organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-{(2Z)-2-[(1-naphthyl­sulfon­yl)imino]-2,3-di­hydro-1,3-thia­zol-4-yl}acetate monohydrate

aFacultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col Chamilpa CP 62209, Cuernavaca Mor., México, and bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001 Col., Chamilpa, CP 62209, Cuernavaca Mor., México
*Correspondence e-mail: tlahuext@ciq.uaem.mx

(Received 29 September 2010; accepted 30 September 2010; online 9 October 2010)

The title compound, C17H16N2O4S2·H2O, is of inter­est with respect to its anti­diabetic and anti-obesity activity. In the crystal, the packing is stabilized by three cooperative inter­actions: offset ππ inter­actions [centroid–centroid distance = 3.604 (2) Å], as well as C—H⋯O and O—H⋯O hydrogen bonds. N—H⋯O inter­actions also occur.

Related literature

For similar structures and their anti­diabetic activity, see: Navarrete-Vázquez et al. (2008[Navarrete-Vázquez, G., Moreno-Diaz, H., Villalobos-Molina, R., Estrada-Soto, S. & Tlahuext, H. (2008). Acta Cryst. E64, o227.]); Alberts et al. (2002[Alberts, P., Engblom, L., Edling, N., Forsgren, M., Klingström, G., Larsson, C., Rönquist-Nii, Y., Öhman, B. & Abrahmsén, L. (2002). Diabetologia, 45, 1528-1532.]); Barf et al. (2002[Barf, T., Vallgarda, J., Emond, R., Haggström, C., Kurz, G., Nygren, A., Larwood, V., Mosialou, E., Axelsson, K., Olsson, R., Englom, L., Edling, N., Rönquist-Nii, Y., Öhman, B., Alberts, P. & Abrahmsén, L. (2002). J. Med. Chem. 45, 3813-3815.]); Fotsch & Wang (2008[Fotsch, C. & Wang, M. (2008). J. Med. Chem. 51, 4851-4857.]); Saiah (2008[Saiah, E. (2008). Curr. Med. Chem. 15, 642-649.]); Vicker et al. (2007[Vicker, N., Su, X., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. & Potter, B. V. L. (2007). J. Steroid Biochem. Mol. Biol. 104, 123-129.]). For hydrogen bonds, see: Adams et al. (1996[Adams, H., Carver, F. J., Hunter, C. A., Morales, J. C. & Seward, E. M. (1996). Angew. Chem. Int. Ed. Engl. 35, 1542-1544.]); Desiraju & Steiner (1999[Desiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 5-6. New York: Oxford University Press.]); Hanton et al. (1992[Hanton, L. R., Hunter, C. A. & Purvis, D. H. (1992). J. Chem. Soc. Chem. Commun. pp. 1134-1136.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O4S2·H2O

  • Mr = 394.45

  • Orthorhombic, P b c n

  • a = 29.582 (6) Å

  • b = 7.9657 (17) Å

  • c = 15.676 (3) Å

  • V = 3694.0 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 273 K

  • 0.29 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.948

  • 33131 measured reflections

  • 3255 independent reflections

  • 2488 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.143

  • S = 1.09

  • 3255 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.86 1.91 2.767 (3) 177
O5—H5A⋯O2ii 0.84 2.10 2.889 (3) 157
C13—H13⋯O2iii 0.93 2.57 3.295 (4) 135
C14—H14A⋯O1iv 0.97 2.34 3.295 (3) 167
C17—H17B⋯O2i 0.96 2.57 3.466 (5) 155
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) [x, -y+2, z+{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker, 2001[Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), DIAMOND (Bergerhoff et al., 1996[Bergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221-225.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The biochemistry and pharmacology of sulfur containing compounds are a subject of intense current interest, especially from the point of view of public health. Obesity and diabetes are major causes of morbidity and mortality in many countries (Saiah, 2008). Excessive levels of glucocorticoids into the body can cause both metabolic complications. The regulation of glucocorticoid production involves two 11b-hydroxysteroid dehydrogenase (11b-HSD) isozymes, that interconvert cortisone and cortisol. 11b-HSD1 is a reductase that amplifies glucocorticoid action in a tissue-specific manner (Fotsch et al., 2008).

Recent studies suggest that inhibition of 11b-HSD1 increases hepatic insulin sensivity along with decreased glucose production (Alberts et al. 2002). Selective inhibitors of 11b-HSD1 have considerable potential as treatments of type 2 diabetes and obesity (Vicker et al., 2007). BVT 14225 is a new selective 11b-HSD1 inhibitor, it belongs to a class of arylsulfonamidothiazoles with in vitro and in vivo antidiabetic effects (Barf et al., 2002).

In order to assist our knowledge about the electronic and steric requirements in arylsulfonamidothiazoles that show antidiabetic and antiobesity activities (Navarrete-Vázquez et al., 2008), we have synthesized and determined the crystal structure of the title compound (I), which is a precursor in the synthesis of an amide BVT14225 bioisoster.

In the crystal structure of (I), the molecules are linked by intermolecular C—H···O hydrogen bonds to give an overall two-dimensional hydrogen-bonded network paralell to plane bc (Fig. 2, Table 1) (Desiraju & Steiner, 1999). The crystal structure is further stabilized by C—H···O and O—H···O hydogen bonds with cocrystallized water molecules, thus generating the dimeric hydrogen-bonding motif outlined in Fig. 3 (Table 1). In addition, adjacent naphthyl groups show offset π···π interactions (Fig. 3), with a distance between the centroids C1—C5–10, C5—C10 (Cg1, Cg2) of the naphtyl rings of 3.604 (2) Å (Hanton et al., 1992; Adams et al., 1996).

Related literature top

For similar structures and their antidiabetic activity, see: Navarrete-Vázquez et al. (2008); Alberts et al. (2002); Barf et al. (2002); Fotsch et al. (2008); Saiah (2008); Vicker et al. (2007). For hydrogen bonds, see: Adams et al. (1996); Desiraju & Steiner (1999); Hanton et al. (1992).

Experimental top

Naphthalene-1-sulfonylchloride (1.2 g, 0.0053 mol), was suspended in dry methylene chloride (10 ml) under nitrogen atmosphere. Triethylamine (0.9 ml, 0.0064 mol) was added slowly and stirred with a catalytic amount of 4-N,N-dimethylaminopyridine (0.1 eq). After 30 minutes, ethyl (2-amino-1,3-thiazol-4-yl)acetate (1 g, 0.0053 mol) was added dropwise, resulting in a brown solution. When all started material had been consumed, the solvent was removed in vacuo, the residue was neutralized with sodium bicarbonate. The precipitate resulting was filtered off to give a brown solid (m.p. 371 K). Single crystals of (I) were obtained from ethanol.

Refinement top

H atoms were positioned geometrically and constrained using the riding-model approximation [C-Hthiazolyl and naphtyl = 0.93 Å, Uiso(Hthiazolyl and naphtyl)= 1.2 Ueq(C)]; [C-Hmethylene = 0.97 Å, Uiso(Hmethylene)= 1.2 Ueq(C)], [C-Hmethyl = 0.96 Å, Uiso(Hmethyl)= 1.5 Ueq(C)]. The hydrogen atoms bonded to O5 and N2 were located by difference Fourier maps. Its coordinates were refined with a distance restraint: O—H = 0.84 Å and [Uiso(H) = 1.5 Ueq(O)], N—H = 0.86 Å and [Uiso(H) = 1.2 Ueq(N)].

Structure description top

The biochemistry and pharmacology of sulfur containing compounds are a subject of intense current interest, especially from the point of view of public health. Obesity and diabetes are major causes of morbidity and mortality in many countries (Saiah, 2008). Excessive levels of glucocorticoids into the body can cause both metabolic complications. The regulation of glucocorticoid production involves two 11b-hydroxysteroid dehydrogenase (11b-HSD) isozymes, that interconvert cortisone and cortisol. 11b-HSD1 is a reductase that amplifies glucocorticoid action in a tissue-specific manner (Fotsch et al., 2008).

Recent studies suggest that inhibition of 11b-HSD1 increases hepatic insulin sensivity along with decreased glucose production (Alberts et al. 2002). Selective inhibitors of 11b-HSD1 have considerable potential as treatments of type 2 diabetes and obesity (Vicker et al., 2007). BVT 14225 is a new selective 11b-HSD1 inhibitor, it belongs to a class of arylsulfonamidothiazoles with in vitro and in vivo antidiabetic effects (Barf et al., 2002).

In order to assist our knowledge about the electronic and steric requirements in arylsulfonamidothiazoles that show antidiabetic and antiobesity activities (Navarrete-Vázquez et al., 2008), we have synthesized and determined the crystal structure of the title compound (I), which is a precursor in the synthesis of an amide BVT14225 bioisoster.

In the crystal structure of (I), the molecules are linked by intermolecular C—H···O hydrogen bonds to give an overall two-dimensional hydrogen-bonded network paralell to plane bc (Fig. 2, Table 1) (Desiraju & Steiner, 1999). The crystal structure is further stabilized by C—H···O and O—H···O hydogen bonds with cocrystallized water molecules, thus generating the dimeric hydrogen-bonding motif outlined in Fig. 3 (Table 1). In addition, adjacent naphthyl groups show offset π···π interactions (Fig. 3), with a distance between the centroids C1—C5–10, C5—C10 (Cg1, Cg2) of the naphtyl rings of 3.604 (2) Å (Hanton et al., 1992; Adams et al., 1996).

For similar structures and their antidiabetic activity, see: Navarrete-Vázquez et al. (2008); Alberts et al. (2002); Barf et al. (2002); Fotsch et al. (2008); Saiah (2008); Vicker et al. (2007). For hydrogen bonds, see: Adams et al. (1996); Desiraju & Steiner (1999); Hanton et al. (1992).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009), DIAMOND (Bergerhoff et al., 1996) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the C—H···O hydrogen bonds (dashed lines) in (I) to give an overall two-dimensional hydrogen-bonded network paralell to plane bc. H atoms not involved in hydrogen-bonding, as well as napthyl and ethoxy carbonylmethyl groups have been omitted for clarity.
[Figure 3] Fig. 3. View of the dimeric hydrogen-bonding motif generated by C—H···O and O—H···O hydogen bonds (dashed lines) with cocrystallized water molecules. Also, the offset π···π [Cg1, Cg2i; symmetry code: (i) 1/2 - x, 1/2 + y, z] interaction is illustrated (dashed line).
Ethyl 2-{(2Z)-2-[(1-naphthylsulfonyl)imino]-2,3-dihydro- 1,3-thiazol-4-yl}acetate monohydrate top
Crystal data top
C17H16N2O4S2·H2ODx = 1.419 Mg m3
Mr = 394.45Melting point: 371 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 7399 reflections
a = 29.582 (6) Åθ = 2.6–23.6°
b = 7.9657 (17) ŵ = 0.32 mm1
c = 15.676 (3) ÅT = 273 K
V = 3694.0 (14) Å3Rectangular prism, colourless
Z = 80.29 × 0.21 × 0.17 mm
F(000) = 1648
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
3255 independent reflections
Radiation source: fine-focus sealed tube2488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 1.4°
phi and ω scansh = 3535
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 99
Tmin = 0.913, Tmax = 0.948l = 1818
33131 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0753P)2 + 1.2945P]
where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H16N2O4S2·H2OV = 3694.0 (14) Å3
Mr = 394.45Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 29.582 (6) ŵ = 0.32 mm1
b = 7.9657 (17) ÅT = 273 K
c = 15.676 (3) Å0.29 × 0.21 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
3255 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2488 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.948Rint = 0.056
33131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
3255 reflectionsΔρmin = 0.27 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30111 (9)1.0099 (3)0.01807 (17)0.0476 (7)
C20.27124 (10)1.0650 (4)0.0426 (2)0.0579 (8)
H20.28181.11800.09150.069*
C30.22466 (11)1.0411 (4)0.0306 (3)0.0694 (9)
H30.20441.07760.07190.083*
C40.20921 (10)0.9652 (4)0.0408 (2)0.0679 (9)
H40.17820.95340.04870.081*
C50.23901 (10)0.9033 (4)0.1037 (2)0.0562 (8)
C60.22292 (12)0.8195 (5)0.1765 (2)0.0724 (10)
H60.19190.80570.18380.087*
C70.25155 (14)0.7585 (5)0.2363 (2)0.0794 (11)
H70.24020.70410.28420.095*
C80.29822 (13)0.7776 (5)0.2257 (2)0.0733 (9)
H80.31780.73550.26690.088*
C90.31544 (11)0.8571 (4)0.15595 (18)0.0573 (7)
H90.34660.86750.14990.069*
C100.28653 (9)0.9240 (3)0.09264 (18)0.0484 (7)
C110.38848 (8)0.8134 (3)0.08417 (17)0.0433 (6)
C120.40857 (8)0.5962 (3)0.17449 (16)0.0436 (6)
C130.39714 (10)0.7109 (4)0.23161 (18)0.0557 (7)
H130.39840.69300.29020.067*
C140.42320 (9)0.4204 (3)0.18915 (18)0.0496 (7)
H14A0.40130.34570.16300.060*
H14B0.42300.39860.25000.060*
C150.46919 (9)0.3790 (4)0.15489 (18)0.0508 (7)
C160.51735 (11)0.1490 (5)0.1211 (3)0.0821 (11)
H16A0.54250.18020.15750.099*
H16B0.52280.19290.06430.099*
C170.51244 (15)0.0349 (5)0.1183 (3)0.1036 (14)
H17A0.50890.07740.17520.155*
H17B0.53890.08350.09280.155*
H17C0.48630.06370.08500.155*
N10.38373 (7)0.8826 (3)0.00845 (14)0.0499 (6)
N20.40331 (7)0.6559 (3)0.09207 (13)0.0428 (5)
H2A0.40930.59470.04830.051*
O10.36124 (7)1.1601 (2)0.07509 (14)0.0648 (6)
O20.37576 (7)1.1370 (3)0.07715 (14)0.0639 (6)
O30.49668 (8)0.4789 (3)0.13212 (19)0.0858 (8)
O40.47548 (7)0.2156 (3)0.15495 (15)0.0698 (6)
O50.57738 (8)0.5513 (3)0.04480 (16)0.0876 (8)
H5A0.58420.65350.04840.131*
H5B0.55180.54500.06790.131*
S10.35869 (2)1.05939 (9)0.00081 (5)0.0514 (2)
S20.37963 (3)0.89724 (10)0.18608 (5)0.0577 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0426 (14)0.0430 (14)0.0572 (16)0.0020 (12)0.0018 (12)0.0115 (13)
C20.0547 (18)0.0499 (17)0.0692 (19)0.0008 (13)0.0047 (15)0.0069 (15)
C30.0510 (18)0.063 (2)0.094 (3)0.0032 (15)0.0181 (18)0.0091 (19)
C40.0385 (15)0.067 (2)0.098 (3)0.0065 (14)0.0017 (17)0.023 (2)
C50.0482 (17)0.0538 (17)0.0665 (18)0.0140 (13)0.0068 (14)0.0201 (15)
C60.062 (2)0.074 (2)0.082 (2)0.0258 (18)0.0198 (19)0.026 (2)
C70.097 (3)0.078 (2)0.063 (2)0.034 (2)0.019 (2)0.0146 (19)
C80.087 (3)0.075 (2)0.058 (2)0.0155 (19)0.0034 (18)0.0084 (17)
C90.0561 (17)0.0624 (19)0.0534 (17)0.0079 (14)0.0026 (14)0.0120 (15)
C100.0447 (15)0.0450 (15)0.0555 (16)0.0063 (12)0.0026 (13)0.0184 (13)
C110.0314 (12)0.0479 (15)0.0505 (16)0.0008 (11)0.0009 (11)0.0038 (12)
C120.0347 (13)0.0540 (17)0.0422 (14)0.0008 (11)0.0002 (11)0.0044 (12)
C130.0617 (17)0.0663 (19)0.0391 (15)0.0072 (15)0.0040 (13)0.0001 (14)
C140.0413 (15)0.0563 (17)0.0512 (16)0.0022 (12)0.0036 (12)0.0065 (13)
C150.0423 (15)0.0605 (19)0.0494 (16)0.0001 (14)0.0031 (12)0.0024 (14)
C160.0498 (18)0.092 (3)0.105 (3)0.0127 (17)0.0076 (18)0.036 (2)
C170.088 (3)0.086 (3)0.137 (4)0.028 (2)0.028 (3)0.019 (3)
N10.0469 (13)0.0547 (14)0.0480 (13)0.0037 (11)0.0023 (10)0.0069 (11)
N20.0409 (12)0.0480 (13)0.0395 (11)0.0024 (10)0.0001 (9)0.0034 (9)
O10.0653 (14)0.0492 (12)0.0798 (15)0.0002 (9)0.0171 (11)0.0087 (11)
O20.0493 (11)0.0649 (13)0.0774 (14)0.0120 (10)0.0017 (10)0.0266 (11)
O30.0549 (13)0.0784 (16)0.124 (2)0.0084 (13)0.0285 (13)0.0052 (15)
O40.0510 (12)0.0629 (14)0.0955 (17)0.0114 (10)0.0146 (11)0.0053 (12)
O50.0865 (17)0.0755 (16)0.1008 (18)0.0314 (13)0.0476 (14)0.0389 (14)
S10.0429 (4)0.0474 (4)0.0641 (5)0.0047 (3)0.0060 (3)0.0101 (3)
S20.0665 (5)0.0547 (5)0.0520 (4)0.0092 (4)0.0064 (3)0.0083 (3)
Geometric parameters (Å, º) top
C1—C21.370 (4)C12—N21.385 (3)
C1—C101.421 (4)C12—C141.484 (4)
C1—S11.769 (3)C13—S21.727 (3)
C2—C31.404 (4)C13—H130.9300
C2—H20.9300C14—C151.499 (4)
C3—C41.352 (5)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.411 (5)C15—O31.193 (3)
C4—H40.9300C15—O41.315 (3)
C5—C61.406 (4)C16—O41.448 (4)
C5—C101.426 (4)C16—C171.473 (5)
C6—C71.353 (5)C16—H16A0.9700
C6—H60.9300C16—H16B0.9700
C7—C81.399 (5)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.363 (4)C17—H17C0.9600
C8—H80.9300N1—S11.598 (2)
C9—C101.414 (4)N2—H2A0.8600
C9—H90.9300O1—S11.437 (2)
C11—N11.316 (3)O2—S11.439 (2)
C11—N21.335 (3)O5—H5A0.8399
C11—S21.751 (3)O5—H5B0.8400
C12—C131.323 (4)
C2—C1—C10121.9 (3)C12—C13—H13123.5
C2—C1—S1116.3 (2)S2—C13—H13123.5
C10—C1—S1121.7 (2)C12—C14—C15114.6 (2)
C1—C2—C3119.8 (3)C12—C14—H14A108.6
C1—C2—H2120.1C15—C14—H14A108.6
C3—C2—H2120.1C12—C14—H14B108.6
C4—C3—C2120.2 (3)C15—C14—H14B108.6
C4—C3—H3119.9H14A—C14—H14B107.6
C2—C3—H3119.9O3—C15—O4124.4 (3)
C3—C4—C5121.5 (3)O3—C15—C14125.4 (3)
C3—C4—H4119.2O4—C15—C14110.2 (2)
C5—C4—H4119.2O4—C16—C17106.9 (3)
C6—C5—C4121.4 (3)O4—C16—H16A110.3
C6—C5—C10119.2 (3)C17—C16—H16A110.3
C4—C5—C10119.4 (3)O4—C16—H16B110.3
C7—C6—C5121.4 (3)C17—C16—H16B110.3
C7—C6—H6119.3H16A—C16—H16B108.6
C5—C6—H6119.3C16—C17—H17A109.5
C6—C7—C8119.8 (3)C16—C17—H17B109.5
C6—C7—H7120.1H17A—C17—H17B109.5
C8—C7—H7120.1C16—C17—H17C109.5
C9—C8—C7120.9 (3)H17A—C17—H17C109.5
C9—C8—H8119.5H17B—C17—H17C109.5
C7—C8—H8119.5C11—N1—S1120.0 (2)
C8—C9—C10120.8 (3)C11—N2—C12116.5 (2)
C8—C9—H9119.6C11—N2—H2A121.8
C10—C9—H9119.6C12—N2—H2A121.8
C9—C10—C1125.1 (3)C15—O4—C16118.9 (3)
C9—C10—C5117.9 (3)H5A—O5—H5B104.1
C1—C10—C5117.0 (3)O1—S1—O2115.50 (13)
N1—C11—N2120.8 (2)O1—S1—N1113.12 (12)
N1—C11—S2130.3 (2)O2—S1—N1106.95 (13)
N2—C11—S2108.83 (19)O1—S1—C1107.55 (13)
C13—C12—N2111.4 (2)O2—S1—C1107.85 (13)
C13—C12—C14128.4 (2)N1—S1—C1105.29 (12)
N2—C12—C14120.1 (2)C13—S2—C1190.25 (13)
C12—C13—S2113.0 (2)
C10—C1—C2—C31.8 (4)N2—C12—C14—C1562.3 (3)
S1—C1—C2—C3175.5 (2)C12—C14—C15—O314.1 (4)
C1—C2—C3—C40.5 (5)C12—C14—C15—O4167.2 (2)
C2—C3—C4—C52.1 (5)N2—C11—N1—S1170.26 (19)
C3—C4—C5—C6177.9 (3)S2—C11—N1—S111.7 (3)
C3—C4—C5—C101.3 (4)N1—C11—N2—C12178.0 (2)
C4—C5—C6—C7179.3 (3)S2—C11—N2—C120.4 (3)
C10—C5—C6—C70.1 (5)C13—C12—N2—C110.4 (3)
C5—C6—C7—C80.4 (5)C14—C12—N2—C11177.6 (2)
C6—C7—C8—C90.0 (5)O3—C15—O4—C163.5 (5)
C7—C8—C9—C100.7 (5)C14—C15—O4—C16177.7 (3)
C8—C9—C10—C1179.5 (3)C17—C16—O4—C15172.3 (3)
C8—C9—C10—C50.9 (4)C11—N1—S1—O126.1 (3)
C2—C1—C10—C9177.0 (3)C11—N1—S1—O2154.4 (2)
S1—C1—C10—C95.7 (4)C11—N1—S1—C191.0 (2)
C2—C1—C10—C52.5 (4)C2—C1—S1—O13.2 (2)
S1—C1—C10—C5174.7 (2)C10—C1—S1—O1174.1 (2)
C6—C5—C10—C90.5 (4)C2—C1—S1—O2128.4 (2)
C4—C5—C10—C9178.6 (3)C10—C1—S1—O248.9 (2)
C6—C5—C10—C1179.9 (3)C2—C1—S1—N1117.7 (2)
C4—C5—C10—C11.0 (4)C10—C1—S1—N165.0 (2)
N2—C12—C13—S20.2 (3)C12—C13—S2—C110.0 (2)
C14—C12—C13—S2177.1 (2)N1—C11—S2—C13177.9 (3)
C13—C12—C14—C15121.0 (3)N2—C11—S2—C130.27 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.861.912.767 (3)177
O5—H5A···O2ii0.842.102.889 (3)157
C13—H13···O2iii0.932.573.295 (4)135
C14—H14A···O1iv0.972.343.295 (3)167
C17—H17B···O2i0.962.573.466 (5)155
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x, y+2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H16N2O4S2·H2O
Mr394.45
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)273
a, b, c (Å)29.582 (6), 7.9657 (17), 15.676 (3)
V3)3694.0 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.29 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
33131, 3255, 2488
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 1.09
No. of reflections3255
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.27

Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), PLATON (Spek, 2009), DIAMOND (Bergerhoff et al., 1996) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.861.912.767 (3)177
O5—H5A···O2ii0.842.102.889 (3)157
C13—H13···O2iii0.932.573.295 (4)135
C14—H14A···O1iv0.972.343.295 (3)167
C17—H17B···O2i0.962.573.466 (5)155
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x, y+2, z+1/2; (iv) x, y1, z.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) under grant No. 100608.

References

First citationAdams, H., Carver, F. J., Hunter, C. A., Morales, J. C. & Seward, E. M. (1996). Angew. Chem. Int. Ed. Engl. 35, 1542–1544.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlberts, P., Engblom, L., Edling, N., Forsgren, M., Klingström, G., Larsson, C., Rönquist-Nii, Y., Öhman, B. & Abrahmsén, L. (2002). Diabetologia, 45, 1528–1532.  Web of Science PubMed CAS Google Scholar
First citationBarf, T., Vallgarda, J., Emond, R., Haggström, C., Kurz, G., Nygren, A., Larwood, V., Mosialou, E., Axelsson, K., Olsson, R., Englom, L., Edling, N., Rönquist-Nii, Y., Öhman, B., Alberts, P. & Abrahmsén, L. (2002). J. Med. Chem. 45, 3813–3815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBergerhoff, G., Berndt, M. & Brandenburg, K. (1996). J. Res. Natl Inst. Stand. Technol. 101, 221–225.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 5–6. New York: Oxford University Press.  Google Scholar
First citationFotsch, C. & Wang, M. (2008). J. Med. Chem. 51, 4851–4857.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHanton, L. R., Hunter, C. A. & Purvis, D. H. (1992). J. Chem. Soc. Chem. Commun. pp. 1134–1136.  CrossRef Web of Science Google Scholar
First citationNavarrete-Vázquez, G., Moreno-Diaz, H., Villalobos-Molina, R., Estrada-Soto, S. & Tlahuext, H. (2008). Acta Cryst. E64, o227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaiah, E. (2008). Curr. Med. Chem. 15, 642–649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicker, N., Su, X., Ganeshapillai, D., Smith, A., Purohit, A., Reed, M. & Potter, B. V. L. (2007). J. Steroid Biochem. Mol. Biol. 104, 123–129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds