organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­anilinium perchlorate 18-crown-6 clathrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zmmzyahfdzg@126.com

(Received 15 September 2010; accepted 9 October 2010; online 20 October 2010)

The reaction of 4-bromo­aniline, 18-crown-6, and perchloric acid in methanol yields the title compound, C6H7BrN+·ClO4·C12H24O6, in which the protonated –NH3+ group forms three bifurcated N—H⋯O hydrogen bonds to the O atoms of the crown ether.

Related literature

For similar crown ether clathrates, see: Akutagawa et al. (2002[Akutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2,175-186.]); Ge et al. (2010[Ge, J.-Z. & Zhao, M.-M. (2010b). Acta Cryst. E66, o1478.]); Zhao (2010[Zhao, M. M. (2010). Acta Cryst. E66, o1618.]). For their ferroelectric properties, see: Zhang, Cheng et al. (2009[Zhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544-12545.]); Zhang, Ye et al. (2009[Zhang, W., Ye, H. Y. & Xiong, R. G. (2009). Coord. Chem. Rev. 253, 2980-2997.]); Ye et al. (2009[Ye, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42-43.]). For related structures, see: Ge & Zhao (2010a[Ge, J.-Z. & Zhao, M.-M. (2010a). Acta Cryst. E66, m739.],b[Ge, J.-Z. & Zhao, M.-M. (2010b). Acta Cryst. E66, o1478.]); Zhao & Qu (2010a[Zhao, M. M. & Qu, Z. R. (2010a). Acta Cryst. C66, m188-m190.]b[Zhao, M. M. & Qu, Z. R. (2010b). Acta Cryst. C66, m215-m217.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7BrN+·ClO4·C12H24O6

  • Mr = 536.79

  • Orthorhombic, P n m a

  • a = 15.583 (7) Å

  • b = 11.469 (5) Å

  • c = 12.633 (6) Å

  • V = 2257.7 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 93 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.671, Tmax = 0.678

  • 23692 measured reflections

  • 2694 independent reflections

  • 2561 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.104

  • S = 1.01

  • 2694 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.91 2.13 2.864 (2) 137
N1—H1A⋯O3 0.91 2.18 2.938 (2) 140
N1—H1B⋯O4 0.91 2.10 2.850 (3) 139
N1—H1B⋯O3i 0.91 2.20 2.938 (2) 138
N1—H1C⋯O2i 0.91 2.10 2.864 (2) 141
N1—H1C⋯O1 0.91 2.18 2.875 (3) 133
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is currently much interest in crown ethers due to their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution. Not only the size of the crown ether, but also the nature of the ammonium cation (–NH4+, RNH3+, R2NH2+, etc) can influence on the stoichiometry and stability of these host–guest complexes (Zhao et al. 2010). The host molecules combine with the guest species by intermolecular interaction, and if the host molecule possess some specific sites, it is easy to realise high selectivity in ion or molecular recognitions. 18-Crown-6 have the highest affinity for ammonium cation RNH3+.

Dielectric permittivity of the title compound is tested to systematically investigate the ferroelectric phase transitions materials (Ye et al., 2009; Zhang et al., 2009). The title compound has no dielectric anomaly with the value of 3.5 and 7.8 under 1M Hz in the temperature from 80 to 430 K (m.p.> 453 K), suggesting that the compound should be no distinct phase transition occurred within the measured temperature range.

The title compound is composed of cationic [C6BrNH7(18-Crown-6)]+ and one single anionic [ClO4]- anions (Fig. 1). Supramolecular rotators was assembled between protonated 4-bromoaniline (C6BrH4—NH3)+and 18-crown-6 by of hydrogen-bonding. The ammonium moieties of (–NH3+) cations were interacted with the oxygen atom of crown ethers through six simple N—H···O hydrogen bonding, forming 1:1 supramolecular rotator-stator structures.

Supramolecular cation structure, [C6BrNH7(18-Crown-6)]+, were introduced as counter cations to [ClO4]- anions. The crown adopts a conformation in which the rings show some distortion from the mean plane. The C—N bonds of [C6BrNH7]+ were almost perpendicular to the mean oxygen planes of crown ethers. Cl has a flattened tetrahedral coordination by four O- ions [range of cis-bond angles = 109.08 (14)–109.88 (15) °; dav (Cl—O) = 1.444 (2)–1.449 (2) Å].

The title compound was stabilized by intramolecular N—H···O hydrogen bonds, but no intermolecular hydrogen bond was observed (Fig. 2). The intramolecular N—H···O hydrogen bonding length are within the usual range: 2.850 (3) and 2.938 (2) Å.

Related literature top

For similar crown ether clathrates, see: Akutagawa et al. (2002); Ge et al. (2010); Zhao (2010). For their ferroelectric properties, see: Zhang, Cheng et al. (2009); Zhang, Ye et al. (2009); Ye et al. (2009). For related structures, see: Ge & Zhao (2010a,b); Zhao & Qu (2010ab).

Experimental top

C6BrNH6.HClO4 (2 mmol, 0.546 g) and 18-crown-6 (2 mmol, 0.528 g) were dissolved in methanol solution. The precipitate was filtered out. Two days later, single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of methanol solution at 0°C.

Refinement top

All the C—H hydrogen atoms were calculated geometrically and with C—H distances ranging from 0.93 to 0.97 Å and were allowed to ride on the C and O atoms to which they are bonded. With which Uiso(H) = 1.2Ueq(C).

All the N—H hydrogen atoms were calculated geometrically. The positions of the H atoms of the nitrogen atoms were refined using a riding model with N—H = 0.91 Å and Uiso(H) = 1.2Ueq(N).

Structure description top

There is currently much interest in crown ethers due to their ability to form non-covalent, H-bonding complexes with ammonium cations both in solid and in solution. Not only the size of the crown ether, but also the nature of the ammonium cation (–NH4+, RNH3+, R2NH2+, etc) can influence on the stoichiometry and stability of these host–guest complexes (Zhao et al. 2010). The host molecules combine with the guest species by intermolecular interaction, and if the host molecule possess some specific sites, it is easy to realise high selectivity in ion or molecular recognitions. 18-Crown-6 have the highest affinity for ammonium cation RNH3+.

Dielectric permittivity of the title compound is tested to systematically investigate the ferroelectric phase transitions materials (Ye et al., 2009; Zhang et al., 2009). The title compound has no dielectric anomaly with the value of 3.5 and 7.8 under 1M Hz in the temperature from 80 to 430 K (m.p.> 453 K), suggesting that the compound should be no distinct phase transition occurred within the measured temperature range.

The title compound is composed of cationic [C6BrNH7(18-Crown-6)]+ and one single anionic [ClO4]- anions (Fig. 1). Supramolecular rotators was assembled between protonated 4-bromoaniline (C6BrH4—NH3)+and 18-crown-6 by of hydrogen-bonding. The ammonium moieties of (–NH3+) cations were interacted with the oxygen atom of crown ethers through six simple N—H···O hydrogen bonding, forming 1:1 supramolecular rotator-stator structures.

Supramolecular cation structure, [C6BrNH7(18-Crown-6)]+, were introduced as counter cations to [ClO4]- anions. The crown adopts a conformation in which the rings show some distortion from the mean plane. The C—N bonds of [C6BrNH7]+ were almost perpendicular to the mean oxygen planes of crown ethers. Cl has a flattened tetrahedral coordination by four O- ions [range of cis-bond angles = 109.08 (14)–109.88 (15) °; dav (Cl—O) = 1.444 (2)–1.449 (2) Å].

The title compound was stabilized by intramolecular N—H···O hydrogen bonds, but no intermolecular hydrogen bond was observed (Fig. 2). The intramolecular N—H···O hydrogen bonding length are within the usual range: 2.850 (3) and 2.938 (2) Å.

For similar crown ether clathrates, see: Akutagawa et al. (2002); Ge et al. (2010); Zhao (2010). For their ferroelectric properties, see: Zhang, Cheng et al. (2009); Zhang, Ye et al. (2009); Ye et al. (2009). For related structures, see: Ge & Zhao (2010a,b); Zhao & Qu (2010ab).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-Bromoanilinium perchlorate–18-crown-6 (1/1) top
Crystal data top
C6H7BrN+·ClO4·C12H24O6F(000) = 1112
Mr = 536.79Dx = 1.579 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 6002 reflections
a = 15.583 (7) Åθ = 3.1–27.5°
b = 11.469 (5) ŵ = 1.99 mm1
c = 12.633 (6) ÅT = 93 K
V = 2257.7 (18) Å3Prism, colorless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2694 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 28.5714 pixels mm-1θmax = 27.4°, θmin = 3.1°
CCD_Profile_fitting scansh = 2020
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.671, Tmax = 0.678l = 1616
23692 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0645P)2 + 1.990P]
where P = (Fo2 + 2Fc2)/3
2694 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C6H7BrN+·ClO4·C12H24O6V = 2257.7 (18) Å3
Mr = 536.79Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 15.583 (7) ŵ = 1.99 mm1
b = 11.469 (5) ÅT = 93 K
c = 12.633 (6) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2694 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2561 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.678Rint = 0.046
23692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 0.57 e Å3
2694 reflectionsΔρmin = 0.50 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C50.28939 (14)0.14670 (19)0.53702 (17)0.0192 (5)
H5A0.34030.14180.57960.023*
H5B0.24060.14910.58340.023*
C60.28315 (14)0.0420 (2)0.46603 (19)0.0189 (4)
H6A0.28810.02830.50690.023*
H6B0.32890.04350.41520.023*
C70.18311 (14)0.06318 (18)0.35971 (17)0.0172 (4)
H7A0.22670.08000.30830.021*
H7B0.18160.12580.41010.021*
C80.09748 (14)0.05164 (18)0.30595 (17)0.0171 (4)
H8A0.05520.02620.35610.020*
H8B0.07970.12560.27780.020*
C90.02573 (13)0.04351 (19)0.16556 (17)0.0164 (4)
H9A0.01470.02620.12570.020*
H9B0.02060.05460.21450.020*
C100.03150 (14)0.14646 (18)0.09257 (16)0.0159 (4)
H10A0.01900.15080.04920.019*
H10B0.08060.13860.04720.019*
O10.29171 (15)0.25000.47351 (17)0.0175 (4)
O20.20209 (9)0.04497 (13)0.41238 (12)0.0166 (3)
O30.10476 (9)0.03158 (13)0.22212 (12)0.0156 (3)
O40.03915 (14)0.25000.15568 (16)0.0148 (4)
O50.11943 (10)0.14672 (14)0.73375 (13)0.0243 (4)
O60.01814 (13)0.25000.83702 (18)0.0184 (5)
O70.16415 (14)0.25000.88559 (18)0.0200 (5)
Cl10.10535 (4)0.25000.79722 (6)0.01469 (17)
N10.18963 (16)0.25000.2839 (2)0.0142 (5)
H1A0.17360.17520.29750.021*0.50
H1B0.14620.28790.25010.021*0.50
H1C0.20160.28700.34590.021*0.50
C10.4115 (2)0.25000.0932 (2)0.0179 (6)*
C20.37554 (14)0.35578 (19)0.12293 (17)0.0185 (4)*
H2A0.40060.42720.10070.022*
C30.30225 (14)0.35541 (18)0.18573 (16)0.0164 (4)
H3A0.27690.42680.20740.020*
C40.26646 (19)0.25000.2164 (2)0.0139 (5)
Br10.51210 (2)0.25000.00763 (3)0.02519 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0183 (10)0.0250 (12)0.0142 (10)0.0009 (8)0.0030 (8)0.0049 (9)
C60.0143 (10)0.0211 (11)0.0212 (10)0.0029 (8)0.0023 (8)0.0037 (9)
C70.0202 (10)0.0131 (9)0.0184 (10)0.0006 (8)0.0010 (8)0.0021 (8)
C80.0199 (10)0.0141 (10)0.0173 (10)0.0025 (8)0.0004 (8)0.0022 (8)
C90.0161 (9)0.0140 (10)0.0192 (10)0.0025 (8)0.0022 (8)0.0007 (8)
C100.0162 (9)0.0168 (10)0.0147 (10)0.0008 (8)0.0021 (8)0.0032 (8)
O10.0214 (11)0.0173 (10)0.0138 (10)0.0000.0018 (8)0.000
O20.0158 (7)0.0142 (7)0.0199 (7)0.0015 (6)0.0036 (6)0.0005 (6)
O30.0158 (7)0.0138 (7)0.0172 (7)0.0020 (5)0.0012 (6)0.0033 (6)
O40.0195 (10)0.0101 (9)0.0148 (10)0.0000.0032 (8)0.000
O50.0232 (8)0.0215 (8)0.0281 (9)0.0019 (6)0.0025 (7)0.0111 (7)
O60.0130 (10)0.0196 (11)0.0227 (12)0.0000.0015 (8)0.000
O70.0172 (11)0.0225 (11)0.0203 (11)0.0000.0038 (9)0.000
Cl10.0135 (3)0.0137 (3)0.0168 (3)0.0000.0006 (2)0.000
N10.0141 (12)0.0124 (11)0.0162 (12)0.0000.0009 (9)0.000
C30.0182 (10)0.0148 (10)0.0161 (10)0.0001 (8)0.0017 (8)0.0017 (8)
C40.0135 (13)0.0183 (14)0.0099 (12)0.0000.0025 (10)0.000
Br10.01691 (19)0.0359 (2)0.0227 (2)0.0000.00469 (11)0.000
Geometric parameters (Å, º) top
C5—O11.431 (2)C10—H10B0.9600
C5—C61.502 (3)O1—C5i1.431 (2)
C5—H5A0.9601O4—C10i1.435 (2)
C5—H5B0.9600O5—Cl11.4471 (16)
C6—O21.434 (3)O6—Cl11.449 (2)
C6—H6A0.9601O7—Cl11.444 (2)
C6—H6B0.9598Cl1—O5i1.4471 (16)
C7—O21.438 (3)N1—C41.470 (4)
C7—C81.503 (3)N1—H1A0.9100
C7—H7A0.9599N1—H1B0.9100
C7—H7B0.9600N1—H1C0.9100
C8—O31.430 (2)C1—C21.388 (3)
C8—H8A0.9601C1—C2i1.388 (3)
C8—H8B0.9601C1—Br11.905 (3)
C9—O31.430 (3)C2—C31.391 (3)
C9—C101.501 (3)C2—H2A0.9500
C9—H9A0.9600C3—C41.387 (3)
C9—H9B0.9600C3—H3A0.9500
C10—O41.435 (2)C4—C3i1.387 (3)
C10—H10A0.9600
O1—C5—C6109.20 (18)C9—C10—H10A110.0
O1—C5—H5A109.9O4—C10—H10B110.1
C6—C5—H5A110.0C9—C10—H10B109.9
O1—C5—H5B109.7H10A—C10—H10B108.4
C6—C5—H5B109.6C5i—O1—C5111.7 (2)
H5A—C5—H5B108.3C6—O2—C7112.27 (16)
O2—C6—C5108.66 (17)C8—O3—C9111.43 (15)
O2—C6—H6A110.2C10i—O4—C10111.7 (2)
C5—C6—H6A110.2O7—Cl1—O5i109.40 (9)
O2—C6—H6B109.8O7—Cl1—O5109.40 (9)
C5—C6—H6B109.7O5i—Cl1—O5109.88 (15)
H6A—C6—H6B108.4O7—Cl1—O6109.08 (14)
O2—C7—C8108.39 (17)O5i—Cl1—O6109.53 (9)
O2—C7—H7A109.9O5—Cl1—O6109.53 (9)
C8—C7—H7A109.9C4—N1—H1A109.5
O2—C7—H7B110.1C4—N1—H1B109.5
C8—C7—H7B110.1H1A—N1—H1B109.5
H7A—C7—H7B108.4C4—N1—H1C109.5
O3—C8—C7108.84 (16)H1A—N1—H1C109.5
O3—C8—H8A109.9H1B—N1—H1C109.5
C7—C8—H8A109.8C2—C1—C2i121.9 (3)
O3—C8—H8B109.8C2—C1—Br1119.06 (14)
C7—C8—H8B110.2C2i—C1—Br1119.06 (14)
H8A—C8—H8B108.4C1—C2—C3118.9 (2)
O3—C9—C10109.31 (17)C1—C2—H2A120.6
O3—C9—H9A109.7C3—C2—H2A120.6
C10—C9—H9A110.1C4—C3—C2119.5 (2)
O3—C9—H9B109.8C4—C3—H3A120.3
C10—C9—H9B109.7C2—C3—H3A120.3
H9A—C9—H9B108.3C3i—C4—C3121.4 (3)
O4—C10—C9108.34 (17)C3i—C4—N1119.32 (14)
O4—C10—H10A110.0C3—C4—N1119.32 (14)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.912.132.864 (2)137
N1—H1A···O30.912.182.938 (2)140
N1—H1B···O40.912.102.850 (3)139
N1—H1B···O3i0.912.202.938 (2)138
N1—H1C···O2i0.912.102.864 (2)141
N1—H1C···O10.912.182.875 (3)133
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H7BrN+·ClO4·C12H24O6
Mr536.79
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)93
a, b, c (Å)15.583 (7), 11.469 (5), 12.633 (6)
V3)2257.7 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.671, 0.678
No. of measured, independent and
observed [I > 2σ(I)] reflections
23692, 2694, 2561
Rint0.046
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.104, 1.01
No. of reflections2694
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.50

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.912.132.864 (2)137.0
N1—H1A···O30.912.182.938 (2)139.8
N1—H1B···O40.912.102.850 (3)139.4
N1—H1B···O3i0.912.202.938 (2)138.0
N1—H1C···O2i0.912.102.864 (2)140.5
N1—H1C···O10.912.182.875 (3)132.7
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationAkutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2,175–186.  CSD CrossRef CAS Google Scholar
First citationGe, J.-Z. & Zhao, M.-M. (2010a). Acta Cryst. E66, m739.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGe, J.-Z. & Zhao, M.-M. (2010b). Acta Cryst. E66, o1478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H. Y., Fu, D. W., Zhang, Y., Zhang, W., Xiong, R. G. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. P. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H. Y. & Xiong, R. G. (2009). Coord. Chem. Rev. 253, 2980–2997.  Web of Science CrossRef CAS Google Scholar
First citationZhao, M. M. (2010). Acta Cryst. E66, o1618.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, M. M. & Qu, Z. R. (2010a). Acta Cryst. C66, m188–m190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, M. M. & Qu, Z. R. (2010b). Acta Cryst. C66, m215–m217.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds