metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­(1,10-phenanthroline-κ2N,N′)strontium 5,5′-diazene­diyl­di­tetra­zolide

aDepartment of Chemistry and Chemical Engineering, Xi'an University of Arts and Science, Xi'an 710065, Shaanxi, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yanan University, Yanan 716000, Shaanxi, People's Republic of China
*Correspondence e-mail: jiaobaojuan@163.com

(Received 22 September 2010; accepted 30 September 2010; online 9 October 2010)

The title complex, [Sr(C12H8N2)2(H2O)4](C2N10), contains an [Sr(phen)2(H2O)4]2+ cation (phen is 1,10-phenanthroline) and a 5,5′-diazenediylditetra­zolide anion (site symmetry 2). The Sr2+ cation (site symmetry 2) is coordinated by four N atoms from two chelating phen and four water mol­ecules. In the crystal structure, the water mol­ecules and the N atoms in the tetra­zolide rings form an extensive range of O—H⋯N hydrogen bonds which link the complex into a two-dimensional structure. An adjacent layer further yields a three-dimensional supramolecular network by offset face-to-face ππ stacking inter­actions of the phen ligands [with centroid–centroid distances of 3.915 (2) and 4.012 (2) Å]. The two bridging N atoms of the anion are equally disordered about the twofold rotation axis.

Related literature

Tetra­zole compounds have been investigated as potential energy materials; see: Singh et al. (2006[Singh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584-3601.]); Klapötke et al. (2009[Klapötke, T. M., Sabate, C. M. & Welch, J. M. (2009). Eur. J. Inorg. Chem. 2009, 769-776.]). In particular, complexes of tetra­zole containing cations such as strontium, barium or copper are components for pyrotechnical mixtures (Hartdegen et al., 2009[Hartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Inorg. Chem. 48, 9549-9556.]; Klapötke et al., 2008[Klapötke, T. M., Sabate, C. M. & Stierstorfer, J. (2008). Z. Anorg. Allg. Chem. 634, 1867-1874.]). Additionally, the 5,5′-azotetra­zole with ten nitro­gen atoms is predicted to be involved in the hydrogen-bonding motif to construct a supra­molecule (Wang et al., 2009[Wang, W. T., Chen, S. P., Fan, G., Xie, G., Jiao, B. & Gao, S. (2009). J. Coord. Chem. 62, 1879-1886.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C12H8N2)2(H2O)4](C2N10)

  • Mr = 684.21

  • Monoclinic, C 2/c

  • a = 17.442 (3) Å

  • b = 10.8974 (17) Å

  • c = 16.189 (3) Å

  • β = 105.178 (2)°

  • V = 2969.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.652, Tmax = 0.729

  • 7165 measured reflections

  • 2621 independent reflections

  • 2226 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.069

  • S = 1.04

  • 2621 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N5i 0.85 2.08 2.885 (3) 158
O1—H1A⋯N4i 0.85 2.04 2.870 (2) 167
O2—H2A⋯N6ii 0.85 2.03 2.871 (3) 173
O1—H1B⋯N3 0.85 2.04 2.887 (3) 172
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The high nitrogen content of tetrazole has led to investigation for their use as potential energy materials (Singh et al., 2006; Klapötke et al., 2009). Especially, complex of tetrazole containing cations like strontium, barium, or copper are sought components for pyrotechnical mixtures, by combination of the ligand and the colorantmetal cation (Hartdegen et al., 2009; Klapötke et al., 2008). Additionally, the 5,5'-azotetrazole with ten nitrogen atoms are predicted to be involved in the hydrogen bonds motif to construct supramolecule (Wang et al., 2009). Herein, we report the crystal structure of the title compound, [Sr(phen)2(H2O)4][AT] (I), where phen = 1,10-phenanthroline and AT = 5,5'-diazenediylditetrazolide. The crystal structure of (I) consists of a discrete [Sr(phen)2(H2O)4]2+ cation and one 5,5'-diazenediylditetrazolide anion. As illustrated in Figure 1, the Sr2+ ion is coordinated by eight atoms with four N atoms from two phen molecules and four O atoms from water molecules, giving to a quadrangular prism structure. The N7 atom in the 5,5'-diazenediylditetrazolide anion is positional disordered and the occupancy of N7 must be set to 0.5 to get rational structure model and thermal displacement parameters. Strong hydrogen bonds between the 5,5'-diazenediylditetrazolide anion and water molecules link neighboring [Sr(phen)2(H2O)4]2+ cations, which giving to a two dimensional supramolecular layer, as shown in the Figure 2. Furthermore, the adjacent layers were form to a three dimensional supramolecular network, by the off-set face to face π-π stacking interactions of the phen molecules, with the centroid distance 3.915 and 4.012 Å.

Related literature top

Tetrazole compounds have been investigated as potential energy materials; see: Singh et al. (2006); Klapötke et al. (2009). In particular, complexes of tetrazole containing cations such as strontium, barium or copper are components for pyrotechnical mixtures (Hartdegen et al., 2009; Klapötke et al., 2008). Additionally, the 5,5'-azotetrazole with ten nitrogen atoms is predicted to be involved in the hydrogen-bonding motif to construct a supramolecule (Wang et al., 2009). [This section has been rewritten - pls check this is OK]

Experimental top

30 ml H2O containing 2.0 mmol (0.6003 g) disodium 5,5'-azotetrazole pentahydrate was mixed with 30 ml e thanol containing 4.0 mmol (0.7929 g) 1,10-phenanthroline. 15 ml H2O containing 2.0 mmol (0.5332 g) SrCl2.6H2O was added to the above mixture. Yellow single crystals were obtained from the mixture solution which was allowed to evaporate at the room temperature for two weeks.

Refinement top

The H atoms of C atoms were positioned geometrically and refined with a riding model, with C—H = 0.93 Å and Å and Uiso(H) = 1.2Ueq(C).The water H atoms were located in difference Fourier maps,with distance restraints of O—H = 0.85±0.02 Å, and then refined with isotropic thermal parameters 1.5 times those of O atoms.

Structure description top

The high nitrogen content of tetrazole has led to investigation for their use as potential energy materials (Singh et al., 2006; Klapötke et al., 2009). Especially, complex of tetrazole containing cations like strontium, barium, or copper are sought components for pyrotechnical mixtures, by combination of the ligand and the colorantmetal cation (Hartdegen et al., 2009; Klapötke et al., 2008). Additionally, the 5,5'-azotetrazole with ten nitrogen atoms are predicted to be involved in the hydrogen bonds motif to construct supramolecule (Wang et al., 2009). Herein, we report the crystal structure of the title compound, [Sr(phen)2(H2O)4][AT] (I), where phen = 1,10-phenanthroline and AT = 5,5'-diazenediylditetrazolide. The crystal structure of (I) consists of a discrete [Sr(phen)2(H2O)4]2+ cation and one 5,5'-diazenediylditetrazolide anion. As illustrated in Figure 1, the Sr2+ ion is coordinated by eight atoms with four N atoms from two phen molecules and four O atoms from water molecules, giving to a quadrangular prism structure. The N7 atom in the 5,5'-diazenediylditetrazolide anion is positional disordered and the occupancy of N7 must be set to 0.5 to get rational structure model and thermal displacement parameters. Strong hydrogen bonds between the 5,5'-diazenediylditetrazolide anion and water molecules link neighboring [Sr(phen)2(H2O)4]2+ cations, which giving to a two dimensional supramolecular layer, as shown in the Figure 2. Furthermore, the adjacent layers were form to a three dimensional supramolecular network, by the off-set face to face π-π stacking interactions of the phen molecules, with the centroid distance 3.915 and 4.012 Å.

Tetrazole compounds have been investigated as potential energy materials; see: Singh et al. (2006); Klapötke et al. (2009). In particular, complexes of tetrazole containing cations such as strontium, barium or copper are components for pyrotechnical mixtures (Hartdegen et al., 2009; Klapötke et al., 2008). Additionally, the 5,5'-azotetrazole with ten nitrogen atoms is predicted to be involved in the hydrogen-bonding motif to construct a supramolecule (Wang et al., 2009). [This section has been rewritten - pls check this is OK]

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I), A view of structure (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and hydrogen atoms are omitted for clarity. The occupancies of N7, are equal to 0.5 [Symmtry codes: A 2 - x,y,1/2 - z].
[Figure 2] Fig. 2. View of the supramolecular layer structure of (I) formed by the hydrogen bonds. The dashed lines are hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability. The phen molecules are omitted for clarity.
Tetraaquabis(1,10-phenanthroline-κ2N,N')strontium 5,5'-diazenediylditetrazolide top
Crystal data top
[Sr(C12H8N2)2(H2O)4](C2N10)F(000) = 1392
Mr = 684.21Dx = 1.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.442 (3) ÅCell parameters from 3217 reflections
b = 10.8974 (17) Åθ = 2.2–26.9°
c = 16.189 (3) ŵ = 1.88 mm1
β = 105.178 (2)°T = 296 K
V = 2969.8 (8) Å3Block, yellow
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2621 independent reflections
Radiation source: fine-focus sealed tube2226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2002)
h = 2020
Tmin = 0.652, Tmax = 0.729k = 1211
7165 measured reflectionsl = 1916
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0334P)2 + 1.6965P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2621 reflectionsΔρmax = 0.31 e Å3
204 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (3)
Crystal data top
[Sr(C12H8N2)2(H2O)4](C2N10)V = 2969.8 (8) Å3
Mr = 684.21Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.442 (3) ŵ = 1.88 mm1
b = 10.8974 (17) ÅT = 296 K
c = 16.189 (3) Å0.25 × 0.20 × 0.18 mm
β = 105.178 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2621 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2002)
2226 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.729Rint = 0.026
7165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
2621 reflectionsΔρmin = 0.37 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr11.00000.24389 (2)0.25000.02718 (12)
N10.85008 (10)0.34918 (17)0.18410 (12)0.0395 (4)
N20.85933 (10)0.10403 (17)0.21752 (11)0.0372 (4)
N30.96163 (12)0.64644 (18)0.09038 (13)0.0483 (5)
N40.94140 (12)0.68916 (18)0.01083 (12)0.0443 (5)
N50.93980 (13)0.80929 (19)0.01267 (13)0.0499 (5)
N60.95898 (14)0.8474 (2)0.09331 (15)0.0580 (6)
C10.84222 (15)0.4689 (2)0.17143 (17)0.0515 (6)
H10.88390.51920.19980.062*
C20.77523 (17)0.5244 (3)0.11807 (19)0.0643 (8)
H20.77290.60910.11100.077*
C30.71337 (16)0.4521 (3)0.07654 (18)0.0640 (8)
H30.66850.48720.04010.077*
C40.71751 (14)0.3253 (3)0.08878 (15)0.0477 (6)
C50.65475 (15)0.2429 (3)0.04826 (18)0.0628 (8)
H50.60940.27410.01020.075*
C60.65995 (15)0.1226 (3)0.06392 (17)0.0609 (8)
H60.61830.07160.03650.073*
C70.72830 (13)0.0706 (2)0.12204 (15)0.0461 (6)
C80.73506 (15)0.0545 (2)0.14216 (17)0.0551 (7)
H80.69430.10820.11650.066*
C90.80122 (15)0.0976 (2)0.19914 (17)0.0534 (7)
H90.80610.18020.21390.064*
C100.86160 (14)0.0145 (2)0.23494 (16)0.0457 (6)
H100.90670.04480.27390.055*
C110.78741 (12)0.2779 (2)0.14439 (14)0.0374 (5)
C120.79253 (12)0.1478 (2)0.16157 (13)0.0356 (5)
C130.97136 (14)0.7456 (2)0.13849 (15)0.0476 (6)
O11.01607 (10)0.39982 (14)0.13806 (9)0.0463 (4)
O20.98909 (9)0.10539 (13)0.11891 (9)0.0422 (4)
H1A1.03060.38550.09280.063*
H2B1.01960.11650.08630.063*
H2A0.97650.02990.11320.063*
H1B0.99600.47080.12530.063*
N70.9905 (2)0.7903 (3)0.2248 (2)0.0372 (9)*0.50
N7'0.9955 (3)0.6972 (3)0.2281 (2)0.0402 (10)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.02894 (17)0.02498 (17)0.02556 (16)0.0000.00346 (10)0.000
N10.0351 (10)0.0383 (11)0.0444 (11)0.0036 (8)0.0091 (8)0.0031 (8)
N20.0303 (9)0.0381 (11)0.0410 (10)0.0018 (8)0.0055 (8)0.0004 (8)
N30.0600 (13)0.0401 (12)0.0475 (12)0.0021 (10)0.0188 (10)0.0097 (10)
N40.0579 (13)0.0402 (12)0.0357 (11)0.0054 (10)0.0137 (9)0.0052 (9)
N50.0661 (14)0.0409 (12)0.0468 (13)0.0056 (10)0.0219 (11)0.0081 (10)
N60.0777 (16)0.0429 (13)0.0628 (15)0.0153 (11)0.0351 (12)0.0181 (11)
C10.0492 (14)0.0412 (15)0.0646 (17)0.0034 (12)0.0158 (13)0.0056 (12)
C20.0677 (19)0.0477 (16)0.080 (2)0.0209 (15)0.0230 (16)0.0199 (15)
C30.0494 (16)0.076 (2)0.0629 (18)0.0234 (15)0.0091 (14)0.0244 (15)
C40.0358 (13)0.0629 (17)0.0431 (14)0.0105 (12)0.0079 (11)0.0109 (12)
C50.0306 (13)0.100 (3)0.0496 (16)0.0040 (15)0.0043 (11)0.0083 (15)
C60.0347 (14)0.085 (2)0.0545 (16)0.0105 (14)0.0030 (12)0.0043 (15)
C70.0343 (12)0.0602 (16)0.0429 (14)0.0072 (11)0.0084 (10)0.0061 (12)
C80.0468 (15)0.0569 (17)0.0618 (17)0.0206 (13)0.0145 (13)0.0149 (13)
C90.0529 (15)0.0402 (14)0.0688 (17)0.0090 (12)0.0190 (13)0.0052 (12)
C100.0404 (13)0.0387 (14)0.0560 (15)0.0007 (10)0.0089 (11)0.0003 (11)
C110.0276 (11)0.0495 (14)0.0352 (12)0.0036 (10)0.0085 (9)0.0029 (10)
C120.0274 (11)0.0474 (13)0.0321 (11)0.0010 (10)0.0077 (9)0.0024 (10)
C130.0404 (13)0.0722 (19)0.0315 (12)0.0124 (12)0.0114 (10)0.0074 (13)
O10.0655 (11)0.0362 (9)0.0407 (9)0.0076 (8)0.0203 (8)0.0097 (7)
O20.0585 (10)0.0339 (8)0.0353 (8)0.0051 (7)0.0142 (7)0.0054 (6)
Geometric parameters (Å, º) top
Sr1—O1i2.5527 (15)C4—C51.435 (4)
Sr1—O12.5527 (15)C5—C61.334 (4)
Sr1—O22.5704 (14)C5—H50.9300
Sr1—O2i2.5704 (14)C6—C71.429 (3)
Sr1—N1i2.7985 (18)C6—H60.9300
Sr1—N12.7985 (18)C7—C81.400 (4)
Sr1—N22.8185 (17)C7—C121.413 (3)
Sr1—N2i2.8185 (17)C8—C91.358 (4)
N1—C11.322 (3)C8—H80.9300
N1—C111.358 (3)C9—C101.394 (3)
N2—C101.321 (3)C9—H90.9300
N2—C121.361 (3)C10—H100.9300
N3—C131.317 (3)C11—C121.442 (3)
N3—N41.327 (3)C13—N71.434 (4)
N4—N51.310 (3)C13—N7'1.496 (4)
N5—N61.327 (3)O1—H1A0.8503
N6—C131.314 (3)O1—H1B0.8520
C1—C21.396 (3)O2—H2B0.8499
C1—H10.9300O2—H2A0.8500
C2—C31.363 (4)N7—N7i0.797 (6)
C2—H20.9300N7—N7'1.018 (5)
C3—C41.395 (4)N7—N7'i1.254 (5)
C3—H30.9300N7'—N7'i0.686 (6)
C4—C111.410 (3)N7'—N7i1.254 (5)
O1i—Sr1—O196.53 (7)C11—C4—C5119.4 (2)
O1i—Sr1—O2168.21 (5)C6—C5—C4121.5 (2)
O1—Sr1—O278.63 (5)C6—C5—H5119.3
O1i—Sr1—O2i78.63 (5)C4—C5—H5119.3
O1—Sr1—O2i168.21 (5)C5—C6—C7121.3 (2)
O2—Sr1—O2i108.08 (7)C5—C6—H6119.4
O1i—Sr1—N1i73.85 (5)C7—C6—H6119.4
O1—Sr1—N1i74.48 (5)C8—C7—C12117.8 (2)
O2—Sr1—N1i114.54 (5)C8—C7—C6123.0 (2)
O2i—Sr1—N1i93.80 (5)C12—C7—C6119.2 (2)
O1i—Sr1—N174.48 (5)C9—C8—C7119.9 (2)
O1—Sr1—N173.85 (5)C9—C8—H8120.0
O2—Sr1—N193.80 (5)C7—C8—H8120.0
O2i—Sr1—N1114.54 (5)C8—C9—C10118.2 (2)
N1i—Sr1—N1131.59 (8)C8—C9—H9120.9
O1i—Sr1—N2103.91 (5)C10—C9—H9120.9
O1—Sr1—N2118.66 (5)N2—C10—C9124.7 (2)
O2—Sr1—N269.86 (5)N2—C10—H10117.7
O2i—Sr1—N273.09 (5)C9—C10—H10117.7
N1i—Sr1—N2166.84 (5)N1—C11—C4123.1 (2)
N1—Sr1—N257.97 (5)N1—C11—C12118.00 (18)
O1i—Sr1—N2i118.66 (5)C4—C11—C12118.9 (2)
O1—Sr1—N2i103.91 (5)N2—C12—C7122.1 (2)
O2—Sr1—N2i73.09 (5)N2—C12—C11118.15 (19)
O2i—Sr1—N2i69.86 (5)C7—C12—C11119.7 (2)
N1i—Sr1—N2i57.97 (5)N6—C13—N3112.7 (2)
N1—Sr1—N2i166.84 (5)N6—C13—N7102.6 (2)
N2—Sr1—N2i114.53 (7)N3—C13—N7144.7 (3)
C1—N1—C11117.0 (2)N6—C13—N7'143.2 (3)
C1—N1—Sr1120.81 (16)N3—C13—N7'104.1 (2)
C11—N1—Sr1120.12 (14)N7—C13—N7'40.60 (19)
C10—N2—C12117.23 (19)Sr1—O1—H1A127.1
C10—N2—Sr1120.88 (14)Sr1—O1—H1B131.5
C12—N2—Sr1119.09 (14)H1A—O1—H1B98.8
C13—N3—N4104.26 (19)Sr1—O2—H2B120.3
N5—N4—N3109.29 (18)Sr1—O2—H2A128.2
N4—N5—N6109.49 (18)H2B—O2—H2A104.9
C13—N6—N5104.26 (19)N7i—N7—N7'86.5 (3)
N1—C1—C2124.0 (2)N7i—N7—N7'i54.1 (2)
N1—C1—H1118.0N7'—N7—N7'i33.1 (3)
C2—C1—H1118.0N7i—N7—C13157.9 (4)
C3—C2—C1118.8 (3)N7'—N7—C1373.0 (3)
C3—C2—H2120.6N7'i—N7—C13106.1 (3)
C1—C2—H2120.6N7'i—N7'—N792.7 (3)
C2—C3—C4119.8 (2)N7'i—N7'—N7i54.2 (2)
C2—C3—H3120.1N7—N7'—N7i39.4 (3)
C4—C3—H3120.1N7'i—N7'—C13159.0 (2)
C3—C4—C11117.2 (2)N7—N7'—C1366.4 (3)
C3—C4—C5123.4 (2)N7i—N7'—C13105.4 (3)
O1i—Sr1—N1—C158.23 (18)C1—N1—C11—C42.7 (3)
O1—Sr1—N1—C143.51 (18)Sr1—N1—C11—C4160.92 (17)
O2—Sr1—N1—C1120.51 (18)C1—N1—C11—C12176.1 (2)
O2i—Sr1—N1—C1127.64 (18)Sr1—N1—C11—C1220.3 (3)
N1i—Sr1—N1—C17.47 (17)C3—C4—C11—N11.4 (4)
N2—Sr1—N1—C1176.1 (2)C5—C4—C11—N1178.8 (2)
N2i—Sr1—N1—C1125.5 (3)C3—C4—C11—C12177.3 (2)
O1i—Sr1—N1—C11138.79 (17)C5—C4—C11—C122.4 (3)
O1—Sr1—N1—C11119.47 (17)C10—N2—C12—C71.1 (3)
O2—Sr1—N1—C1142.47 (16)Sr1—N2—C12—C7160.13 (16)
O2i—Sr1—N1—C1169.38 (17)C10—N2—C12—C11177.5 (2)
N1i—Sr1—N1—C11170.45 (17)Sr1—N2—C12—C1121.3 (2)
N2—Sr1—N1—C1120.89 (15)C8—C7—C12—N20.0 (3)
N2i—Sr1—N1—C1137.5 (3)C6—C7—C12—N2180.0 (2)
O1i—Sr1—N2—C10117.05 (17)C8—C7—C12—C11178.5 (2)
O1—Sr1—N2—C10137.34 (17)C6—C7—C12—C111.5 (3)
O2—Sr1—N2—C1073.43 (17)N1—C11—C12—N20.9 (3)
O2i—Sr1—N2—C1043.77 (17)C4—C11—C12—N2177.9 (2)
N1i—Sr1—N2—C1038.6 (3)N1—C11—C12—C7179.5 (2)
N1—Sr1—N2—C10178.36 (19)C4—C11—C12—C70.7 (3)
N2i—Sr1—N2—C1013.94 (16)N5—N6—C13—N30.6 (3)
O1i—Sr1—N2—C1282.42 (15)N5—N6—C13—N7179.0 (2)
O1—Sr1—N2—C1223.18 (17)N5—N6—C13—N7'178.2 (4)
O2—Sr1—N2—C1287.10 (15)N4—N3—C13—N60.5 (3)
O2i—Sr1—N2—C12155.71 (16)N4—N3—C13—N7178.8 (4)
N1i—Sr1—N2—C12160.9 (2)N4—N3—C13—N7'179.1 (2)
N1—Sr1—N2—C1221.11 (14)N6—C13—N7—N7i154.7 (17)
N2i—Sr1—N2—C12146.58 (16)N3—C13—N7—N7i26 (2)
C13—N3—N4—N50.3 (3)N7'—C13—N7—N7i22.7 (16)
N3—N4—N5—N60.1 (2)N6—C13—N7—N7'177.5 (4)
N4—N5—N6—C130.4 (3)N3—C13—N7—N7'3.2 (6)
C11—N1—C1—C22.2 (4)N6—C13—N7—N7'i178.9 (3)
Sr1—N1—C1—C2161.3 (2)N3—C13—N7—N7'i1.7 (6)
N1—C1—C2—C30.5 (4)N7'—C13—N7—N7'i1.4 (5)
C1—C2—C3—C40.8 (4)N7i—N7—N7'—N7'i10.9 (10)
C2—C3—C4—C110.4 (4)C13—N7—N7'—N7'i177.5 (8)
C2—C3—C4—C5179.3 (3)N7'i—N7—N7'—N7i10.9 (10)
C3—C4—C5—C6177.7 (3)C13—N7—N7'—N7i171.6 (7)
C11—C4—C5—C62.0 (4)N7i—N7—N7'—C13171.6 (7)
C4—C5—C6—C70.2 (5)N7'i—N7—N7'—C13177.5 (8)
C5—C6—C7—C8178.0 (3)N6—C13—N7'—N7'i11 (3)
C5—C6—C7—C121.9 (4)N3—C13—N7'—N7'i171 (2)
C12—C7—C8—C91.1 (4)N7—C13—N7'—N7'i7 (2)
C6—C7—C8—C9178.9 (3)N6—C13—N7'—N74.1 (6)
C7—C8—C9—C101.2 (4)N3—C13—N7'—N7178.1 (4)
C12—N2—C10—C91.1 (4)N6—C13—N7'—N7i1.3 (6)
Sr1—N2—C10—C9159.8 (2)N3—C13—N7'—N7i176.4 (3)
C8—C9—C10—N20.0 (4)N7—C13—N7'—N7i5.5 (4)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N5ii0.852.082.885 (3)158
O1—H1A···N4ii0.852.042.870 (2)167
O2—H2A···N6iii0.852.032.871 (3)173
O1—H1B···N30.852.042.887 (3)172
Symmetry codes: (ii) x+2, y+1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Sr(C12H8N2)2(H2O)4](C2N10)
Mr684.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.442 (3), 10.8974 (17), 16.189 (3)
β (°) 105.178 (2)
V3)2969.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2002)
Tmin, Tmax0.652, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
7165, 2621, 2226
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.04
No. of reflections2621
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N5i0.852.082.885 (3)158.3
O1—H1A···N4i0.852.042.870 (2)166.8
O2—H2A···N6ii0.852.032.871 (3)172.5
O1—H1B···N30.852.042.887 (3)172.4
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1, z.
 

Acknowledgements

This work was supported by the National Science Foundation of China (grant No. 21003103) and the Research Foundation of Xi'an University of Arts and Science (grant Nos. kyc201026 and kyc201011). The authors thank the Instrumental Analysis Center of Northwest University for data collection on the CCD facility.

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHartdegen, V., Klapötke, T. M. & Sproll, S. M. (2009). Inorg. Chem. 48, 9549–9556.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKlapötke, T. M., Sabate, C. M. & Stierstorfer, J. (2008). Z. Anorg. Allg. Chem. 634, 1867–1874.  Google Scholar
First citationKlapötke, T. M., Sabate, C. M. & Welch, J. M. (2009). Eur. J. Inorg. Chem. 2009, 769–776.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed. 45, 3584–3601.  Web of Science CrossRef CAS Google Scholar
First citationWang, W. T., Chen, S. P., Fan, G., Xie, G., Jiao, B. & Gao, S. (2009). J. Coord. Chem. 62, 1879–1886.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds