metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bromido(pyrimidinyl-κC2)bis­­(tri­phenyl­phosphane-κP)palladium(II)

aInstrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan, and bDepartment of Applied Cosmetology, Hungkuang University, Shalu 433, Taichung, Taiwan
*Correspondence e-mail: ghlee@ntu.edu.tw, khyih@sunrise.hk.edu.tw

(Received 21 September 2010; accepted 26 September 2010; online 2 October 2010)

In the title complex, [PdBr(C4H3N2)(C18H15P)2], the geometry around the PdII atom is distorted square-planar with the PdII atom displaced by 0.0150 (5) Å from the least-squares BrP2C plane. Two PPh3 ligands are in trans positions [P—Pd—P = 176.743 (17)°], while the pyrimidinyl ligand and Br atom are trans to one another [C—Pd—Br = 176.56 (5)°]. Structural parameters from NMR, IR and mass spectra are in agreement with the crystal structure of the title compound.

Related literature

For reactions in organic synthesis that form C—C bonds, see: Steffen et al. (2005[Steffen, A., Sladek, M. I., Braun, T., Neumann, B. & Stammler, H. G. (2005). Organometallics, 24, 4057-4064.]); Beeby et al. (2004[Beeby, A., Bettington, S., Fairlamb, I. J. S., Goeta, A. E., Kapdi, A. R., Niemela, E. H. & Thompson, A. L. (2004). New J. Chem. 28, 600-605.]); Chin et al. (1988[Chin, C. H., Yeo, S. L., Loh, Z. H., Vittal, J. J., Henderson, W. & Hor, T. S. A. (1988). J. Chem. Soc. Dalton Trans. pp. 3777-3784.]); Dobrzynski & Angelici (1975[Dobrzynski, E. D. & Angelici, R. J. (1975). Inorg. Chem. 14, 1513-1518.]). For Pd—C(carbene) bond lengths, see: Cardin et al. (1972[Cardin, D. J., Cetinkaya, B. & Lappert, M. F. (1972). Chem. Rev. 72, 545-574.]) and for Pd—Br bond lengths, see: Yih & Lee (2008[Yih, K. H. & Lee, G. H. (2008). J. Chin. Chem. Soc. 55, 109-114.]); Yih et al. (2009[Yih, K. H., Wang, H. F., Huang, K. F., Kwan, C. C. & Lee, G. H. (2009). J. Chin. Chem. Soc. 56, 718-724.]). For 4,6-dimethyl-2-mercaptopyrimidine, see: Hong et al. (2002[Hong, F. U., Huang, Y. L., Chen, P. P. & Chang, Y. C. (2002). J. Organomet. Chem. 655, 49-54.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr(C4H3N2)(C18H15P)2]

  • Mr = 789.93

  • Triclinic, [P \overline 1]

  • a = 12.1051 (8) Å

  • b = 12.7791 (8) Å

  • c = 12.8987 (8) Å

  • α = 90.257 (2)°

  • β = 117.044 (2)°

  • γ = 105.580 (2)°

  • V = 1693.11 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 150 K

  • 0.50 × 0.35 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.457, Tmax = 0.654

  • 22016 measured reflections

  • 7762 independent reflections

  • 7066 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.02

  • 7762 reflections

  • 415 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

C—C coupling reactions of pyrimidinyl nickel complexes (Steffen et al., 2005), Suzuki cross-coupling reactions of pyridyl-bridged palladium complex (Beeby, et al., 2004), and intramolecular reductive elimination of Pd—N binuclear complex [Pd(µ-C9H6N)(µ-dppm)]2(Cl)2 (Chin et al., 1988) are some of important reactions in organic synthesis by forming C—C bond (Dobrzynski & Angelici, 1975). To our knowledge, no 2-palladiumpyrimidine crystal structure has been described.

To synthesis of 2-palladiumpyrimidine compound, complex [Pd(PPh3)4] was used to react with 2-bromopyrimidine in dichloromethane at room temperature. As a result, a two triphenylphosphine displaced complex [Pd(Br)(C4H3N2)(PPh3)2] was isolated with 95% yield. The X-ray crystal structure analysis has been carried out to provide structural parameters.

The molecular structure of the title compound is shown in Fig. 1. In the title complex (I), the palladium atom has a distorted square planar geometry. The palladium atom is displaced by 0.0150 (5)Å from the least-squares plane of BrP1P2C1. The Pd—C1 bond distance, 1.9985 (18) Å, is longer than other PdII-carbon(carbonyl) distances, and similar to those of Pd—C(carbene) distances (Cardin et al., 1972, and references therein). Two PPh3 ligands are in trans position: P1—Pd—P2, 176.743 (17)°, while the pyrimidinyl ligand and bromide are trans to each other: C1—Pd—Br1, 176.56 (5)°. The Pd—N bond distances (2.8489 (17) and 2.8703 (16) Å) indicate no bonding interaction between the nitrogen atom and palladium metal atom. Within the pyrimidinyl ligand itself, the geometry is consistent with a significant partial double bond character in the C—C and C—N bond. The C—N bond distances (1.330 (2) ~1.340 (3) Å) are typical for a C—N bond having partial double bond character and are certainly much shorter than the normal C—N (1.47 Å) single bond. The Pd—C1 (1.9985 (18) Å) and Pd—Br (2.5353 (3) Å) lengths of (I) are in agreement with reported value (Yih et al., 2008, 2009).

The 31P{1H} NMR spectra of (I) shows a singlet resonances at δ 21.4. In the 1H NMR spectra, the 4-H and 5-H protons of the pyrimidinyl group exhibit two singlet resonances at δ 7.86 and at δ 7.52. The 13C{1H} NMR spectra of (I) reveals two singlet at δ 114.2 and at δ 154.4 which are assigned to the 5-C and 4-C carbon atom of the pyrimidinyl group. It is also noted the IR spectrum of the title complex (I) shows two stretching bands at 1546 and 1537 cm-1 for CN groups. In the FAB mass spectra, base peak with the typical Pd isotope distribution is in agreement with the [M+] molecular mass of (I).

Related literature top

For reactions in organic synthesis that form C—C bonds, see: Steffen et al. (2005); Beeby et al. (2004); Chin et al. (1988); Dobrzynski & Angelici (1975). For Pd—C(carbene) bond lengths, see: Cardin et al. (1972) and fir Pd—Br bondlengths, see: Yih & Lee (2008); Yih et al. (2009). For related literature [on what subject?], see: Hong et al. (2002).

Experimental top

The synthesis of the title compound (I) was carried out as follows. 2-Bromo-pyrimidine (0.191 g, 1.2 mmol) was added to a flask (100 ml) containing Pd(PPh3)4 (1.155 g, 1.0 mmol) and CH2Cl2 (20 ml) at ambient temperature. The mixture was stirred for 2 h. The solvent was concentrated to 10 ml, and 20 ml of diethyl ether was added to the solution. The pale-yellow solids were formed which were isolated by filtration (G4), washed with n-hexane (2 x 10 ml) and subsequently dried under vacuum yielding 0.750 g (95%) of the complex [Pd(PPh3)2(C4H3N2)Br], (I). Spectroscopic data for (I): 31P{1H} NMR: δ 21.4 (s, PPh3). 1H NMR: δ 7.23–7.66 (m, 30H, 2PPh3), 7.52 (s, 1H, 5-H of pyrimidinyl), 7.86 (s, 2H, 4-H of pyrimidinyl). 13C{1H} NMR: δ 128.0 (m, o-C of Ph), 129.9 (m, p-C of Ph), 134.8 (m, m-C of Ph), 114.2 (s, 4-C of pyrimidinyl), 154.4 (s, 5-C of pyrimidinyl). MS (FAB, NBA, m/z): 789 [M+]. Anal. Calcd. for C40H33BrN2P2Pd: C, 60.82; H, 4.21; N, 3.55. Found: C, 60.94; H, 4.31; N, 3.18.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

C—C coupling reactions of pyrimidinyl nickel complexes (Steffen et al., 2005), Suzuki cross-coupling reactions of pyridyl-bridged palladium complex (Beeby, et al., 2004), and intramolecular reductive elimination of Pd—N binuclear complex [Pd(µ-C9H6N)(µ-dppm)]2(Cl)2 (Chin et al., 1988) are some of important reactions in organic synthesis by forming C—C bond (Dobrzynski & Angelici, 1975). To our knowledge, no 2-palladiumpyrimidine crystal structure has been described.

To synthesis of 2-palladiumpyrimidine compound, complex [Pd(PPh3)4] was used to react with 2-bromopyrimidine in dichloromethane at room temperature. As a result, a two triphenylphosphine displaced complex [Pd(Br)(C4H3N2)(PPh3)2] was isolated with 95% yield. The X-ray crystal structure analysis has been carried out to provide structural parameters.

The molecular structure of the title compound is shown in Fig. 1. In the title complex (I), the palladium atom has a distorted square planar geometry. The palladium atom is displaced by 0.0150 (5)Å from the least-squares plane of BrP1P2C1. The Pd—C1 bond distance, 1.9985 (18) Å, is longer than other PdII-carbon(carbonyl) distances, and similar to those of Pd—C(carbene) distances (Cardin et al., 1972, and references therein). Two PPh3 ligands are in trans position: P1—Pd—P2, 176.743 (17)°, while the pyrimidinyl ligand and bromide are trans to each other: C1—Pd—Br1, 176.56 (5)°. The Pd—N bond distances (2.8489 (17) and 2.8703 (16) Å) indicate no bonding interaction between the nitrogen atom and palladium metal atom. Within the pyrimidinyl ligand itself, the geometry is consistent with a significant partial double bond character in the C—C and C—N bond. The C—N bond distances (1.330 (2) ~1.340 (3) Å) are typical for a C—N bond having partial double bond character and are certainly much shorter than the normal C—N (1.47 Å) single bond. The Pd—C1 (1.9985 (18) Å) and Pd—Br (2.5353 (3) Å) lengths of (I) are in agreement with reported value (Yih et al., 2008, 2009).

The 31P{1H} NMR spectra of (I) shows a singlet resonances at δ 21.4. In the 1H NMR spectra, the 4-H and 5-H protons of the pyrimidinyl group exhibit two singlet resonances at δ 7.86 and at δ 7.52. The 13C{1H} NMR spectra of (I) reveals two singlet at δ 114.2 and at δ 154.4 which are assigned to the 5-C and 4-C carbon atom of the pyrimidinyl group. It is also noted the IR spectrum of the title complex (I) shows two stretching bands at 1546 and 1537 cm-1 for CN groups. In the FAB mass spectra, base peak with the typical Pd isotope distribution is in agreement with the [M+] molecular mass of (I).

For reactions in organic synthesis that form C—C bonds, see: Steffen et al. (2005); Beeby et al. (2004); Chin et al. (1988); Dobrzynski & Angelici (1975). For Pd—C(carbene) bond lengths, see: Cardin et al. (1972) and fir Pd—Br bondlengths, see: Yih & Lee (2008); Yih et al. (2009). For related literature [on what subject?], see: Hong et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
trans-Bromido(pyrimidinyl-κC2)bis(triphenylphosphane- κP)palladium(II) top
Crystal data top
[PdBr(C4H3N2)(C18H15P)2]Z = 2
Mr = 789.93F(000) = 796
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1051 (8) ÅCell parameters from 5205 reflections
b = 12.7791 (8) Åθ = 2.2–27.5°
c = 12.8987 (8) ŵ = 1.86 mm1
α = 90.257 (2)°T = 150 K
β = 117.044 (2)°Rod, light yellow
γ = 105.580 (2)°0.50 × 0.35 × 0.25 mm
V = 1693.11 (19) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7762 independent reflections
Radiation source: fine-focus sealed tube7066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.457, Tmax = 0.654k = 1616
22016 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0252P)2 + 0.8169P]
where P = (Fo2 + 2Fc2)/3
7762 reflections(Δ/σ)max = 0.003
415 parametersΔρmax = 0.40 e Å3
2 restraintsΔρmin = 0.40 e Å3
Crystal data top
[PdBr(C4H3N2)(C18H15P)2]γ = 105.580 (2)°
Mr = 789.93V = 1693.11 (19) Å3
Triclinic, P1Z = 2
a = 12.1051 (8) ÅMo Kα radiation
b = 12.7791 (8) ŵ = 1.86 mm1
c = 12.8987 (8) ÅT = 150 K
α = 90.257 (2)°0.50 × 0.35 × 0.25 mm
β = 117.044 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7762 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
7066 reflections with I > 2σ(I)
Tmin = 0.457, Tmax = 0.654Rint = 0.023
22016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0232 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
7762 reflectionsΔρmin = 0.40 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.373889 (12)0.223763 (11)0.271056 (12)0.01685 (4)
Br0.402981 (18)0.428222 (15)0.282253 (18)0.02526 (5)
P10.16970 (4)0.18272 (4)0.26328 (4)0.01688 (9)
P20.57904 (4)0.25675 (4)0.28544 (4)0.01794 (9)
N10.31551 (17)0.01119 (14)0.15413 (15)0.0285 (4)
N20.40272 (16)0.02238 (14)0.36125 (15)0.0265 (4)
C10.36051 (17)0.06436 (15)0.26102 (16)0.0195 (3)
C20.3112 (2)0.09446 (18)0.1485 (2)0.0391 (5)
H20.27870.13550.07360.047*
C30.3515 (2)0.14614 (18)0.2462 (2)0.0387 (5)
H30.34760.22130.24060.046*
C40.3980 (2)0.08343 (17)0.35255 (19)0.0324 (5)
H40.42770.11620.42220.039*
C50.06796 (17)0.03960 (15)0.21717 (16)0.0191 (4)
C60.10631 (19)0.03726 (16)0.29124 (17)0.0245 (4)
H60.18290.01400.36510.029*
C70.0338 (2)0.14719 (17)0.25813 (19)0.0298 (4)
H70.06120.19930.30860.036*
C80.0787 (2)0.18086 (17)0.1512 (2)0.0323 (5)
H80.12950.25600.12890.039*
C90.1176 (2)0.10562 (16)0.07663 (18)0.0284 (4)
H90.19460.12920.00310.034*
C100.04417 (18)0.00417 (15)0.10901 (17)0.0216 (4)
H100.07050.05550.05710.026*
C110.06149 (17)0.25643 (14)0.16714 (16)0.0190 (4)
C120.04724 (18)0.26179 (15)0.17709 (17)0.0237 (4)
H120.06370.22940.23680.028*
C130.13095 (19)0.31432 (16)0.10011 (18)0.0269 (4)
H130.20450.31790.10750.032*
C140.1082 (2)0.36161 (16)0.01236 (18)0.0293 (4)
H140.16570.39770.04010.035*
C150.0016 (2)0.35582 (17)0.00179 (18)0.0295 (4)
H150.01370.38730.05890.035*
C160.08367 (19)0.30429 (15)0.07917 (17)0.0233 (4)
H160.15760.30180.07190.028*
C170.18063 (17)0.21461 (15)0.40637 (16)0.0198 (4)
C180.08158 (18)0.15884 (16)0.43204 (17)0.0230 (4)
H180.00930.10150.37570.028*
C190.08851 (19)0.18684 (17)0.53916 (17)0.0257 (4)
H190.02120.14870.55630.031*
C200.1937 (2)0.27055 (17)0.62123 (17)0.0275 (4)
H200.19830.28970.69470.033*
C210.2918 (2)0.32624 (17)0.59664 (18)0.0300 (4)
H210.36350.38390.65300.036*
C220.28583 (19)0.29816 (16)0.48958 (17)0.0256 (4)
H220.35390.33620.47330.031*
C230.63295 (17)0.14058 (15)0.26504 (17)0.0205 (4)
C240.63245 (19)0.10873 (16)0.16108 (17)0.0242 (4)
H240.60490.14930.09740.029*
C250.6716 (2)0.01883 (17)0.14949 (19)0.0304 (4)
H250.67050.00200.07820.036*
C260.7119 (2)0.04028 (17)0.2415 (2)0.0323 (5)
H260.74020.10110.23420.039*
C270.7112 (2)0.01134 (18)0.3444 (2)0.0337 (5)
H270.73700.05340.40700.040*
C280.67292 (19)0.07904 (17)0.35664 (18)0.0270 (4)
H280.67400.09910.42820.032*
C290.71134 (17)0.33035 (15)0.42804 (16)0.0213 (4)
C300.84045 (18)0.34118 (16)0.45735 (18)0.0260 (4)
H300.85950.30910.40330.031*
C310.9408 (2)0.39853 (17)0.56511 (19)0.0316 (5)
H311.02860.40630.58430.038*
C320.9138 (2)0.44424 (18)0.6445 (2)0.0379 (5)
H320.98280.48350.71830.045*
C330.7862 (2)0.4330 (2)0.6167 (2)0.0397 (5)
H330.76770.46450.67150.048*
C340.6852 (2)0.37604 (18)0.50921 (18)0.0311 (5)
H340.59770.36820.49090.037*
C350.59335 (18)0.33938 (15)0.17515 (17)0.0210 (4)
C360.5034 (2)0.29949 (17)0.05672 (18)0.0282 (4)
H360.43290.23440.03660.034*
C370.5167 (2)0.3544 (2)0.0311 (2)0.0376 (5)
H370.45760.32510.11140.045*
C380.6157 (3)0.4516 (2)0.0027 (2)0.0406 (6)
H380.62430.48930.06310.049*
C390.7017 (2)0.49357 (18)0.1138 (2)0.0362 (5)
H390.76870.56110.13330.043*
C400.6914 (2)0.43795 (16)0.20293 (19)0.0263 (4)
H400.75140.46740.28290.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.01563 (7)0.01653 (7)0.01959 (7)0.00490 (5)0.00931 (6)0.00247 (5)
Br0.02570 (10)0.01863 (9)0.03430 (11)0.00637 (7)0.01675 (9)0.00424 (8)
P10.0163 (2)0.0174 (2)0.0180 (2)0.00520 (17)0.00902 (18)0.00283 (17)
P20.0165 (2)0.0182 (2)0.0203 (2)0.00569 (17)0.00951 (18)0.00209 (18)
N10.0332 (9)0.0225 (8)0.0243 (9)0.0072 (7)0.0099 (7)0.0001 (7)
N20.0291 (9)0.0254 (8)0.0253 (8)0.0116 (7)0.0114 (7)0.0066 (7)
C10.0158 (8)0.0193 (7)0.0242 (9)0.0059 (7)0.0099 (7)0.0045 (7)
C20.0500 (14)0.0248 (11)0.0315 (12)0.0091 (10)0.0115 (10)0.0059 (9)
C30.0465 (13)0.0196 (10)0.0445 (13)0.0125 (9)0.0157 (11)0.0042 (9)
C40.0352 (11)0.0293 (11)0.0328 (11)0.0143 (9)0.0136 (9)0.0122 (9)
C50.0199 (8)0.0179 (8)0.0240 (9)0.0051 (7)0.0144 (7)0.0024 (7)
C60.0286 (10)0.0256 (10)0.0249 (10)0.0107 (8)0.0160 (8)0.0064 (8)
C70.0473 (13)0.0226 (10)0.0344 (11)0.0138 (9)0.0298 (10)0.0100 (8)
C80.0459 (13)0.0191 (10)0.0392 (12)0.0011 (9)0.0308 (11)0.0006 (9)
C90.0296 (10)0.0249 (10)0.0280 (10)0.0009 (8)0.0156 (9)0.0040 (8)
C100.0237 (9)0.0208 (9)0.0239 (9)0.0074 (7)0.0137 (8)0.0032 (7)
C110.0183 (8)0.0162 (8)0.0199 (9)0.0051 (7)0.0070 (7)0.0008 (7)
C120.0240 (9)0.0227 (9)0.0265 (10)0.0085 (8)0.0127 (8)0.0033 (8)
C130.0222 (9)0.0234 (10)0.0342 (11)0.0093 (8)0.0113 (8)0.0004 (8)
C140.0286 (10)0.0204 (9)0.0316 (11)0.0109 (8)0.0064 (9)0.0039 (8)
C150.0353 (11)0.0259 (10)0.0277 (10)0.0111 (9)0.0142 (9)0.0095 (8)
C160.0241 (9)0.0216 (9)0.0241 (9)0.0066 (7)0.0117 (8)0.0030 (7)
C170.0209 (9)0.0218 (9)0.0190 (9)0.0085 (7)0.0102 (7)0.0037 (7)
C180.0212 (9)0.0256 (10)0.0227 (9)0.0069 (8)0.0110 (8)0.0032 (8)
C190.0279 (10)0.0301 (10)0.0280 (10)0.0118 (8)0.0189 (9)0.0085 (8)
C200.0364 (11)0.0310 (11)0.0209 (9)0.0161 (9)0.0152 (9)0.0036 (8)
C210.0316 (11)0.0297 (11)0.0224 (10)0.0047 (9)0.0101 (9)0.0031 (8)
C220.0249 (10)0.0260 (10)0.0252 (10)0.0054 (8)0.0125 (8)0.0031 (8)
C230.0161 (8)0.0206 (9)0.0256 (9)0.0056 (7)0.0106 (7)0.0022 (7)
C240.0260 (10)0.0243 (10)0.0256 (10)0.0096 (8)0.0137 (8)0.0059 (8)
C250.0375 (11)0.0295 (11)0.0309 (11)0.0131 (9)0.0201 (9)0.0014 (9)
C260.0394 (12)0.0265 (11)0.0409 (12)0.0191 (9)0.0222 (10)0.0057 (9)
C270.0426 (12)0.0340 (12)0.0328 (11)0.0235 (10)0.0181 (10)0.0130 (9)
C280.0298 (10)0.0314 (11)0.0247 (10)0.0153 (9)0.0135 (9)0.0061 (8)
C290.0201 (9)0.0192 (9)0.0229 (9)0.0057 (7)0.0088 (8)0.0027 (7)
C300.0216 (9)0.0239 (10)0.0313 (11)0.0069 (8)0.0115 (8)0.0014 (8)
C310.0202 (10)0.0261 (10)0.0371 (12)0.0051 (8)0.0052 (9)0.0020 (9)
C320.0346 (12)0.0313 (12)0.0289 (11)0.0108 (9)0.0008 (9)0.0046 (9)
C330.0420 (13)0.0459 (14)0.0286 (11)0.0206 (11)0.0106 (10)0.0062 (10)
C340.0280 (10)0.0387 (12)0.0284 (11)0.0161 (9)0.0117 (9)0.0016 (9)
C350.0229 (9)0.0225 (9)0.0261 (9)0.0127 (7)0.0152 (8)0.0071 (7)
C360.0272 (10)0.0320 (11)0.0274 (10)0.0147 (9)0.0114 (9)0.0074 (8)
C370.0454 (13)0.0540 (15)0.0277 (11)0.0342 (12)0.0185 (10)0.0166 (10)
C380.0603 (16)0.0481 (14)0.0478 (14)0.0406 (13)0.0405 (13)0.0326 (12)
C390.0465 (13)0.0265 (11)0.0590 (15)0.0204 (10)0.0389 (12)0.0219 (10)
C400.0298 (10)0.0218 (9)0.0348 (11)0.0109 (8)0.0199 (9)0.0061 (8)
Geometric parameters (Å, º) top
Pd—C11.9985 (18)C18—C191.385 (3)
Pd—P22.3232 (5)C18—H180.9500
Pd—P12.3393 (5)C19—C201.385 (3)
Pd—Br2.5353 (3)C19—H190.9500
P1—C51.8248 (18)C20—C211.381 (3)
P1—C171.8255 (18)C20—H200.9500
P1—C111.8267 (18)C21—C221.390 (3)
P2—C351.8188 (19)C21—H210.9500
P2—C291.8247 (19)C22—H220.9500
P2—C231.8363 (19)C23—C281.393 (3)
N1—C11.330 (2)C23—C241.397 (3)
N1—C21.337 (3)C24—C251.386 (3)
N2—C11.332 (2)C24—H240.9500
N2—C41.340 (3)C25—C261.377 (3)
C2—C31.373 (3)C25—H250.9500
C2—H20.9500C26—C271.380 (3)
C3—C41.373 (3)C26—H260.9500
C3—H30.9500C27—C281.388 (3)
C4—H40.9500C27—H270.9500
C5—C101.391 (3)C28—H280.9500
C5—C61.394 (3)C29—C341.390 (3)
C6—C71.385 (3)C29—C301.397 (3)
C6—H60.9500C30—C311.387 (3)
C7—C81.384 (3)C30—H300.9500
C7—H70.9500C31—C321.378 (3)
C8—C91.382 (3)C31—H310.9500
C8—H80.9500C32—C331.383 (3)
C9—C101.386 (3)C32—H320.9500
C9—H90.9500C33—C341.385 (3)
C10—H100.9500C33—H330.9500
C11—C161.389 (3)C34—H340.9500
C11—C121.398 (2)C35—C401.389 (3)
C12—C131.386 (3)C35—C361.400 (3)
C12—H120.9500C36—C371.384 (3)
C13—C141.386 (3)C36—H360.9500
C13—H130.9500C37—C381.382 (4)
C14—C151.379 (3)C37—H370.9500
C14—H140.9500C38—C391.378 (4)
C15—C161.389 (3)C38—H380.9500
C15—H150.9500C39—C401.391 (3)
C16—H160.9500C39—H390.9500
C17—C221.389 (3)C40—H400.9500
C17—C181.400 (2)
C1—Pd—P286.86 (5)C18—C17—P1120.85 (14)
C1—Pd—P190.58 (5)C19—C18—C17120.29 (18)
P2—Pd—P1176.743 (17)C19—C18—H18119.9
C1—Pd—Br176.56 (5)C17—C18—H18119.9
P2—Pd—Br89.758 (13)C20—C19—C18119.93 (18)
P1—Pd—Br92.815 (13)C20—C19—H19120.0
C5—P1—C17102.50 (8)C18—C19—H19120.0
C5—P1—C11103.18 (8)C21—C20—C19120.22 (18)
C17—P1—C11103.89 (8)C21—C20—H20119.9
C5—P1—Pd117.16 (6)C19—C20—H20119.9
C17—P1—Pd112.70 (6)C20—C21—C22120.16 (19)
C11—P1—Pd115.70 (6)C20—C21—H21119.9
C35—P2—C29106.74 (9)C22—C21—H21119.9
C35—P2—C23103.18 (8)C17—C22—C21120.16 (18)
C29—P2—C23102.10 (8)C17—C22—H22119.9
C35—P2—Pd110.52 (6)C21—C22—H22119.9
C29—P2—Pd113.50 (6)C28—C23—C24118.21 (17)
C23—P2—Pd119.58 (6)C28—C23—P2118.41 (14)
C1—N1—C2115.99 (18)C24—C23—P2123.35 (14)
C1—N2—C4116.48 (17)C25—C24—C23120.97 (18)
N1—C1—N2125.98 (17)C25—C24—H24119.5
N1—C1—Pd116.27 (13)C23—C24—H24119.5
N2—C1—Pd117.66 (14)C26—C25—C24119.89 (19)
N1—C2—C3122.9 (2)C26—C25—H25120.1
N1—C2—H2118.6C24—C25—H25120.1
C3—C2—H2118.6C25—C26—C27120.13 (19)
C2—C3—C4116.5 (2)C25—C26—H26119.9
C2—C3—H3121.7C27—C26—H26119.9
C4—C3—H3121.7C26—C27—C28120.1 (2)
N2—C4—C3122.2 (2)C26—C27—H27119.9
N2—C4—H4118.9C28—C27—H27119.9
C3—C4—H4118.9C27—C28—C23120.64 (19)
C10—C5—C6119.00 (17)C27—C28—H28119.7
C10—C5—P1122.17 (14)C23—C28—H28119.7
C6—C5—P1118.80 (14)C34—C29—C30119.03 (18)
C7—C6—C5120.63 (19)C34—C29—P2120.58 (15)
C7—C6—H6119.7C30—C29—P2120.39 (14)
C5—C6—H6119.7C31—C30—C29120.22 (19)
C8—C7—C6119.70 (19)C31—C30—H30119.9
C8—C7—H7120.2C29—C30—H30119.9
C6—C7—H7120.2C32—C31—C30120.2 (2)
C9—C8—C7120.28 (19)C32—C31—H31119.9
C9—C8—H8119.9C30—C31—H31119.9
C7—C8—H8119.9C31—C32—C33120.0 (2)
C8—C9—C10120.07 (19)C31—C32—H32120.0
C8—C9—H9120.0C33—C32—H32120.0
C10—C9—H9120.0C32—C33—C34120.3 (2)
C9—C10—C5120.32 (18)C32—C33—H33119.9
C9—C10—H10119.8C34—C33—H33119.9
C5—C10—H10119.8C33—C34—C29120.29 (19)
C16—C11—C12118.97 (17)C33—C34—H34119.9
C16—C11—P1119.85 (14)C29—C34—H34119.9
C12—C11—P1121.13 (14)C40—C35—C36118.88 (18)
C13—C12—C11120.14 (18)C40—C35—P2123.01 (15)
C13—C12—H12119.9C36—C35—P2118.08 (15)
C11—C12—H12119.9C37—C36—C35120.3 (2)
C12—C13—C14120.48 (18)C37—C36—H36119.8
C12—C13—H13119.8C35—C36—H36119.8
C14—C13—H13119.8C38—C37—C36120.3 (2)
C15—C14—C13119.52 (18)C38—C37—H37119.9
C15—C14—H14120.2C36—C37—H37119.9
C13—C14—H14120.2C39—C38—C37119.7 (2)
C14—C15—C16120.50 (19)C39—C38—H38120.1
C14—C15—H15119.8C37—C38—H38120.1
C16—C15—H15119.8C38—C39—C40120.6 (2)
C11—C16—C15120.38 (18)C38—C39—H39119.7
C11—C16—H16119.8C40—C39—H39119.7
C15—C16—H16119.8C35—C40—C39120.1 (2)
C22—C17—C18119.23 (17)C35—C40—H40120.0
C22—C17—P1119.88 (14)C39—C40—H40120.0

Experimental details

Crystal data
Chemical formula[PdBr(C4H3N2)(C18H15P)2]
Mr789.93
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)12.1051 (8), 12.7791 (8), 12.8987 (8)
α, β, γ (°)90.257 (2), 117.044 (2), 105.580 (2)
V3)1693.11 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.86
Crystal size (mm)0.50 × 0.35 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.457, 0.654
No. of measured, independent and
observed [I > 2σ(I)] reflections
22016, 7762, 7066
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.02
No. of reflections7762
No. of parameters415
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.40

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Science Council of the Republic of China for financial support (NSC98–2113-M-241–011-MY2).

References

First citationBeeby, A., Bettington, S., Fairlamb, I. J. S., Goeta, A. E., Kapdi, A. R., Niemela, E. H. & Thompson, A. L. (2004). New J. Chem. 28, 600–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardin, D. J., Cetinkaya, B. & Lappert, M. F. (1972). Chem. Rev. 72, 545–574.  CrossRef CAS Web of Science Google Scholar
First citationChin, C. H., Yeo, S. L., Loh, Z. H., Vittal, J. J., Henderson, W. & Hor, T. S. A. (1988). J. Chem. Soc. Dalton Trans. pp. 3777–3784.  Google Scholar
First citationDobrzynski, E. D. & Angelici, R. J. (1975). Inorg. Chem. 14, 1513–1518.  CrossRef CAS Web of Science Google Scholar
First citationHong, F. U., Huang, Y. L., Chen, P. P. & Chang, Y. C. (2002). J. Organomet. Chem. 655, 49–54.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, A., Sladek, M. I., Braun, T., Neumann, B. & Stammler, H. G. (2005). Organometallics, 24, 4057–4064.  Web of Science CSD CrossRef CAS Google Scholar
First citationYih, K. H. & Lee, G. H. (2008). J. Chin. Chem. Soc. 55, 109–114.  CAS Google Scholar
First citationYih, K. H., Wang, H. F., Huang, K. F., Kwan, C. C. & Lee, G. H. (2009). J. Chin. Chem. Soc. 56, 718–724.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds