (14) | C26—Fe2—C27 | 40.34 (13) |
C19—Fe1—C13 | 129.26 (15) | C25—Fe2—C27 | 111.37 (13) |
C12—Fe1—C14 | 68.79 (13) | C22—Fe2—C24 | 68.99 (12) |
C11—Fe1—C14 | 68.92 (12) | C21—Fe2—C24 | 68.85 (12) |
C20—Fe1—C14 | 131.52 (16) | C23—Fe2—C24 | 40.44 (12) |
C16—Fe1—C14 | 170.60 (15) | C29—Fe2—C24 | 151.27 (13) |
C15—Fe1—C14 | 40.52 (12) | C30—Fe2—C24 | 117.84 (13) |
C17—Fe1—C14 | 148.11 (14) | C28—Fe2—C24 | 166.87 (14) |
C18—Fe1—C14 | 116.18 (14) | C26—Fe2—C24 | 108.25 (13) |
C19—Fe1—C14 | 109.27 (15) | C25—Fe2—C24 | 40.31 (12) |
C13—Fe1—C14 | 40.33 (13) | C27—Fe2—C24 | 128.60 (13) |
C11—P1—C121 | 104.37 (13) | C21—P2—C221 | 105.06 (14) |
C11—P1—C111 | 105.12 (14) | C21—P2—C211 | 106.42 (14) |
C121—P1—C111 | 105.35 (13) | C221—P2—C211 | 103.73 (13) |
C11—P1—S1 | 116.95 (10) | C21—P2—S2 | 115.91 (10) |
C121—P1—S1 | 112.09 (11) | C221—P2—S2 | 111.95 (10) |
C111—P1—S1 | 111.98 (11) | C211—P2—S2 | 112.76 (11) |
C1—O1—C3 | 112.1 (2) | C4—O2—C2 | 111.1 (2) |
C15—C11—C12 | 107.3 (3) | C25—C21—C22 | 107.3 (3) |
C15—C11—P1 | 124.7 (2) | C25—C21—P2 | 125.1 (2) |
C12—C11—P1 | 127.9 (2) | C22—C21—P2 | 127.3 (2) |
C15—C11—Fe1 | 70.01 (17) | C25—C21—Fe2 | 70.00 (16) |
C12—C11—Fe1 | 68.98 (16) | C22—C21—Fe2 | 68.83 (16) |
P1—C11—Fe1 | 129.02 (16) | P2—C21—Fe2 | 130.76 (16) |
C13—C12—C11 | 107.5 (3) | C23—C22—C21 | 107.3 (3) |
C13—C12—C1 | 126.0 (3) | C23—C22—C2 | 124.5 (3) |
C11—C12—C1 | 126.5 (3) | C21—C22—C2 | 128.2 (3) |
C13—C12—Fe1 | 70.73 (17) | C23—C22—Fe2 | 70.04 (17) |
C11—C12—Fe1 | 69.16 (16) | C21—C22—Fe2 | 69.46 (16) |
C1—C12—Fe1 | 125.5 (2) | C2—C22—Fe2 | 125.2 (2) |
C12—C13—C14 | 109.0 (3) | C24—C23—C22 | 108.6 (3) |
C12—C13—Fe1 | 68.60 (17) | C24—C23—Fe2 | 70.32 (18) |
C14—C13—Fe1 | 70.25 (19) | C22—C23—Fe2 | 68.80 (16) |
C12—C13—H13 | 125.5 | C24—C23—H23 | 125.7 |
C14—C13—H13 | 125.5 | C22—C23—H23 | 125.7 |
Fe1—C13—H13 | 127.3 | Fe2—C23—H23 | 126.8 |
C13—C14—C15 | 108.1 (3) | C25—C24—C23 | 108.6 (3) |
C13—C14—Fe1 | 69.42 (18) | C25—C24—Fe2 | 69.65 (17) |
C15—C14—Fe1 | 69.03 (18) | C23—C24—Fe2 | 69.24 (18) |
C13—C14—H14 | 126.0 | C25—C24—H24 | 125.7 |
C15—C14—H14 | 126.0 | C23—C24—H24 | 125.7 |
Fe1—C14—H14 | 127.2 | Fe2—C24—H24 | 127.0 |
C14—C15—C11 | 108.1 (3) | C24—C25—C21 | 108.2 (3) |
C14—C15—Fe1 | 70.45 (17) | C24—C25—Fe2 | 70.04 (17) |
C11—C15—Fe1 | 68.68 (16) | C21—C25—Fe2 | 68.74 (16) |
C14—C15—H15 | 125.9 | C24—C25—H25 | 125.9 |
C11—C15—H15 | 125.9 | C21—C25—H25 | 125.9 |
Fe1—C15—H15 | 126.5 | Fe2—C25—H25 | 126.9 |
C17—C16—C20 | 108.3 (4) | C30—C26—C27 | 108.3 (3) |
C17—C16—Fe1 | 70.3 (2) | C30—C26—Fe2 | 69.80 (18) |
C20—C16—Fe1 | 69.7 (2) | C27—C26—Fe2 | 70.00 (18) |
C17—C16—H16 | 125.9 | C30—C26—H26 | 125.8 |
C20—C16—H16 | 125.9 | C27—C26—H26 | 125.8 |
Fe1—C16—H16 | 125.8 | Fe2—C26—H26 | 126.0 |
C16—C17—C18 | 108.1 (3) | C26—C27—C28 | 107.7 (3) |
C16—C17—Fe1 | 69.7 (2) | C26—C27—Fe2 | 69.66 (18) |
C18—C17—Fe1 | 69.93 (19) | C28—C27—Fe2 | 69.54 (19) |
C16—C17—H17 | 125.9 | C26—C27—H27 | 126.2 |
C18—C17—H17 | 125.9 | C28—C27—H27 | 126.2 |
Fe1—C17—H17 | 126.0 | Fe2—C27—H27 | 126.2 |
C19—C18—C17 | 107.8 (3) | C29—C28—C27 | 108.0 (3) |
C19—C18—Fe1 | 70.0 (2) | C29—C28—Fe2 | 69.74 (19) |
C17—C18—Fe1 | 69.81 (19) | C27—C28—Fe2 | 69.97 (19) |
C19—C18—H18 | 126.1 | C29—C28—H28 | 126.0 |
C17—C18—H18 | 126.1 | C27—C28—H28 | 126.0 |
Fe1—C18—H18 | 125.7 | Fe2—C28—H28 | 125.9 |
C18—C19—C20 | 108.3 (3) | C28—C29—C30 | 108.0 (3) |
C18—C19—Fe1 | 69.9 (2) | C28—C29—Fe2 | 69.86 (19) |
C20—C19—Fe1 | 69.4 (2) | C30—C29—Fe2 | 69.78 (18) |
C18—C19—H19 | 125.9 | C28—C29—H29 | 126.0 |
C20—C19—H19 | 125.9 | C30—C29—H29 | 126.0 |
Fe1—C19—H19 | 126.4 | Fe2—C29—H29 | 125.9 |
C19—C20—C16 | 107.6 (3) | C26—C30—C29 | 108.0 (3) |
C19—C20—Fe1 | 70.3 (2) | C26—C30—Fe2 | 69.94 (18) |
C16—C20—Fe1 | 69.9 (2) | C29—C30—Fe2 | 69.71 (18) |
C19—C20—H20 | 126.2 | C26—C30—H30 | 126.0 |
C16—C20—H20 | 126.2 | C29—C30—H30 | 126.0 |
Fe1—C20—H20 | 125.2 | Fe2—C30—H30 | 125.9 |
O1—C1—C12 | 108.2 (2) | O2—C2—C22 | 109.5 (2) |
O1—C1—H36A | 110.0 | O2—C2—H41A | 109.8 |
C12—C1—H36A | 110.0 | C22—C2—H41A | 109.8 |
O1—C1—H36B | 110.0 | O2—C2—H41B | 109.8 |
C12—C1—H36B | 110.0 | C22—C2—H41B | 109.8 |
H36A—C1—H36B | 108.4 | H41A—C2—H41B | 108.2 |
O1—C3—C311 | 107.6 (2) | O2—C4—C411 | 109.6 (2) |
O1—C3—H37A | 110.2 | O2—C4—H42A | 109.8 |
C311—C3—H37A | 110.2 | C411—C4—H42A | 109.8 |
O1—C3—H37B | 110.2 | O2—C4—H42B | 109.8 |
C311—C3—H37B | 110.2 | C411—C4—H42B | 109.8 |
H37A—C3—H37B | 108.5 | H42A—C4—H42B | 108.2 |
C112—C111—C116 | 119.0 (3) | C212—C211—C216 | 119.3 (3) |
C112—C111—P1 | 122.6 (2) | C212—C211—P2 | 120.1 (2) |
C116—C111—P1 | 118.3 (2) | C216—C211—P2 | 120.4 (2) |
C111—C112—C113 | 120.0 (3) | C211—C212—C213 | 119.7 (3) |
C111—C112—H112 | 120.0 | C211—C212—H212 | 120.2 |
C113—C112—H112 | 120.0 | C213—C212—H212 | 120.2 |
C114—C113—C112 | 120.4 (3) | C214—C213—C212 | 120.5 (3) |
C114—C113—H113 | 119.8 | C214—C213—H213 | 119.7 |
C112—C113—H113 | 119.8 | C212—C213—H213 | 119.7 |
C115—C114—C113 | 119.9 (3) | C215—C214—C213 | 120.0 (3) |
C115—C114—H114 | 120.1 | C215—C214—H214 | 120.0 |
C113—C114—H114 | 120.1 | C213—C214—H214 | 120.0 |
C114—C115—C116 | 120.1 (3) | C214—C215—C216 | 120.2 (3) |
C114—C115—H115 | 119.9 | C214—C215—H215 | 119.9 |
C116—C115—H115 | 119.9 | C216—C215—H215 | 119.9 |
C115—C116—C111 | 120.5 (3) | C215—C216—C211 | 120.3 (3) |
C115—C116—H116 | 119.7 | C215—C216—H216 | 119.8 |
C111—C116—H116 | 119.7 | C211—C216—H216 | 119.8 |
C126—C121—C122 | 119.3 (3) | C226—C221—C222 | 118.8 (3) |
C126—C121—P1 | 121.7 (2) | C226—C221—P2 | 122.3 (2) |
C122—C121—P1 | 119.0 (2) | C222—C221—P2 | 118.9 (2) |
C123—C122—C121 | 120.3 (3) | C223—C222—C221 | 121.0 (3) |
C123—C122—H122 | 119.8 | C223—C222—H222 | 119.5 |
C121—C122—H122 | 119.8 | C221—C222—H222 | 119.5 |
C122—C123—C124 | 120.1 (3) | C222—C223—C224 | 119.5 (3) |
C122—C123—H123 | 120.0 | C222—C223—H223 | 120.2 |
C124—C123—H123 | 120.0 | C224—C223—H223 | 120.2 |
C125—C124—C123 | 120.0 (3) | C225—C224—C223 | 120.4 (3) |
C125—C124—H124 | 120.0 | C225—C224—H224 | 119.8 |
C123—C124—H124 | 120.0 | C223—C224—H224 | 119.8 |
C124—C125—C126 | 120.1 (3) | C224—C225—C226 | 120.2 (3) |
C124—C125—H125 | 120.0 | C224—C225—H225 | 119.9 |
C126—C125—H125 | 120.0 | C226—C225—H225 | 119.9 |
C125—C126—C121 | 120.1 (3) | C225—C226—C221 | 120.1 (3) |
C125—C126—H126 | 119.9 | C225—C226—H226 | 119.9 |
C121—C126—H126 | 119.9 | C221—C226—H226 | 119.9 |
C312—C311—C316 | 118.0 (3) | C416—C411—C412 | 118.0 (3) |
C312—C311—C3 | 120.2 (3) | C416—C411—C4 | 120.7 (3) |
C316—C311—C3 | 121.7 (3) | C412—C411—C4 | 121.3 (3) |
C311—C312—C313 | 121.3 (3) | C413—C412—C411 | 120.6 (3) |
C311—C312—H32 | 119.3 | C413—C412—H44 | 119.7 |
C313—C312—H32 | 119.3 | C411—C412—H44 | 119.7 |
C312—C313—C314 | 120.8 (3) | C412—C413—C414 | 121.6 (3) |
C312—C313—H33 | 119.6 | C412—C413—H45 | 119.2 |
C314—C313—H33 | 119.6 | C414—C413—H45 | 119.2 |
C313—C314—C315 | 117.8 (3) | C415—C414—C413 | 117.2 (3) |
C313—C314—C317 | 120.7 (3) | C415—C414—C417 | 122.0 (3) |
C315—C314—C317 | 121.5 (3) | C413—C414—C417 | 120.8 (3) |
C316—C315—C314 | 121.1 (3) | C416—C415—C414 | 121.9 (3) |
C316—C315—H35 | 119.4 | C416—C415—H200 | 119.0 |
C314—C315—H35 | 119.4 | C414—C415—H200 | 119.0 |
C315—C316—C311 | 120.9 (3) | C415—C416—C411 | 120.6 (3) |
C315—C316—H38 | 119.5 | C415—C416—H100 | 119.7 |
C311—C316—H38 | 119.5 | C411—C416—H100 | 119.7 |
C314—C317—H30A | 109.5 | C414—C417—H40A | 109.5 |
C314—C317—H30B | 109.5 | C414—C417—H40B | 109.5 |
H30A—C317—H30B | 109.5 | H40A—C417—H40B | 109.5 |
C314—C317—H30C | 109.5 | C414—C417—H40C | 109.5 |
H30A—C317—H30C | 109.5 | H40A—C417—H40C | 109.5 |
H30B—C317—H30C | 109.5 | H40B—C417—H40C | 109.5 |
Cg1 and Cg2 are the centroids of the C111–C116 and C211–C216 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C312—H32···Cg1 | 0.95 | 2.82 | 3.703 (3) | 156 |
C123—H123···Cg2i | 0.95 | 2.91 | 3.741 (4) | 147 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C26H24OPS)] |
Mr | 536.43 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 9.0614 (4), 14.9924 (8), 19.118 (1) |
α, β, γ (°) | 78.192 (3), 88.526 (3), 86.917 (3) |
V (Å3) | 2538.3 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.76 |
Crystal size (mm) | 0.38 × 0.13 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.708, 1.0 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 38324, 8800, 6532 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.108, 1.03 |
No. of reflections | 8800 |
No. of parameters | 631 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.35 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
Cg1 and Cg2 are the centroids of the C111–C116 and C211–C216 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C312—H32···Cg1 | 0.95 | 2.82 | 3.703 (3) | 156 |
C123—H123···Cg2i | 0.95 | 2.91 | 3.741 (4) | 147 |
Symmetry code: (i) x, y+1, z. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Atkinson, R. C. J., Gibson, V. C., Long, N. J., White, A. J. P. & Williams, D. J. (2004). Organometallics, 23, 2744–2752. Web of Science CSD CrossRef CAS Google Scholar
Audin, C., Daran, J.-C., Deydier, E., Manoury, E. & Poli, R. (2009). C. R. Chim. 13, 890–899. CrossRef Google Scholar
Blaser, H.-U., Pugin, B., Spindler, F. & Thommen, M. (2007). Acc. Chem. Res. 40, 1240–1250. Web of Science CrossRef PubMed CAS Google Scholar
Börner, A. (2008). Phosphorus Ligands in Asymmetric Catalysis, Vols. 1–3. Weinheim: Wiley-VCH. Google Scholar
Breit, B. & Breuniger, D. (2004). J. Am. Chem. Soc. 126, 10244–10245. Web of Science CSD CrossRef PubMed CAS Google Scholar
Breit, B. & Breuniger, D. (2005). Eur. J. Org. Chem. pp. 3916–3929. Web of Science CSD CrossRef Google Scholar
Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Collins, A. N., Sheldrake, G. N. & Crosby, J. (1992). Chirality in Industry: The Commercial Manufacture and Applications of Optically Active Compounds. Chichester: Collins, John Wiley & Sons. Google Scholar
Diab, L., Gouygou, M., Manoury, E., Kalck, P. & Urrutigoïty, M. (2008). Tetrahedron Lett. 49, 5186–5189. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hawkins, J. N. & Watson, T. J. N. (2004). Angew. Chem. Int. Ed. 43, 3224–3228. Web of Science CrossRef CAS Google Scholar
Jacobsen, E. N., Pfalz, A. & Yamamoto, H. (1999). Comprehensive Asymmetric Catalysis, Vols. 1–3. Berlin: Springer. Google Scholar
Labande, A., Daran, J.-C., Manoury, E. & Poli, R. (2007). Eur. J. Inorg. Chem. pp. 1205–1209. Web of Science CSD CrossRef Google Scholar
Le Roux, E., Malacea, R., Manoury, E., Poli, R., Gonsalvi, L. & Peruzzini, M. (2007). Adv. Synth. Catal. 349, 309–313. Web of Science CrossRef CAS Google Scholar
Lopez Cortes, J. G., Ramon, O., Vincendeau, S., Serra, D., Lamy, F., Daran, J.-C., Manoury, E. & Gouygou, M. (2006). Eur. J. Inorg. Chem. pp. 5148–5157. Google Scholar
Manoury, E., Fossey, J. S., Aït-Haddou, H., Daran, J.-C. & Balavoine, G. G. A. (2000). Organometallics, 19, 3736–3739. Web of Science CSD CrossRef CAS Google Scholar
Mateus, N., Routaboul, L., Daran, J.-C. & Manoury, E. (2006). J. Organomet. Chem. 691, 2297–2310. Web of Science CSD CrossRef CAS Google Scholar
Mourgues, S., Serra, D., Lamy, F., Vincendeau, S., Daran, J.-C., Manoury, E. & Gouygou, M. (2003). Eur. J. Inorg. Chem. pp. 2820–2826. Web of Science CSD CrossRef Google Scholar
Routaboul, L., Vincendeau, S., Daran, J.-C. & Manoury, E. (2005). Tetrahedron Asymmetry, 16, 2685–2690. Web of Science CrossRef CAS Google Scholar
Routaboul, L., Vincendeau, S., Turrin, C.-O., Caminade, A.-M., Majoral, J.-P., Daran, J.-C. & Manoury, E. (2007). J. Organomet. Chem. 692, 1064–1073. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teo, S., Wenig, Z. & Hor, T. S. A. (2006). Organometallics, 25, 1199–1205. Web of Science CSD CrossRef CAS Google Scholar
Yoshida, J. & Itami, K. (2002). Chem. Rev. 102, 3693–3716. Web of Science CrossRef PubMed CAS Google Scholar
Yu, H. W., Tong, Q. S., Peng, Y. R., Jia, L., Shi, J. C. & Jin, Z. L. (2007). Chin. Chem. Lett. 18, 37–40. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Homogenous asymmetric catalysis by transition metals has received considerable attention over the last few decades, and numerous chiral ligands and complexes allowing high efficiency reactions have been reported (Jacobsen et al., 1999; Börner, 2008). In this field, chiral phosphines have played a significant role. The possibility to easily modify their electronic and steric properties by a judicious choice of their substituents has proven extremely useful to successfully optimized catalytic reactions. However, only few examples have been transferred to industrial processes (Collins et al., 1992;Hawkins & Watson, 2004; Blaser et al., 2007) in many cases because of the expenses associated to ligand and catalyst loss.
The efficient separation of expensive catalysts and ligands to enable reuse in subsequent cycles is a main challenge that meets both industrial economical needs and new stricter environmental regulations. We have long been interested in the design and the synthesis of new chiral catalysts for exploring new asymmetric catalytic reactions or for improving existing ones (Manoury et al., 2000; Mourgues et al., 2003; Routaboul et al., 2005; Lopez Cortes et al., 2006; Mateus et al., 2006; Routaboul et al., 2007; Le Roux et al., 2007; Labande et al., 2007; Diab et al., 2008). Among the numerous phosphine ligands reported to date, ferrocenyl phosphines functionalized by an oxygen atom (PO ferrocenyl phosphines) constitute a distinct class of hemilabile ligands attracting increasing interest (Breit & Breuniger, 2004; Atkinson et al., 2004; Breit & Breuniger, 2005; Teo et al., 2006; Yu et al., 2007; Mateus et al., 2006). We have recently developed promising PO ferrocenyl ligands (Mateus et al., 2006; Audin et al., 2009). In addition, we recently took interest in improving catalyst recycling using ionic liquid, water or PEG as catalyst "liquid carriers" and in investigating the influence of these media on both the catalytic reaction and the recycling efficiency. To reach this goal, we have prepared a new family of PO ferrocenyl phosphine-ethers, bearing charged (imidazolium) or neutral (monomethylether PEG 750, tetraethylbisphosphonate) polar tags (Audin et al., 2009) to increase their solubility in non conventional media. The simplest member of this new family is compound 2 b (Scheme 1) which efficiency in the Suzuki-Miyaura reaction has been demonstrated (Yoshida & Itami, 2002).
The title molecule 2a is built up from a ferrocenyl moiety in which one Cp ring is substituted by a sulfur protected phosphine and a ((4-methylphenyl)-methoxy)methyl group resulting in a planar chirality. As the space group is centrosymmetric the two enantiomers R/S are present in the crystal (Fig. 1). There are two molecules with the same configuration within the asymmetric unit. As shown by molecular fitting (Spek, 2009), the two molecules have very closely related geometry (Fig. 2).
The ether chains are roughly planar with the largest deviation being 0.034 (2)Å at C4 and 0.100 (2)Å at O1. These planes makes dihedral angle of 83.21 (13) ° or 88.03 (13)° for molecule 1 and 2 respectively. The benzyl groups are twisted with respect to these plane by dihedral angle of 49.21 (17) ° and 33.04 (23)° for molecule 1 and 2 respectively.
The Cp rings within the ferrocene moiety have intermediate conformation between eclipsed and staggered with a twist angle of 16.6 (2)° and 8.9 (2)° respectively. These Cp rings are slightly bent wit respect to each other making dihedral angles of 2.16 (24)° and 4.06 (21)° respectively. The S atom is endo with respect to the Cp ring by 0.884 (7)Å and 0.992 (6)Å respectively.
There are weak intra and intermolecular C—H···π interactions involving H atoms of phenyl rings and related phenyl rings either to the same molecule or to a symmetry related one (Table 1, Cg1 is the centroid of the C111—C116 ring whereas Cg2 is the centroid of the C211—C216 ring).