organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(–)-(S)-N,N′-Bis[1-(1-naphth­yl)eth­yl]­oxalamide

aDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico, bLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, AP 1067, 72001 Puebla, Pue., Mexico, and cUniversidad de la Cañada, Cd. Universitaria, 68540, Teotitlán de Flores Magón, Oax., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 20 October 2010; accepted 25 October 2010; online 31 October 2010)

The title mol­ecule, C26H24N2O2, displays C2 symmetry, with the mol­ecule located on a twofold axis perpendicular to the plane of the oxalamide unit –NH—CO—CO—NH–. The oxalamide core deviates from planarity, as reflected by the O=C—C=O and N—C—C—N torsion angles of 164.3 (5) and 163.2 (5)°, respectively. The naphthyl groups are oriented toward the same face of the oxalamide mean plane and make a dihedral angle of 43.76 (8)°. This conformation is suitable for the formation of inter­molecular N—H⋯O hydrogen bonds, giving noncentrosymmetric dimers incorporating R22(10) ring motifs. These nonbonding inter­actions propagate along the 61 screw axis normal to the mol­ecular twofold axis, resulting in a single-stranded right-handed helix parallel to [001]. In the crystal, Δ helices are arranged side-by-side and inter­act through ππ contacts between naphthyl groups. The shortest centroid–centroid separation between inter­acting benzene rings is 3.623 (4) Å.

Related literature

For crystal structures of closely related oxalamides, see: Štefanić et al. (2003[Štefanić, Z., Kojić-Prodić, B., Džolić, Z., Katalenić, D., Žinić, M. & Meden, A. (2003). Acta Cryst. C59, o286-o288.]); Zhang et al. (2006[Zhang, S.-S., Xu, L.-L., Bi, S., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3645-o3646.]); Lee & Wang (2007[Lee, G.-H. & Wang, H.-T. (2007). Acta Cryst. C63, m216-m219.]); Lee (2010[Lee, G.-H. (2010). Acta Cryst. C66, o241-o244.]). For general references on dicarboxamides and oxalamides, and their synthesis under solvent-free conditions, see: Bernès et al. (2008[Bernès, S., Pérez-Flores, F. J. & Gutiérrez, R. (2008). Acta Cryst. E64, o1078-o1079.]); Montero-Vázquez et al. (2008[Montero-Vázquez, E. F., Martínez-Martínez, F. J., Padilla-Martínez, I. I., Carvajal-García, M. A. & Hernández-Diaz, J. (2008). Arkivoc, v, 276-282.]); Jeon et al. (2005[Jeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416-16425.]); Noyori (2005[Noyori, R. (2005). Chem. Commun. pp. 1807-1811.]). For helicity assignment in enanti­omorphic space groups, see: Ha & Allewell (1997[Ha, Y. & Allewell, N. M. (1997). Acta Cryst. A53, 400-401.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O2

  • Mr = 396.47

  • Hexagonal, P 61 22

  • a = 11.4489 (11) Å

  • c = 28.350 (4) Å

  • V = 3218.2 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.40 × 0.22 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • 5314 measured reflections

  • 1208 independent reflections

  • 730 reflections with I > 2σ(I)

  • Rint = 0.057

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.138

  • S = 1.11

  • 1208 reflections

  • 141 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.91 (1) 2.06 (2) 2.931 (3) 161 (3)
Symmetry code: (i) [y, -x+y, z-{\script{1\over 6}}].

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Earlier, we have focused our attention on dicarboxamides (Bernès et al., 2008), mostly due to their versatile and interesting properties. In continuation of this work, we synthesized the title chiral compound, under the solvent-free approach, because the reactions occur under mild conditions and usually require easier workup procedures and simpler equipment. Likewise, reducing the use of organic solvents and minimizing the formation of waste are worth-considering points to keep in mind by using this protocol (Jeon et al., 2005; Noyori, 2005).

The title molecule belongs to the oxalamide family, a well studied class of compounds, which are useful in many areas (e.g. Montero-Vázquez et al., 2008). The molecule is placed on a twofold axis, passing by the midpoint of the central C1—C1i bond (symmetry code i: x-y, -y, 1 - z). The twofold axis is perpendicular to the mean plane of the core oxalamide group. In contrast to other oxalamide derivatives (e.g. Zhang et al., 2006) the oxalamide group in the title compound is not planar. As a consequence, trans angles O1—C1—C1i—O1i and N2—C1—C1i—N2i deviate significantly from 180°. N atoms are substituted by chiral groups including naphthyl cycles, which make a dihedral angle of 43.76 (8)° (Fig. 1).

The C2-symmetric molecules are connected in the crystal through N2—H2···O1ii hydrogen bonds (symmetry code ii: y, -x + y, z - 1/6), which generate R22(10) ring motifs (Fig. 2). Such motifs have been observed in related chiral (Štefanić et al., 2003) and achiral (Lee & Wang, 2007) oxalamides, but gave different supramolecular structures, depending of the ability of terminal groups to be involved in hydrogen bonds. In the case of the title oxalamide, hydrogen bonds form a supramolecular structure based on a single stranded helix using the screw axis 61 as backbone (Fig. 2, inset). The molecular and supramolecular axes are thus perpendicular. Although the space group is enantiomorphic, the helicity of the supramolecular structure can be assigned, since the chirality of the asymmetric unit is known (Ha & Allewell, 1997). The S configuration of chiral center C3 affords right-handed helix oriented along [001]. It is worth noting that such chiral supramolecular structures cannot be achieved for centrosymmetric oxalamide derivatives (Zhang et al., 2006; Lee, 2010).

The crystal structure of the title compound is build up on densely packed parallel Δ helix, which interact through ππ contacts involving terminal naphthyl groups. The shortest intermolecular separation between symmetry-related benzene rings is 3.623 (4) Å [Cg···Cgiii, where Cg is the centroid of ring C9···C14 and iii is symmetry code: 1 - y, 1 - x, 5/6 - z]. This contact should however be regarded as a secondary interaction compared to hydrogen bonds forming the one-dimensional supramolecular structure. Although the ring approach is short, constraints induced by molecular conformation reduce the efficiency of such contacts. For instance, π systems involved in ππ contacts are not parallel, making a dihedral angle of 11.7 (2)°.

Related literature top

For crystal structures of closely related oxalamides, see: Štefanić et al. (2003); Zhang et al. (2006); Lee & Wang (2007); Lee (2010). For general references on dicarboxamides and oxalamides, and their synthesis under solvent-free conditions, see: Bernès et al. (2008); Montero-Vázquez et al. (2008); Jeon et al. (2005); Noyori (2005). For helicity assignment in enantiomorphic space groups, see: Ha & Allewell (1997).

Experimental top

Under solvent-free conditions, a mixture of oxalyl chloride (0.2 g, 1.5 mmol) and (S)-(–)-1-(1-naphthyl)ethylamine (0.53 g, 3.0 mmol) in a 1:2 molar ratio were mixed at room temperature, giving a white solid. The crude was recrystallized twice from CH2Cl2, affording colorless crystals of the title compound. Yield 96%; m.p. 240–242 °C. Spectroscopic data: [α]25D = -10.5 (c 1, CHCl3). FT—IR (KBr): 3450 cm-1 (NH), 1650 cm-1 (CO). 1H NMR (400 MHz, CDCl3/TMS): δ = 1.5–1.7 (d, 6H, CHCH3), 4.1 (br s, 2H, NH), 5.1 (q, 2H, CHCH3), 7.3–8.1 (m, 14 H, Ar); 13C NMR (100 MHz, CDCl3/TMS) δ = 23.3 (CCH3), 46.9 (CHCH3), 122.7 (Ar), 125.1 (Ar), 125.6 (Ar), 127.9 (Ar), 128.9 (Ar), 128.4 (Ar), 133.7 (Ar), 138.9.(Ar), 144.3 (Ar), 158.5 (C=O). MS—EI: m/z = 396 (M+).

Refinement top

All C-bonded H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), and 0.98 Å (methine CH). Atom H2 bonded to N2 was found in a difference map and refined freely, although N—H bond length was restrained to 0.91 (1) Å. Isotropic displacement parameters were calculated as Uiso(H) = 1.5Ueq(carrier atom) for the methyl group and Uiso(H) = 1.2Ueq(carrier atom) otherwise. The absolute configuration was assigned from the known configuration of the chiral amine used as starting material, and measured Friedel pairs (705) were merged.

Structure description top

Earlier, we have focused our attention on dicarboxamides (Bernès et al., 2008), mostly due to their versatile and interesting properties. In continuation of this work, we synthesized the title chiral compound, under the solvent-free approach, because the reactions occur under mild conditions and usually require easier workup procedures and simpler equipment. Likewise, reducing the use of organic solvents and minimizing the formation of waste are worth-considering points to keep in mind by using this protocol (Jeon et al., 2005; Noyori, 2005).

The title molecule belongs to the oxalamide family, a well studied class of compounds, which are useful in many areas (e.g. Montero-Vázquez et al., 2008). The molecule is placed on a twofold axis, passing by the midpoint of the central C1—C1i bond (symmetry code i: x-y, -y, 1 - z). The twofold axis is perpendicular to the mean plane of the core oxalamide group. In contrast to other oxalamide derivatives (e.g. Zhang et al., 2006) the oxalamide group in the title compound is not planar. As a consequence, trans angles O1—C1—C1i—O1i and N2—C1—C1i—N2i deviate significantly from 180°. N atoms are substituted by chiral groups including naphthyl cycles, which make a dihedral angle of 43.76 (8)° (Fig. 1).

The C2-symmetric molecules are connected in the crystal through N2—H2···O1ii hydrogen bonds (symmetry code ii: y, -x + y, z - 1/6), which generate R22(10) ring motifs (Fig. 2). Such motifs have been observed in related chiral (Štefanić et al., 2003) and achiral (Lee & Wang, 2007) oxalamides, but gave different supramolecular structures, depending of the ability of terminal groups to be involved in hydrogen bonds. In the case of the title oxalamide, hydrogen bonds form a supramolecular structure based on a single stranded helix using the screw axis 61 as backbone (Fig. 2, inset). The molecular and supramolecular axes are thus perpendicular. Although the space group is enantiomorphic, the helicity of the supramolecular structure can be assigned, since the chirality of the asymmetric unit is known (Ha & Allewell, 1997). The S configuration of chiral center C3 affords right-handed helix oriented along [001]. It is worth noting that such chiral supramolecular structures cannot be achieved for centrosymmetric oxalamide derivatives (Zhang et al., 2006; Lee, 2010).

The crystal structure of the title compound is build up on densely packed parallel Δ helix, which interact through ππ contacts involving terminal naphthyl groups. The shortest intermolecular separation between symmetry-related benzene rings is 3.623 (4) Å [Cg···Cgiii, where Cg is the centroid of ring C9···C14 and iii is symmetry code: 1 - y, 1 - x, 5/6 - z]. This contact should however be regarded as a secondary interaction compared to hydrogen bonds forming the one-dimensional supramolecular structure. Although the ring approach is short, constraints induced by molecular conformation reduce the efficiency of such contacts. For instance, π systems involved in ππ contacts are not parallel, making a dihedral angle of 11.7 (2)°.

For crystal structures of closely related oxalamides, see: Štefanić et al. (2003); Zhang et al. (2006); Lee & Wang (2007); Lee (2010). For general references on dicarboxamides and oxalamides, and their synthesis under solvent-free conditions, see: Bernès et al. (2008); Montero-Vázquez et al. (2008); Jeon et al. (2005); Noyori (2005). For helicity assignment in enantiomorphic space groups, see: Ha & Allewell (1997).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids for non-H atoms shown at the 30% probability level. Non labeled atoms are generated by symmetry operator x-y, -y, 1 - z.
[Figure 2] Fig. 2. Hydrogen bonds linking molecules in the [001] direction (dashed bonds). The inset represents Δ helix formed by hydrogen bonds along the screw axis 61. For the sake of clarity, only oxalamide atoms are represented, and one 61 axis is shown (yellow backbone).
(-)-(S)-N,N'-Bis[1-(1-naphthyl)ethyl]ethanediamide top
Crystal data top
C26H24N2O2Dx = 1.227 Mg m3
Mr = 396.47Melting point: 513 K
Hexagonal, P6122Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 61 2 (0 0 -1)Cell parameters from 67 reflections
a = 11.4489 (11) Åθ = 4.1–11.9°
c = 28.350 (4) ŵ = 0.08 mm1
V = 3218.2 (7) Å3T = 298 K
Z = 6Prism, colourless
F(000) = 12600.40 × 0.22 × 0.20 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.057
Radiation source: fine-focus sealed tubeθmax = 25.1°, θmin = 2.1°
Graphite monochromatorh = 132
ω scansk = 113
5314 measured reflectionsl = 331
1208 independent reflections3 standard reflections every 97 reflections
730 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.2213P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1208 reflectionsΔρmax = 0.12 e Å3
141 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.011 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C26H24N2O2Z = 6
Mr = 396.47Mo Kα radiation
Hexagonal, P6122µ = 0.08 mm1
a = 11.4489 (11) ÅT = 298 K
c = 28.350 (4) Å0.40 × 0.22 × 0.20 mm
V = 3218.2 (7) Å3
Data collection top
Siemens P4
diffractometer
Rint = 0.057
5314 measured reflections3 standard reflections every 97 reflections
1208 independent reflections intensity decay: 1%
730 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.12 e Å3
1208 reflectionsΔρmin = 0.14 e Å3
141 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1760 (3)0.1496 (2)0.53227 (7)0.0718 (8)
C10.1517 (3)0.0760 (3)0.49767 (11)0.0539 (8)
N20.1898 (3)0.1213 (3)0.45411 (9)0.0594 (8)
H20.168 (3)0.058 (3)0.4311 (9)0.071*
C30.2678 (3)0.2653 (3)0.44315 (11)0.0589 (9)
H3A0.32490.31100.47050.071*
C40.3604 (4)0.2880 (4)0.40144 (13)0.0852 (13)
H4B0.41940.25350.40880.128*
H4C0.41310.38280.39490.128*
H4D0.30720.24200.37430.128*
C50.1787 (4)0.3254 (4)0.43491 (11)0.0632 (10)
C60.0662 (4)0.2582 (5)0.40749 (15)0.0878 (12)
H6A0.04360.17360.39570.105*
C70.0158 (6)0.3123 (7)0.39661 (18)0.1117 (17)
H7A0.09070.26510.37730.134*
C80.0142 (6)0.4343 (7)0.4144 (2)0.1100 (17)
H8B0.04200.46920.40790.132*
C90.1289 (6)0.5082 (5)0.44246 (16)0.0855 (13)
C100.1624 (8)0.6363 (6)0.4601 (2)0.119 (2)
H10B0.10740.67210.45290.143*
C110.2721 (8)0.7080 (6)0.4873 (2)0.126 (2)
H11D0.29110.79130.49930.151*
C120.3575 (6)0.6564 (5)0.49739 (19)0.1110 (17)
H12B0.43430.70680.51560.133*
C130.3293 (5)0.5332 (4)0.48084 (13)0.0781 (12)
H13B0.38680.50030.48810.094*
C140.2145 (4)0.4552 (4)0.45291 (12)0.0660 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0854 (19)0.0634 (16)0.0510 (13)0.0256 (14)0.0089 (12)0.0117 (12)
C10.055 (2)0.0567 (19)0.0495 (17)0.0279 (17)0.0013 (16)0.0044 (19)
N20.071 (2)0.0555 (19)0.0477 (15)0.0284 (16)0.0035 (15)0.0042 (13)
C30.063 (2)0.056 (2)0.0540 (18)0.0272 (19)0.0031 (17)0.0023 (16)
C40.088 (3)0.084 (3)0.081 (2)0.041 (3)0.032 (2)0.011 (2)
C50.068 (3)0.068 (3)0.0532 (18)0.033 (2)0.0073 (19)0.0067 (19)
C60.087 (3)0.093 (3)0.087 (3)0.048 (3)0.015 (3)0.001 (3)
C70.097 (4)0.136 (5)0.113 (4)0.067 (4)0.017 (3)0.014 (4)
C80.108 (4)0.136 (5)0.120 (4)0.087 (4)0.018 (4)0.035 (4)
C90.104 (4)0.087 (3)0.081 (3)0.060 (3)0.034 (3)0.026 (3)
C100.175 (7)0.104 (4)0.116 (4)0.098 (5)0.066 (4)0.037 (4)
C110.178 (7)0.073 (4)0.128 (5)0.065 (4)0.061 (5)0.013 (3)
C120.129 (5)0.065 (3)0.110 (3)0.027 (3)0.030 (4)0.003 (3)
C130.089 (3)0.058 (3)0.075 (2)0.028 (2)0.015 (2)0.002 (2)
C140.078 (3)0.063 (2)0.0587 (19)0.036 (2)0.025 (2)0.014 (2)
Geometric parameters (Å, º) top
O1—C11.231 (4)C7—C81.358 (7)
C1—N21.326 (4)C7—H7A0.9300
C1—C1i1.512 (7)C8—C91.400 (7)
N2—C31.463 (4)C8—H8B0.9300
N2—H20.911 (10)C9—C101.409 (7)
C3—C51.506 (5)C9—C141.418 (6)
C3—C41.522 (5)C10—C111.348 (8)
C3—H3A0.9800C10—H10B0.9300
C4—H4B0.9600C11—C121.401 (7)
C4—H4C0.9600C11—H11D0.9300
C4—H4D0.9600C12—C131.363 (6)
C5—C61.366 (5)C12—H12B0.9300
C5—C141.424 (5)C13—C141.406 (6)
C6—C71.394 (6)C13—H13B0.9300
C6—H6A0.9300
O1—C1—N2123.8 (3)C8—C7—C6119.6 (5)
O1—C1—C1i121.4 (4)C8—C7—H7A120.2
N2—C1—C1i114.8 (3)C6—C7—H7A120.2
C1—N2—C3122.3 (3)C7—C8—C9120.8 (5)
C1—N2—H2117 (2)C7—C8—H8B119.6
C3—N2—H2121 (2)C9—C8—H8B119.6
N2—C3—C5112.1 (3)C8—C9—C10121.0 (6)
N2—C3—C4109.8 (3)C8—C9—C14120.0 (4)
C5—C3—C4112.0 (3)C10—C9—C14119.0 (5)
N2—C3—H3A107.6C11—C10—C9121.5 (6)
C5—C3—H3A107.6C11—C10—H10B119.2
C4—C3—H3A107.6C9—C10—H10B119.2
C3—C4—H4B109.5C10—C11—C12119.6 (6)
C3—C4—H4C109.5C10—C11—H11D120.2
H4B—C4—H4C109.5C12—C11—H11D120.2
C3—C4—H4D109.5C13—C12—C11120.8 (6)
H4B—C4—H4D109.5C13—C12—H12B119.6
H4C—C4—H4D109.5C11—C12—H12B119.6
C6—C5—C14119.4 (4)C12—C13—C14120.9 (5)
C6—C5—C3119.6 (3)C12—C13—H13B119.6
C14—C5—C3120.9 (3)C14—C13—H13B119.6
C5—C6—C7122.0 (5)C13—C14—C9118.2 (4)
C5—C6—H6A119.0C13—C14—C5123.7 (4)
C7—C6—H6A119.0C9—C14—C5118.1 (4)
O1—C1—N2—C31.3 (5)C8—C9—C10—C11179.7 (5)
O1—C1—C1i—O1i164.3 (5)C14—C9—C10—C111.2 (7)
C1i—C1—N2—C3178.1 (2)C9—C10—C11—C121.7 (8)
C1—N2—C3—C586.9 (4)C10—C11—C12—C131.4 (8)
C1—N2—C3—C4148.0 (3)C11—C12—C13—C140.5 (7)
N2—C3—C5—C644.7 (4)C12—C13—C14—C90.0 (5)
N2—C1—C1i—N2i163.2 (5)C12—C13—C14—C5179.4 (4)
C4—C3—C5—C679.2 (4)C8—C9—C14—C13179.4 (4)
N2—C3—C5—C14139.2 (3)C10—C9—C14—C130.3 (5)
C4—C3—C5—C1496.9 (4)C8—C9—C14—C51.2 (5)
C14—C5—C6—C70.3 (6)C10—C9—C14—C5179.8 (4)
C3—C5—C6—C7176.5 (4)C6—C5—C14—C13179.0 (3)
C5—C6—C7—C81.5 (8)C3—C5—C14—C132.9 (5)
C6—C7—C8—C91.9 (8)C6—C5—C14—C91.6 (5)
C7—C8—C9—C10178.5 (5)C3—C5—C14—C9177.7 (3)
C7—C8—C9—C140.6 (7)
Symmetry code: (i) xy, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1ii0.91 (1)2.06 (2)2.931 (3)161 (3)
Symmetry code: (ii) y, x+y, z1/6.

Experimental details

Crystal data
Chemical formulaC26H24N2O2
Mr396.47
Crystal system, space groupHexagonal, P6122
Temperature (K)298
a, c (Å)11.4489 (11), 28.350 (4)
V3)3218.2 (7)
Z6
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.22 × 0.20
Data collection
DiffractometerSiemens P4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5314, 1208, 730
Rint0.057
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.138, 1.11
No. of reflections1208
No. of parameters141
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.911 (10)2.055 (15)2.931 (3)161 (3)
Symmetry code: (i) y, x+y, z1/6.
 

Acknowledgements

Support from VIEP-UAP (grant No. GUPJ-NAT10-G) is acknowledged.

References

First citationBernès, S., Pérez-Flores, F. J. & Gutiérrez, R. (2008). Acta Cryst. E64, o1078–o1079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, Y. & Allewell, N. M. (1997). Acta Cryst. A53, 400–401.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeon, S.-J., Li, H. & Walsh, P. J. (2005). J. Am. Chem. Soc. 127, 16416–16425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, G.-H. (2010). Acta Cryst. C66, o241–o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, G.-H. & Wang, H.-T. (2007). Acta Cryst. C63, m216–m219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMontero-Vázquez, E. F., Martínez-Martínez, F. J., Padilla-Martínez, I. I., Carvajal-García, M. A. & Hernández-Diaz, J. (2008). Arkivoc, v, 276–282.  Google Scholar
First citationNoyori, R. (2005). Chem. Commun. pp. 1807–1811.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationŠtefanić, Z., Kojić-Prodić, B., Džolić, Z., Katalenić, D., Žinić, M. & Meden, A. (2003). Acta Cryst. C59, o286–o288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-S., Xu, L.-L., Bi, S., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3645–o3646.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds