organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl-4-[3-(1H-imidazol-1-yl)prop­yl]-5-phenyl-4H-1,2,4-triazole dihydrate

aDepartment of Physics, Saveetha School of Engineering, Saveetha University, Chennai-5, India, bDepartment of Physics, Kunthavai Naachiar Government Arts College for Women (Autonomous), Thanjavur 7, India, cDepartment of Chemistry, Faculty of Arts and Sciences, Karadeniz Teknik University, Trabzon 61080, Turkey, and dSophisticated Analytical Instrumentation Facilities, Indian Institute of Technology, Madras, Chennai 36, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 23 September 2010; accepted 1 October 2010; online 9 October 2010)

In the title compound, C16H19N5·2H2O, the triazole ring makes dihedral angles of 70.61 (6) and 41.89 (8)°, respectively, with the imidazole and benzene rings. The water mol­ecules are involved in inter­molecular O—H⋯N and O—H⋯O hydrogen bonds, which stabilize the crystal packing.

Related literature

For a related structure, see: Rizzoli et al. (2009[Rizzoli, C., Marku, E. & Greci, L. (2009). Acta Cryst. E65, o663.]); Kalkan et al. (2007[Kalkan, H., Ustabaş, R., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2449-o2451.]). For bond lengths and angles in triazole rings, see: Thenmozhi et al. (2010[Thenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o558.]); Rizzoli et al. (2009[Rizzoli, C., Marku, E. & Greci, L. (2009). Acta Cryst. E65, o663.]); Dolzhenko et al. (2010[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o425.]); Ocak Ískeleli et al. (2005[Ocak Ískeleli, N., Işık, S., Sancak, K., Şaşmaz, S., Ünver, Y. & Er, M. (2005). Acta Cryst. C61, o363-o365.]); Ünver et al. (2010[Ünver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.]). For the biological activity of triazole Schiff bases, see: Thenmozhi et al. (2010[Thenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o558.]) and of 1,2,4-triazole derivatives, see: Ünver et al. (2010[Ünver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.]). For the search for and synthesis of new anti­biotics, see: Köysal et al. (2006[Köysal, Y., Işık, Ş., Sancak, K. & Ünver, Y. (2006). Acta Cryst. E62, o3907-o3909.]). For the synthesis, see: Ünver et al. (2009[Ünver, Y., Sancak, K., Tanak, H., Değirmencioğlu, I., Düğdü, E., Er, M. & Işık, Ş. (2009). J. Mol. Struct. 936, 46-55.]).

[Scheme 1]

Experimental

Crystal data
  • C16H19N5·2H2O

  • Mr = 317.39

  • Monoclinic, P 21 /c

  • a = 11.0787 (16) Å

  • b = 9.8428 (8) Å

  • c = 16.3289 (18) Å

  • β = 105.602 (9)°

  • V = 1715.0 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan North et al. (1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.821, Tmax = 0.876

  • 3030 measured reflections

  • 2868 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.029

  • 2 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.08

  • 2868 reflections

  • 226 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected geometric parameters (Å, °)

C7—N1 1.308 (2)
C7—N3 1.373 (2)
C8—N2 1.312 (2)
C8—N3 1.363 (2)
N1—N2 1.387 (2)
C8—N3—C7 105.09 (14)
C8—N3—C11 126.52 (14)
C7—N3—C11 128.05 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.91 (1) 1.98 (1) 2.882 (3) 172 (3)
O1—H1B⋯N2i 0.90 (1) 2.02 (1) 2.913 (2) 170 (3)
O2—H2A⋯N5ii 0.91 (1) 1.95 (1) 2.859 (3) 176 (2)
O2—H2B⋯O1iii 0.91 (1) 2.08 (2) 2.949 (3) 160 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ZORTEP (Zsolnai, 1997[Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The biological importance of imidazoles and triazoles has stimulated much work on these heterocycles. 1,2,4-Triazole is a basic aromatic ring and possesses good coordination ability due to the presence of nitrogen atoms (Thenmozhi et al.,2010). 1,2,4-Triazole compounds posses important pharmacology activities such as antifungal and antiviral activities. Examples of such compounds bearing the 1,2,4-Triazole residues are fluconazole, the powerful azole antifungal agent as well as the potent antiviral N-nucleoside ribavirin. Furthermore various 1,2,4-Triazole derivatives have been reported as fungicidal, insecticidal, antimicrobial as well as anticonvulsants, antidepressants and plant growth regulator anticoagulants (Ünver et al., 2010). 1,2,4-Triazole derivatives are also used to build polymetallic complexes. Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties. Some triazole Schiff bases also exhibit antiproliferative and anticancer activities (Thenmozhi et al., 2010). 1,2,4-Triazole moieties interact strongly with heme iron and aromatic substituents on the triazoles are very effective for interacting with the active site of aromatase. Furthermore, it was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatese inhibitors very useful for preventing breast cancer (Ünver et al., 2010). Some of the azole derivatives used as common antibiotics, such as amphotericin B, exhibit toxic effects on humans along with antimicrobial effects. Although different antimicrobial agents are used in the treatment of microbial infections, an increasing resistance to these drugs is observed. Therefore, the search for and synthesis of new antibiotics different from commonly used ones is of current importance (Köysal et al., 2006). In a search for new triazole compounds with better biological activity, the title compound (I), was synthesized. We report here the crystal structure of the title compound, (I) (Fig.1), a new 1,2,4-triazole derivative. The compound (I) crystallizes as a dihydrate, the bond lengths and angles (Table 1) are generally normal in the triazole ring (Thenmozhi et al., 2010; Rizzoli et al., 2009; Dolzhenko et al., 2010; Ocak Ískeleli et al., 2005; Ünver et al., 2010). Atom N3 has a trigonal configuration, the sum of the three bond angles around them being 360° (Kalkan et al., 2007). The dihedral angles between the planes A(N1/N2/C7/N3/C8), B(N4/C14/N5/C15/C16) and C(C1/C2/C3/C4/C5/C6) are A/B = 70.61 (6)°, A/C = 41.89 (8)° and B/C = 68.16 (7)°. The triazole ring is essentially planar with r.m.s deviation of 0.0046Å (Dolzhenko et al., 2010). The C—N bond lengths in the triazole ring of all molecules lie in the range of 1.260 (3)–1.349 (4) Å. These are longer than a typical double C N bond [1.269 (2) Å], but shorter than a C—N single bond [1.443 (4) Å], (Thenmozhi et al., 2010) indicating the possibility of electron delocalization. The N3–C11–C12–C13 torsion angle of 172.00 (15)° indicates that the triazole ring and the imidazole moiety has an E-configuration across the C11–C12 bond. This configuration is stabilized by an intramolecular C11–H11···N4 hydrogen bond with H11···N4 distance of 2.54 Å. The uncoordinated water molecules are involved in intermolecular O–H···O and O–H···N hydrogen bonds (Table 2), which stabilize the crystal packing.

Related literature top

For a related structure, see: Rizzoli et al. (2009); Kalkan et al. (2007). For bond lengths and angles in triazole rings, see: Thenmozhi et al. (2010); Rizzoli et al. (2009); Dolzhenko et al. (2010); Ocak Ískeleli et al. (2005); Ünver et al. (2010). For the biological activity of triazole Schiff bases, see: Thenmozhi et al. (2010) and of 1,2,4-Triazole derivatives, see: Ünver et al. ( 2010). For the search for and synthesis of new antibiotics, see: Köysal et al. (2006). For the synthesis, see: Ünver et al. (2009).

Experimental top

The compound was synthesized by published method (Ünver et al., 2009).

Refinement top

Water H atoms were located in a difference Fourier map and isotropically refined with O—H distance restraints of 0.90 (1) Å. All the other H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93Å (aromatic) and 0.97Å (methylene), N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.2Ueq or 1.5Ueq(parent atom). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Structure description top

The biological importance of imidazoles and triazoles has stimulated much work on these heterocycles. 1,2,4-Triazole is a basic aromatic ring and possesses good coordination ability due to the presence of nitrogen atoms (Thenmozhi et al.,2010). 1,2,4-Triazole compounds posses important pharmacology activities such as antifungal and antiviral activities. Examples of such compounds bearing the 1,2,4-Triazole residues are fluconazole, the powerful azole antifungal agent as well as the potent antiviral N-nucleoside ribavirin. Furthermore various 1,2,4-Triazole derivatives have been reported as fungicidal, insecticidal, antimicrobial as well as anticonvulsants, antidepressants and plant growth regulator anticoagulants (Ünver et al., 2010). 1,2,4-Triazole derivatives are also used to build polymetallic complexes. Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties. Some triazole Schiff bases also exhibit antiproliferative and anticancer activities (Thenmozhi et al., 2010). 1,2,4-Triazole moieties interact strongly with heme iron and aromatic substituents on the triazoles are very effective for interacting with the active site of aromatase. Furthermore, it was reported that compounds having triazole moieties such as Vorozole, Anastrozole and Letrozole appear to be very effective aromatese inhibitors very useful for preventing breast cancer (Ünver et al., 2010). Some of the azole derivatives used as common antibiotics, such as amphotericin B, exhibit toxic effects on humans along with antimicrobial effects. Although different antimicrobial agents are used in the treatment of microbial infections, an increasing resistance to these drugs is observed. Therefore, the search for and synthesis of new antibiotics different from commonly used ones is of current importance (Köysal et al., 2006). In a search for new triazole compounds with better biological activity, the title compound (I), was synthesized. We report here the crystal structure of the title compound, (I) (Fig.1), a new 1,2,4-triazole derivative. The compound (I) crystallizes as a dihydrate, the bond lengths and angles (Table 1) are generally normal in the triazole ring (Thenmozhi et al., 2010; Rizzoli et al., 2009; Dolzhenko et al., 2010; Ocak Ískeleli et al., 2005; Ünver et al., 2010). Atom N3 has a trigonal configuration, the sum of the three bond angles around them being 360° (Kalkan et al., 2007). The dihedral angles between the planes A(N1/N2/C7/N3/C8), B(N4/C14/N5/C15/C16) and C(C1/C2/C3/C4/C5/C6) are A/B = 70.61 (6)°, A/C = 41.89 (8)° and B/C = 68.16 (7)°. The triazole ring is essentially planar with r.m.s deviation of 0.0046Å (Dolzhenko et al., 2010). The C—N bond lengths in the triazole ring of all molecules lie in the range of 1.260 (3)–1.349 (4) Å. These are longer than a typical double C N bond [1.269 (2) Å], but shorter than a C—N single bond [1.443 (4) Å], (Thenmozhi et al., 2010) indicating the possibility of electron delocalization. The N3–C11–C12–C13 torsion angle of 172.00 (15)° indicates that the triazole ring and the imidazole moiety has an E-configuration across the C11–C12 bond. This configuration is stabilized by an intramolecular C11–H11···N4 hydrogen bond with H11···N4 distance of 2.54 Å. The uncoordinated water molecules are involved in intermolecular O–H···O and O–H···N hydrogen bonds (Table 2), which stabilize the crystal packing.

For a related structure, see: Rizzoli et al. (2009); Kalkan et al. (2007). For bond lengths and angles in triazole rings, see: Thenmozhi et al. (2010); Rizzoli et al. (2009); Dolzhenko et al. (2010); Ocak Ískeleli et al. (2005); Ünver et al. (2010). For the biological activity of triazole Schiff bases, see: Thenmozhi et al. (2010) and of 1,2,4-Triazole derivatives, see: Ünver et al. ( 2010). For the search for and synthesis of new antibiotics, see: Köysal et al. (2006). For the synthesis, see: Ünver et al. (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axiS. Intermolecular O—H···O and O—H···N hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Crystal Packing of the title compound with hydrogen bonds.
3-Ethyl-4-[3-(1H-imidazol-1-yl)propyl]-5-phenyl-4H-1,2,4-triazole dihydrate top
Crystal data top
C16H19N5·2H2OF(000) = 680
Mr = 317.39Dx = 1.229 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
a = 11.0787 (16) ÅCell parameters from 25 reflections
b = 9.8428 (8) Åθ = 20–30°
c = 16.3289 (18) ŵ = 0.68 mm1
β = 105.602 (9)°T = 293 K
V = 1715.0 (3) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4 Diffractometer2166 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 64.9°, θmin = 4.1°
ω–2τ scanh = 013
Absorption correction: ψ scan
North et al. (1968)
k = 011
Tmin = 0.821, Tmax = 0.876l = 1918
3030 measured reflections2 standard reflections every 60 min
2868 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.2107P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2868 reflectionsΔρmax = 0.19 e Å3
226 parametersΔρmin = 0.18 e Å3
6 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0246 (12)
Crystal data top
C16H19N5·2H2OV = 1715.0 (3) Å3
Mr = 317.39Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.0787 (16) ŵ = 0.68 mm1
b = 9.8428 (8) ÅT = 293 K
c = 16.3289 (18) Å0.30 × 0.20 × 0.20 mm
β = 105.602 (9)°
Data collection top
Enraf–Nonius CAD-4 Diffractometer2166 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al. (1968)
Rint = 0.029
Tmin = 0.821, Tmax = 0.8762 standard reflections every 60 min
3030 measured reflections intensity decay: none
2868 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.19 e Å3
2868 reflectionsΔρmin = 0.18 e Å3
226 parameters
Special details top

Experimental. Number of psi-scan sets used was 5 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.10619 (16)0.09615 (18)0.08555 (11)0.0519 (4)
H11.05540.02180.08780.062*
C21.23425 (18)0.0845 (2)0.11690 (12)0.0609 (5)
H21.26920.00260.14000.073*
C31.31051 (18)0.1935 (2)0.11417 (12)0.0655 (6)
H31.39700.18550.13540.079*
C41.25803 (18)0.3152 (2)0.07964 (12)0.0623 (5)
H41.30940.38930.07790.075*
C51.13010 (17)0.32727 (17)0.04779 (11)0.0509 (4)
H51.09560.40920.02420.061*
C61.05207 (15)0.21742 (16)0.05067 (10)0.0429 (4)
C70.91650 (15)0.23322 (16)0.01343 (10)0.0430 (4)
C80.71432 (16)0.23090 (19)0.00821 (11)0.0529 (5)
C90.58650 (18)0.2091 (3)0.00312 (15)0.0772 (6)
H9A0.56890.11240.00050.093*
H9B0.58560.24060.05920.093*
C100.4853 (2)0.2794 (3)0.06124 (19)0.1100 (10)
H10A0.50270.37500.06000.165*
H10B0.40660.26460.04860.165*
H10C0.48130.24410.11670.165*
C110.83527 (17)0.11825 (17)0.12819 (10)0.0496 (4)
H11A0.77540.15760.15510.060*
H11B0.91850.13590.16480.060*
C120.81484 (18)0.03413 (18)0.12166 (11)0.0571 (5)
H12A0.86670.07320.08840.069*
H12B0.72790.05290.09250.069*
C130.8473 (2)0.0997 (2)0.20926 (13)0.0658 (5)
H13A0.79180.06430.24110.079*
H13B0.83350.19690.20290.079*
C141.0814 (2)0.1225 (2)0.23923 (13)0.0618 (5)
H141.08040.18140.19450.074*
C151.1436 (2)0.0064 (2)0.34639 (14)0.0700 (6)
H151.19590.05430.39120.084*
C161.0180 (2)0.0092 (2)0.32597 (12)0.0655 (5)
H160.96850.05840.35320.079*
N10.86819 (13)0.29858 (15)0.05759 (9)0.0524 (4)
N20.73910 (14)0.29737 (16)0.07142 (10)0.0572 (4)
N30.82282 (12)0.18678 (13)0.04670 (8)0.0455 (4)
N40.97689 (15)0.07477 (15)0.25699 (9)0.0564 (4)
N51.18406 (17)0.07686 (18)0.29187 (11)0.0692 (5)
O10.60569 (16)0.10016 (18)0.26136 (10)0.0807 (5)
O20.43707 (15)0.11055 (19)0.28415 (13)0.0920 (6)
H1A0.554 (2)0.030 (2)0.2642 (16)0.127 (11)*
H1B0.650 (2)0.121 (3)0.3147 (9)0.134 (11)*
H2A0.3579 (13)0.096 (2)0.2882 (17)0.105 (9)*
H2B0.444 (2)0.2016 (12)0.277 (2)0.154 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0520 (10)0.0489 (10)0.0551 (10)0.0035 (8)0.0146 (8)0.0050 (8)
C20.0562 (11)0.0673 (12)0.0575 (11)0.0090 (9)0.0124 (8)0.0122 (9)
C30.0467 (11)0.0881 (15)0.0583 (11)0.0024 (10)0.0086 (8)0.0020 (10)
C40.0537 (11)0.0680 (12)0.0668 (12)0.0186 (9)0.0190 (9)0.0075 (10)
C50.0543 (11)0.0451 (9)0.0560 (10)0.0047 (8)0.0193 (8)0.0015 (8)
C60.0464 (10)0.0417 (8)0.0423 (8)0.0029 (7)0.0152 (7)0.0023 (7)
C70.0455 (9)0.0376 (8)0.0483 (9)0.0039 (7)0.0169 (7)0.0005 (7)
C80.0472 (10)0.0528 (10)0.0598 (10)0.0034 (8)0.0163 (8)0.0020 (8)
C90.0505 (12)0.0929 (16)0.0929 (15)0.0052 (11)0.0271 (11)0.0124 (13)
C100.0514 (14)0.151 (3)0.131 (2)0.0045 (15)0.0297 (14)0.031 (2)
C110.0578 (10)0.0464 (9)0.0489 (9)0.0042 (8)0.0218 (8)0.0010 (7)
C120.0665 (12)0.0479 (10)0.0615 (11)0.0122 (8)0.0252 (9)0.0007 (8)
C130.0780 (14)0.0530 (11)0.0757 (13)0.0041 (10)0.0366 (11)0.0124 (10)
C140.0839 (15)0.0492 (10)0.0594 (11)0.0147 (10)0.0314 (11)0.0078 (9)
C150.0886 (16)0.0605 (12)0.0631 (12)0.0040 (11)0.0240 (11)0.0049 (10)
C160.0951 (16)0.0532 (11)0.0590 (11)0.0097 (10)0.0394 (11)0.0041 (9)
N10.0461 (8)0.0548 (9)0.0562 (8)0.0011 (7)0.0137 (6)0.0098 (7)
N20.0439 (9)0.0624 (9)0.0638 (9)0.0005 (7)0.0121 (7)0.0096 (8)
N30.0477 (8)0.0424 (7)0.0485 (7)0.0045 (6)0.0163 (6)0.0002 (6)
N40.0741 (11)0.0474 (8)0.0559 (8)0.0066 (7)0.0314 (8)0.0092 (7)
N50.0786 (12)0.0630 (11)0.0704 (10)0.0143 (9)0.0278 (9)0.0130 (9)
O10.0767 (11)0.0899 (12)0.0706 (10)0.0057 (9)0.0114 (8)0.0019 (8)
O20.0619 (10)0.0805 (12)0.1268 (15)0.0036 (8)0.0135 (9)0.0038 (10)
Geometric parameters (Å, º) top
C1—C21.377 (2)C11—N31.465 (2)
C1—C61.387 (2)C11—C121.516 (2)
C1—H10.9300C11—H11A0.9700
C2—C31.373 (3)C11—H11B0.9700
C2—H20.9300C12—C131.522 (3)
C3—C41.384 (3)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.377 (3)C13—N41.459 (2)
C4—H40.9300C13—H13A0.9700
C5—C61.393 (2)C13—H13B0.9700
C5—H50.9300C14—N51.307 (3)
C6—C71.469 (2)C14—N41.352 (2)
C7—N11.308 (2)C14—H140.9300
C7—N31.373 (2)C15—C161.341 (3)
C8—N21.312 (2)C15—N51.371 (3)
C8—N31.363 (2)C15—H150.9300
C8—C91.492 (3)C16—N41.372 (2)
C9—C101.485 (3)C16—H160.9300
C9—H9A0.9700N1—N21.387 (2)
C9—H9B0.9700O1—H1A0.906 (10)
C10—H10A0.9600O1—H1B0.902 (10)
C10—H10B0.9600O2—H2A0.909 (9)
C10—H10C0.9600O2—H2B0.910 (10)
C2—C1—C6120.80 (16)N3—C11—H11A108.6
C2—C1—H1119.6C12—C11—H11A108.6
C6—C1—H1119.6N3—C11—H11B108.6
C3—C2—C1120.29 (18)C12—C11—H11B108.6
C3—C2—H2119.9H11A—C11—H11B107.6
C1—C2—H2119.9C11—C12—C13111.13 (15)
C2—C3—C4119.64 (18)C11—C12—H12A109.4
C2—C3—H3120.2C13—C12—H12A109.4
C4—C3—H3120.2C11—C12—H12B109.4
C5—C4—C3120.35 (18)C13—C12—H12B109.4
C5—C4—H4119.8H12A—C12—H12B108.0
C3—C4—H4119.8N4—C13—C12112.37 (15)
C4—C5—C6120.35 (17)N4—C13—H13A109.1
C4—C5—H5119.8C12—C13—H13A109.1
C6—C5—H5119.8N4—C13—H13B109.1
C1—C6—C5118.56 (16)C12—C13—H13B109.1
C1—C6—C7122.80 (14)H13A—C13—H13B107.9
C5—C6—C7118.59 (15)N5—C14—N4112.54 (18)
N1—C7—N3110.00 (14)N5—C14—H14123.7
N1—C7—C6123.22 (14)N4—C14—H14123.7
N3—C7—C6126.76 (14)C16—C15—N5110.43 (19)
N2—C8—N3110.02 (15)C16—C15—H15124.8
N2—C8—C9125.15 (17)N5—C15—H15124.8
N3—C8—C9124.82 (17)C15—C16—N4106.56 (17)
C10—C9—C8113.94 (19)C15—C16—H16126.7
C10—C9—H9A108.8N4—C16—H16126.7
C8—C9—H9A108.8C7—N1—N2107.35 (13)
C10—C9—H9B108.8C8—N2—N1107.52 (13)
C8—C9—H9B108.8C8—N3—C7105.09 (14)
H9A—C9—H9B107.7C8—N3—C11126.52 (14)
C9—C10—H10A109.5C7—N3—C11128.05 (14)
C9—C10—H10B109.5C14—N4—C16105.73 (17)
H10A—C10—H10B109.5C14—N4—C13127.14 (17)
C9—C10—H10C109.5C16—N4—C13127.00 (17)
H10A—C10—H10C109.5C14—N5—C15104.73 (18)
H10B—C10—H10C109.5H1A—O1—H1B108.4 (14)
N3—C11—C12114.56 (14)H2A—O2—H2B106.5 (14)
C6—C1—C2—C30.1 (3)C6—C7—N3—C8177.38 (15)
C1—C2—C3—C40.1 (3)N1—C7—N3—C11174.85 (15)
C2—C3—C4—C50.3 (3)C6—C7—N3—C113.7 (3)
C3—C4—C5—C60.6 (3)C12—C11—N3—C884.7 (2)
C2—C1—C6—C50.2 (3)C12—C11—N3—C7102.89 (19)
C2—C1—C6—C7177.55 (16)N5—C14—N4—C160.8 (2)
C4—C5—C6—C10.5 (2)N5—C14—N4—C13176.98 (15)
C4—C5—C6—C7177.98 (15)C15—C16—N4—C140.6 (2)
C1—C6—C7—N1137.55 (18)C15—C16—N4—C13176.81 (16)
C5—C6—C7—N139.8 (2)C12—C13—N4—C1467.3 (2)
C1—C6—C7—N344.1 (2)C12—C13—N4—C16108.1 (2)
C5—C6—C7—N3138.58 (17)N4—C14—N5—C150.6 (2)
N2—C8—C9—C104.5 (3)C16—C15—N5—C140.2 (2)
N3—C8—C9—C10174.1 (2)C7—N3—C11—C12102.89 (19)
N3—C11—C12—C13172.00 (15)C6—C7—N3—C113.7 (3)
C11—C12—C13—N458.7 (2)C6—C7—N3—C8177.38 (15)
N5—C15—C16—N40.3 (2)N1—C7—N3—C11174.85 (15)
N3—C7—N1—N20.85 (18)N2—C8—N3—C11174.88 (15)
C6—C7—N1—N2177.79 (14)C9—C8—N3—C113.9 (3)
N3—C8—N2—N10.6 (2)C5—C6—C7—N139.8 (2)
C9—C8—N2—N1178.21 (19)N1—C7—C6—C1137.55 (18)
C7—N1—N2—C80.15 (19)N3—C7—C6—C144.1 (2)
N2—C8—N3—C71.09 (19)N2—C8—C9—C104.5 (3)
C9—C8—N3—C7177.73 (19)C10—C9—C8—N3174.1 (2)
N2—C8—N3—C11174.88 (15)N4—C13—C12—C1158.7 (2)
C9—C8—N3—C113.9 (3)N3—C11—C12—C13172.00 (15)
N1—C7—N3—C81.19 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.91 (1)1.98 (1)2.882 (3)172 (3)
O1—H1B···N2i0.90 (1)2.02 (1)2.913 (2)170 (3)
O2—H2A···N5ii0.91 (1)1.95 (1)2.859 (3)176 (2)
O2—H2B···O1iii0.91 (1)2.08 (2)2.949 (3)160 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H19N5·2H2O
Mr317.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.0787 (16), 9.8428 (8), 16.3289 (18)
β (°) 105.602 (9)
V3)1715.0 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4 Diffractometer
Absorption correctionψ scan
North et al. (1968)
Tmin, Tmax0.821, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
3030, 2868, 2166
Rint0.029
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.08
No. of reflections2868
No. of parameters226
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ZORTEP (Zsolnai, 1997).

Selected geometric parameters (Å, º) top
C7—N11.308 (2)C8—N31.363 (2)
C7—N31.373 (2)N1—N21.387 (2)
C8—N21.312 (2)
C8—N3—C7105.09 (14)C7—N3—C11128.05 (14)
C8—N3—C11126.52 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.906 (10)1.982 (11)2.882 (3)172 (3)
O1—H1B···N2i0.902 (10)2.020 (11)2.913 (2)170 (3)
O2—H2A···N5ii0.909 (9)1.952 (10)2.859 (3)176 (2)
O2—H2B···O1iii0.910 (10)2.076 (15)2.949 (3)160 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

DÜ and ED thank the Research Fund of Karadeniz Technical University for its support of this work.

References

First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKalkan, H., Ustabaş, R., Sancak, K., Ünver, Y. & Vázquez-López, E. M. (2007). Acta Cryst. E63, o2449–o2451.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKöysal, Y., Işık, Ş., Sancak, K. & Ünver, Y. (2006). Acta Cryst. E62, o3907–o3909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOcak Ískeleli, N., Işık, S., Sancak, K., Şaşmaz, S., Ünver, Y. & Er, M. (2005). Acta Cryst. C61, o363–o365.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRizzoli, C., Marku, E. & Greci, L. (2009). Acta Cryst. E65, o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThenmozhi, M., Kavitha, T., Reddy, B. P., Vijayakumar, V. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o558.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÜnver, Y., Köysal, Y., Tanak, H., Ünlüer, D. & Işık, Ş. (2010). Acta Cryst. E66, o1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÜnver, Y., Sancak, K., Tanak, H., Değirmencioğlu, I., Düğdü, E., Er, M. & Işık, Ş. (2009). J. Mol. Struct. 936, 46–55.  Google Scholar
First citationZsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds