organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Dimeth­­oxy­phen­yl)-N′-(4-hy­dr­oxy­pheneth­yl)urea

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 24 September 2010; accepted 27 September 2010; online 2 October 2010)

In the title compound, C17H20N2O4, the 2,5-dimeth­oxy­phenyl unit is almost planar, with an r.m.s. deviation of 0.015 Å. The dihedral angle between the 2,5-dimeth­oxy­phenyl ring and the urea plane is 20.95 (8)°. The H atoms of the urea NH groups are positioned syn to each other. The mol­ecular structure is stabilized by a short intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

For general background to tyrosinase, see: Kubo et al. (2000[Kubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749-1755.]); Perez-Gilbert & Garcia-Carmona (2001[Perez-Gilbert, M. & Garcia-Carmona, F. (2001). Biochem. Biophys. Res. Commun. 285, 257-261.]). For the development of tyrosinase inhibitors, see: Shiino et al. (2001[Shiino, M., Watanabe, Y. & Umezawa, K. (2001). Bioorg. Med. Chem. 9, 1233-1240.]); Khan et al. (2006[Khan, K. M., Maharvi, G. M., Khan, M. T. H., Shaikh, A. J., Perveen, S., Begum, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem. 14, 344-351.]); Garcia & Fulrton (1996[Garcia, A. & Fulrton, J. E. (1996). Dermatol. Surg. 22, 443-447.]); Kojima et al. (1995[Kojima, S., Yamaguch, K., Morita, K., Ueno, Y. & Paolo, R. (1995). Biol. Pharm. Bull. 18, 1076-1080.]); Cabanes et al. (1994[Cabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982-985.]); Lemic-Stojcevic et al. 1995[Lemic-Stojcevic, L., Nias, A. H. & Breathnach, A. S. (1995). Exp. Dermatol. 4, 79-81.]); Casanola-Martin et al. (2006[Casanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324-330.]); Thanigaimalai et al. (2010[Thanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991-2993.]); Passi & Nazzaro-Porro (1981[Passi, S. & Nazzaro-Porro, M. (1981). Br. J. Dermatol. 104, 659-665.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O4

  • Mr = 316.35

  • Monoclinic, P 21 /n

  • a = 10.7275 (6) Å

  • b = 9.6016 (5) Å

  • c = 16.9388 (10) Å

  • β = 107.838 (2)°

  • V = 1660.84 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.31 × 0.27 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 13358 measured reflections

  • 3184 independent reflections

  • 2296 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.186

  • S = 1.06

  • 3184 reflections

  • 218 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O20 0.82 (3) 2.23 (2) 2.617 (3) 109 (2)
N7—H7⋯O19i 0.82 (3) 2.48 (3) 3.182 (3) 144 (2)
N10—H10⋯O19i 0.86 (3) 2.23 (3) 3.005 (3) 150 (2)
O19—H19⋯O9ii 0.86 (4) 1.80 (4) 2.654 (3) 172 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Tyrosinase known as a polyphenol oxidase, is a multifunctional copper-containing enzyme widely distributed in nature. It is the key enzyme in the undesirable browning of fruits and vegetables, and coloring of skin, hair, and eyes in animals (Kubo et al., 2000; Perez-Gilbert & Garcia-Carmona, 2001). Nowadays, tyrosinase inhibitors are thought to be clinically useful for the treatment of some dermatological disorders associated with melanin hyperpigmentation (Shiino et al., 2001) and useful in cosmetic products and food industry (Khan et al., 2006). Recently, various tyrosinase inhibitors have been reported such as hydroquinone (Garcia & Fulrton, 1996), ascorbic acid derivatives (Kojima et al., 1995), kojic acid (Cabanes et al., 1994), azelaic acid (Lemic-Stojcevic et al., 1995), arbutin (Casanola-Martin et al., 2006) and N-phenylthiourea (PTU) (Thanigaimalai et al., 2010). Most of the tyrosinase inhibitors are phenol/catechol derivatives, structurally similar to tyrosine or L-DOPA, which act as suicide substrates of tyrosinase (Passi & Nazzaro-Porro, 1981). However, most of them are not potent enough to put into practical use due to their weak individual activities or safety concerns. Undoubtedly, it is required to search and develop novel tyrosinase inhibitors with better activities together with lower side effects. In continuing our research on the development of tyrosinase inhibitors for new whitening agents, we have synthesized the title compound, (I), from the reaction of 2-(4-hydroxyphenyl)ethyl amine and 2,5-dimethoxyphenyl isocyanate under ambient condition. Here, we report the crystal structure of the title compound, (I).

The 2,5-dimethoxyphenyl moiety is almost planar with r.m.s. deviation of 0.015 Å from the corresponding least-squares plane defined by the nine constituent atoms. The dihedral angle between the phenyl ring and the plane of urea moiety is 20.95 (8) °. The molecular structure is stabilized by a short intramolecular N7—H7···O20 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1). The H atoms of the NH groups of urea are positioned syn to each other.

Related literature top

For general background to tyrosinase, see: Kubo et al. (2000); Perez-Gilbert & Garcia-Carmona (2001). For the development of tyrosinase inhibitors, see: Shiino et al. (2001); Khan et al. (2006); Garcia & Fulrton (1996); Kojima et al. (1995); Cabanes et al. (1994); Lemic-Stojcevic et al. 1995); Casanola-Martin et al. (2006); Thanigaimalai et al. (2010); Passi & Nazzaro-Porro (1981).

Experimental top

The tyramine and 2,5-dimethoxyphenyl isocyanate were purchased from Sigma Chemical Co. Solvents used for organic synthesis were redistilled before use. All other chemicals and solvents were of analytical grade and used without further purification. The title compound (I) was prepared from the reaction of 2-(4-hydroxyphenyl)ethyl amine (0.20 g, 1 mmol) with 2,5-dimethoxyphenyl isocyanate (0.18 g, 1.2 mmol) in acetonitrile (8 ml) and added 4-(dimethylamino)pyridine (0.06 g, 0.5 mmol) as a catalyst, with stirring. The reaction was completed within 5 h at room temperature. The solvents were removed under reduced pressure. The solids collected and washed with dichloromethane. Removal of the solvent gave a light yellow solid (69%, m.p. 436 K). Single crystals were obtained by slow evaporation of the ethanol at room temperature.

Refinement top

The H atoms of the NH and OH groups were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and metylene, and 1.5Ueq(C) for methyl H atoms.

Structure description top

Tyrosinase known as a polyphenol oxidase, is a multifunctional copper-containing enzyme widely distributed in nature. It is the key enzyme in the undesirable browning of fruits and vegetables, and coloring of skin, hair, and eyes in animals (Kubo et al., 2000; Perez-Gilbert & Garcia-Carmona, 2001). Nowadays, tyrosinase inhibitors are thought to be clinically useful for the treatment of some dermatological disorders associated with melanin hyperpigmentation (Shiino et al., 2001) and useful in cosmetic products and food industry (Khan et al., 2006). Recently, various tyrosinase inhibitors have been reported such as hydroquinone (Garcia & Fulrton, 1996), ascorbic acid derivatives (Kojima et al., 1995), kojic acid (Cabanes et al., 1994), azelaic acid (Lemic-Stojcevic et al., 1995), arbutin (Casanola-Martin et al., 2006) and N-phenylthiourea (PTU) (Thanigaimalai et al., 2010). Most of the tyrosinase inhibitors are phenol/catechol derivatives, structurally similar to tyrosine or L-DOPA, which act as suicide substrates of tyrosinase (Passi & Nazzaro-Porro, 1981). However, most of them are not potent enough to put into practical use due to their weak individual activities or safety concerns. Undoubtedly, it is required to search and develop novel tyrosinase inhibitors with better activities together with lower side effects. In continuing our research on the development of tyrosinase inhibitors for new whitening agents, we have synthesized the title compound, (I), from the reaction of 2-(4-hydroxyphenyl)ethyl amine and 2,5-dimethoxyphenyl isocyanate under ambient condition. Here, we report the crystal structure of the title compound, (I).

The 2,5-dimethoxyphenyl moiety is almost planar with r.m.s. deviation of 0.015 Å from the corresponding least-squares plane defined by the nine constituent atoms. The dihedral angle between the phenyl ring and the plane of urea moiety is 20.95 (8) °. The molecular structure is stabilized by a short intramolecular N7—H7···O20 hydrogen bond (Fig. 1). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the molecules into a three-dimensional network (Fig. 2, Table 1). The H atoms of the NH groups of urea are positioned syn to each other.

For general background to tyrosinase, see: Kubo et al. (2000); Perez-Gilbert & Garcia-Carmona (2001). For the development of tyrosinase inhibitors, see: Shiino et al. (2001); Khan et al. (2006); Garcia & Fulrton (1996); Kojima et al. (1995); Cabanes et al. (1994); Lemic-Stojcevic et al. 1995); Casanola-Martin et al. (2006); Thanigaimalai et al. (2010); Passi & Nazzaro-Porro (1981).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (l), showing the atom-numbering scheme and 50% probability ellipsoids. Intramolecular N—H···O bond is shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing 3-D network of molecules linked by intermolecular N—H···O and O—H···O hydrogen bonds (dashed lines).
N-(2,5-Dimethoxyphenyl)-N'-(4-hydroxyphenethyl)urea top
Crystal data top
C17H20N2O4F(000) = 672
Mr = 316.35Dx = 1.265 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5519 reflections
a = 10.7275 (6) Åθ = 2.5–27.8°
b = 9.6016 (5) ŵ = 0.09 mm1
c = 16.9388 (10) ÅT = 296 K
β = 107.838 (2)°Needle, colourless
V = 1660.84 (16) Å30.31 × 0.27 × 0.13 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.044
φ and ω scansθmax = 26.0°, θmin = 2.0°
13358 measured reflectionsh = 136
3184 independent reflectionsk = 119
2296 reflections with I > 2σ(I)l = 2016
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0966P)2 + 0.4089P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.186(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.32 e Å3
3184 reflectionsΔρmin = 0.46 e Å3
218 parameters
Crystal data top
C17H20N2O4V = 1660.84 (16) Å3
Mr = 316.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7275 (6) ŵ = 0.09 mm1
b = 9.6016 (5) ÅT = 296 K
c = 16.9388 (10) Å0.31 × 0.27 × 0.13 mm
β = 107.838 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2296 reflections with I > 2σ(I)
13358 measured reflectionsRint = 0.044
3184 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.186H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.32 e Å3
3184 reflectionsΔρmin = 0.46 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3898 (2)0.5854 (2)0.12845 (14)0.0581 (5)
C20.5212 (2)0.6136 (3)0.13837 (16)0.0698 (7)
C30.5565 (3)0.6644 (3)0.0720 (2)0.0856 (8)
H30.6440.68350.07830.103*
C40.4643 (3)0.6869 (3)0.00277 (19)0.0845 (8)
H40.48960.72010.04710.101*
C50.3347 (3)0.6610 (3)0.01298 (15)0.0724 (7)
C60.2967 (2)0.6085 (2)0.05238 (14)0.0636 (6)
H60.2090.5890.04520.076*
N70.35963 (18)0.5297 (2)0.19699 (12)0.0639 (5)
H70.423 (3)0.498 (3)0.2325 (16)0.068 (7)*
C80.24229 (19)0.5317 (2)0.21258 (12)0.0540 (5)
O90.14248 (14)0.58188 (19)0.16417 (9)0.0701 (5)
N100.24242 (19)0.4718 (2)0.28412 (11)0.0638 (5)
H100.315 (3)0.441 (3)0.3168 (16)0.075 (8)*
C110.1271 (2)0.4629 (3)0.31035 (13)0.0683 (7)
H11A0.13420.38140.34530.082*
H11B0.05140.45010.26180.082*
C120.1046 (2)0.5896 (3)0.35756 (13)0.0684 (7)
H12A0.09490.67060.3220.082*
H12B0.02310.57740.37030.082*
C130.21277 (19)0.6172 (2)0.43716 (13)0.0558 (5)
C140.2326 (3)0.5296 (3)0.50382 (15)0.0820 (8)
H140.17920.45190.49920.098*
C150.3299 (3)0.5540 (3)0.57772 (16)0.0874 (9)
H150.34130.49260.62190.105*
C160.40944 (19)0.6679 (2)0.58626 (13)0.0597 (6)
C170.3892 (2)0.7585 (2)0.52187 (14)0.0638 (6)
H170.44040.83830.52740.077*
C180.2917 (2)0.7315 (2)0.44770 (14)0.0654 (6)
H180.27980.79350.40380.078*
O190.50449 (17)0.6876 (2)0.66089 (11)0.0816 (6)
H190.552 (3)0.759 (4)0.658 (2)0.122*
O200.60539 (16)0.5880 (3)0.21599 (12)0.0954 (7)
C210.7414 (3)0.6140 (7)0.2294 (2)0.1518 (19)
H21A0.78980.59140.28570.228*
H21B0.75410.71050.21920.228*
H21C0.77190.55740.19230.228*
O220.2495 (2)0.6902 (3)0.08960 (12)0.0991 (7)
C230.1155 (4)0.6852 (3)0.10046 (19)0.1056 (11)
H23A0.06810.70780.15690.158*
H23B0.0940.75120.0640.158*
H23C0.09190.59330.08790.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0566 (11)0.0614 (13)0.0551 (12)0.0002 (9)0.0154 (10)0.0068 (10)
C20.0567 (13)0.0777 (16)0.0735 (15)0.0004 (11)0.0175 (12)0.0106 (12)
C30.0665 (15)0.097 (2)0.100 (2)0.0084 (14)0.0355 (15)0.0010 (17)
C40.0879 (18)0.0901 (19)0.0855 (19)0.0109 (15)0.0411 (16)0.0065 (15)
C50.0828 (16)0.0724 (16)0.0603 (14)0.0089 (12)0.0195 (12)0.0028 (11)
C60.0610 (12)0.0702 (15)0.0565 (13)0.0088 (10)0.0135 (10)0.0019 (11)
N70.0488 (10)0.0852 (14)0.0512 (11)0.0095 (9)0.0059 (8)0.0050 (9)
C80.0531 (11)0.0588 (12)0.0426 (10)0.0045 (9)0.0037 (9)0.0033 (9)
O90.0538 (8)0.0941 (12)0.0551 (9)0.0151 (8)0.0057 (7)0.0144 (8)
N100.0603 (11)0.0815 (13)0.0453 (10)0.0137 (9)0.0100 (8)0.0071 (9)
C110.0644 (13)0.0858 (17)0.0483 (12)0.0152 (11)0.0079 (10)0.0045 (11)
C120.0465 (11)0.1008 (18)0.0511 (12)0.0057 (11)0.0050 (9)0.0050 (12)
C130.0456 (10)0.0698 (14)0.0466 (11)0.0055 (9)0.0061 (8)0.0026 (10)
C140.0843 (17)0.0838 (17)0.0614 (14)0.0297 (14)0.0020 (12)0.0050 (13)
C150.1003 (19)0.0795 (17)0.0587 (14)0.0219 (15)0.0109 (13)0.0176 (13)
C160.0501 (11)0.0611 (13)0.0541 (12)0.0033 (9)0.0044 (9)0.0008 (10)
C170.0597 (12)0.0574 (12)0.0646 (13)0.0045 (10)0.0047 (10)0.0023 (10)
C180.0679 (14)0.0651 (14)0.0544 (12)0.0060 (11)0.0056 (10)0.0120 (10)
O190.0738 (11)0.0760 (12)0.0659 (10)0.0059 (8)0.0214 (8)0.0041 (8)
O200.0496 (9)0.1491 (19)0.0801 (12)0.0044 (10)0.0088 (8)0.0044 (12)
C210.0506 (16)0.283 (6)0.114 (3)0.004 (2)0.0139 (17)0.020 (3)
O220.0948 (14)0.1328 (18)0.0650 (11)0.0083 (12)0.0173 (10)0.0177 (11)
C230.136 (3)0.0730.0813 (19)0.0271 (17)0.0063 (19)0.0146 (15)
Geometric parameters (Å, º) top
C1—C61.385 (3)C12—H12A0.97
C1—C21.394 (3)C12—H12B0.97
C1—N71.403 (3)C13—C181.364 (3)
C2—O201.370 (3)C13—C141.371 (3)
C2—C31.381 (4)C14—C151.382 (3)
C3—C41.364 (4)C14—H140.93
C3—H30.93C15—C161.367 (3)
C4—C51.370 (4)C15—H150.93
C4—H40.93C16—C171.360 (3)
C5—O221.368 (3)C16—O191.373 (2)
C5—C61.387 (3)C17—C181.391 (3)
C6—H60.93C17—H170.93
N7—C81.363 (3)C18—H180.93
N7—H70.82 (3)O19—H190.86 (4)
C8—O91.230 (2)O20—C211.429 (3)
C8—N101.341 (3)C21—H21A0.96
N10—C111.440 (3)C21—H21B0.96
N10—H100.86 (3)C21—H21C0.96
C11—C121.515 (4)O22—C231.394 (4)
C11—H11A0.97C23—H23A0.96
C11—H11B0.97C23—H23B0.96
C12—C131.509 (3)C23—H23C0.96
C6—C1—C2119.7 (2)C13—C12—H12B108.7
C6—C1—N7123.2 (2)C11—C12—H12B108.7
C2—C1—N7117.1 (2)H12A—C12—H12B107.6
O20—C2—C3125.5 (2)C18—C13—C14116.88 (19)
O20—C2—C1115.2 (2)C18—C13—C12122.3 (2)
C3—C2—C1119.3 (2)C14—C13—C12120.8 (2)
C4—C3—C2120.7 (2)C13—C14—C15121.7 (2)
C4—C3—H3119.7C13—C14—H14119.1
C2—C3—H3119.7C15—C14—H14119.1
C3—C4—C5120.5 (3)C16—C15—C14120.3 (2)
C3—C4—H4119.7C16—C15—H15119.8
C5—C4—H4119.7C14—C15—H15119.8
O22—C5—C4116.1 (2)C17—C16—C15119.08 (19)
O22—C5—C6123.9 (2)C17—C16—O19122.8 (2)
C4—C5—C6120.0 (2)C15—C16—O19118.1 (2)
C1—C6—C5119.8 (2)C16—C17—C18119.7 (2)
C1—C6—H6120.1C16—C17—H17120.1
C5—C6—H6120.1C18—C17—H17120.1
C8—N7—C1127.99 (19)C13—C18—C17122.2 (2)
C8—N7—H7118.4 (18)C13—C18—H18118.9
C1—N7—H7113.4 (18)C17—C18—H18118.9
O9—C8—N10122.0 (2)C16—O19—H19110 (2)
O9—C8—N7122.9 (2)C2—O20—C21117.5 (3)
N10—C8—N7115.05 (18)O20—C21—H21A109.5
C8—N10—C11122.76 (19)O20—C21—H21B109.5
C8—N10—H10118.8 (17)H21A—C21—H21B109.5
C11—N10—H10118.4 (17)O20—C21—H21C109.5
N10—C11—C12114.0 (2)H21A—C21—H21C109.5
N10—C11—H11A108.8H21B—C21—H21C109.5
C12—C11—H11A108.8C5—O22—C23118.7 (2)
N10—C11—H11B108.8O22—C23—H23A109.5
C12—C11—H11B108.8O22—C23—H23B109.5
H11A—C11—H11B107.7H23A—C23—H23B109.5
C13—C12—C11114.19 (19)O22—C23—H23C109.5
C13—C12—H12A108.7H23A—C23—H23C109.5
C11—C12—H12A108.7H23B—C23—H23C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O200.82 (3)2.23 (2)2.617 (3)109 (2)
N7—H7···O19i0.82 (3)2.48 (3)3.182 (3)144 (2)
N10—H10···O19i0.86 (3)2.23 (3)3.005 (3)150 (2)
O19—H19···O9ii0.86 (4)1.80 (4)2.654 (3)172 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H20N2O4
Mr316.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.7275 (6), 9.6016 (5), 16.9388 (10)
β (°) 107.838 (2)
V3)1660.84 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.31 × 0.27 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13358, 3184, 2296
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.186, 1.06
No. of reflections3184
No. of parameters218
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.46

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2010), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O200.82 (3)2.23 (2)2.617 (3)109 (2)
N7—H7···O19i0.82 (3)2.48 (3)3.182 (3)144 (2)
N10—H10···O19i0.86 (3)2.23 (3)3.005 (3)150 (2)
O19—H19···O9ii0.86 (4)1.80 (4)2.654 (3)172 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This work is the result of a study performed under the `Human Resource Development Center for Economic Region Leading Industry' Project, supported by the Ministry of Education, Science & Technology (MEST) and the National Research Foundation of Korea (NRF).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabanes, J., Chazarra, S. & Garcia-Carmona, F. (1994). J. Pharm. Pharmacol. 46, 982–985.  CrossRef CAS PubMed Google Scholar
First citationCasanola-Martin, G. M., Khan, M. T. H., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, F. & Torrens, F. (2006). Bioorg. Med. Chem. Lett. 16, 324–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, A. & Fulrton, J. E. (1996). Dermatol. Surg. 22, 443–447.  CrossRef CAS PubMed Google Scholar
First citationKhan, K. M., Maharvi, G. M., Khan, M. T. H., Shaikh, A. J., Perveen, S., Begum, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem. 14, 344–351.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKojima, S., Yamaguch, K., Morita, K., Ueno, Y. & Paolo, R. (1995). Biol. Pharm. Bull. 18, 1076–1080.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKubo, I., Kinst-Hori, I., Chaudhuri, S. K., Sanchez, Y. & Ogura, T. (2000). Bioorg. Med. Chem. 8, 1749–1755.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLemic-Stojcevic, L., Nias, A. H. & Breathnach, A. S. (1995). Exp. Dermatol. 4, 79–81.  CrossRef CAS PubMed Google Scholar
First citationPassi, S. & Nazzaro-Porro, M. (1981). Br. J. Dermatol. 104, 659–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPerez-Gilbert, M. & Garcia-Carmona, F. (2001). Biochem. Biophys. Res. Commun. 285, 257–261.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiino, M., Watanabe, Y. & Umezawa, K. (2001). Bioorg. Med. Chem. 9, 1233–1240.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThanigaimalai, P., Le, H. T. A., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. S. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 2991–2993.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds