organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-3-oct­yl­oxy-N,N,N-tri­methyl­propan-1-aminium bromide

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: weixilian@126.com

(Received 16 August 2010; accepted 11 October 2010; online 20 October 2010)

In the title compound, C14H32NO2+·Br, organic cationsstacked parallel to the a axis andbromide anions placed between the head groups of the cations form ionic pairs via weak inter­molecular O—H⋯Br hydrogen bonds. The octyl chain in the cation adopts an all-trans conformation. The O—CH2—CH(—OH)—CH2 portion of the molecule is disordered over two sets of sites with occupancy factors of 0.57 (3) and 0.47 (3).

Related literature

For uses of cationic surfacta­nts, see: Zhao et al. (1997[Zhao, S. Y., Zhang, G. Y., Zheng, G. X. & Niu, C. Z. (1997). Chin. Surfactant Detergent Cosmetics, 5, 7-9.], 2010[Zhao, Q., Yang, K. & Li, P. J. (2010). J. Hazardous Mater. 182, 757-762.]). For bond lengths and angles, see: Koh et al. (1993[Koh, L. L., Xu, Y., Gan, L. M., Chew, C. H. & Lee, K. C. (1993). Acta Cryst. C49, 1032-1035.]).

[Scheme 1]

Experimental

Crystal data
  • C14H32NO2+·Br

  • Mr = 326.32

  • Monoclinic, P 21

  • a = 5.9713 (11) Å

  • b = 7.4780 (12) Å

  • c = 19.992 (2) Å

  • β = 92.923 (1)°

  • V = 891.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 298 K

  • 0.42 × 0.30 × 0.04 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.445, Tmax = 0.914

  • 4642 measured reflections

  • 2827 independent reflections

  • 1168 reflections with I > 2σ(I)

  • Rint = 0.135

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.199

  • S = 1.03

  • 2827 reflections

  • 211 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1124 Friedel pairs

  • Flack parameter: 0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Br1i 0.82 2.50 3.32 (3) 171
O2′—H2′⋯Br1ii 0.82 2.27 3.05 (4) 160
Symmetry codes: (i) x-1, y+1, z; (ii) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cationic surfactants have attracted much attention due to their wide spread use in both household and industrial activities, such as in the production of cosmetics (Zhao et al., 1997) and polluted soil treatment (Zhao, et al., 2010). As a contribution to the chemistry of surfactants, we report here the synthesis and crystal structure of the title compound, C14H32Br1N1O2.

The asymmetric unit of the title compound consists of a 3-octyloxy-2-hydroxypropyl-N,N,N- trimethylpropan-1-aminium cation, and a bromide anion, (Fig. 1). Atoms C1:C1', C2:C2', C3:C3', O1:O1' and O2:O2' are disordered with site occupancies of 0.47 (3):0.53 (3). The C—C bond distances in the octyl chain are alternately short and long, the average of the short distances being 1.46 (6)Å and the average of the long distances being 1.49 (8) Å. All N—C bond lengths and C—N—C angles are within the usual ranges (Koh et al., 1993). The bond distances of O1—C3 and O1—C7 are 1.4 (3)and 1.44 (18) Å, respectively. The octyl chains of the cations form monolayers parallel to the (010) plane. Adjacent anions are connected by weak intermolecular O—H···Br interactions and organic cations stacked parallel along the a axis (Table 1, Fig. 2).

Related literature top

For uses of cationic surfactants, see: Zhao et al. (1997, 2010). For bond lengths and angles, see: Koh et al. (1993).

Experimental top

The reaction was carried out under nitrogen atmosphere. Trimethylammonium bromide (0.12 mol) and octyl glycidyl ether (0.1 mol) were added to a stirred solution of ethanol (100 ml) and stirred at 315 K for 24 h. The resulting clear solution was evaporated under vacuum. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution over a period of two weeks. (yield 82%, m.p.340k) Anal. Calcd (%) for C14H32Br1N1O2 (Mr = 326.32): C, 51.48; H, 9.81; N, 4.29. Found (%): C, 51.52; H, 9.83; N, 4.26.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with O—H = 0.82 Å, C—H = 0.97 (methylene) Å [Uiso(H) = 1.2Ueq(C)], and C—H = 0.96 (methyl) Å [Uiso(H) = 1.5Ueq(C)]. Atoms C1, C2, C3, O1 and O2 were found to be disordered over two sites, and the ratio of the occupancy factors refined to 0.47 (3):0.53 (3), 0.47 (3):0.53 (3), 0.47 (3):0.53 (3), 0.47 (3):0.53 (3) and 0.47 (3):0.53 (3), for atoms C1:C1', C2:C2', C3:C3', O1:O1' and O2:O2', respectively.

Structure description top

Cationic surfactants have attracted much attention due to their wide spread use in both household and industrial activities, such as in the production of cosmetics (Zhao et al., 1997) and polluted soil treatment (Zhao, et al., 2010). As a contribution to the chemistry of surfactants, we report here the synthesis and crystal structure of the title compound, C14H32Br1N1O2.

The asymmetric unit of the title compound consists of a 3-octyloxy-2-hydroxypropyl-N,N,N- trimethylpropan-1-aminium cation, and a bromide anion, (Fig. 1). Atoms C1:C1', C2:C2', C3:C3', O1:O1' and O2:O2' are disordered with site occupancies of 0.47 (3):0.53 (3). The C—C bond distances in the octyl chain are alternately short and long, the average of the short distances being 1.46 (6)Å and the average of the long distances being 1.49 (8) Å. All N—C bond lengths and C—N—C angles are within the usual ranges (Koh et al., 1993). The bond distances of O1—C3 and O1—C7 are 1.4 (3)and 1.44 (18) Å, respectively. The octyl chains of the cations form monolayers parallel to the (010) plane. Adjacent anions are connected by weak intermolecular O—H···Br interactions and organic cations stacked parallel along the a axis (Table 1, Fig. 2).

For uses of cationic surfactants, see: Zhao et al. (1997, 2010). For bond lengths and angles, see: Koh et al. (1993).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids. Atoms C1:C1', C2:C2', C3:C3', O1:O1' and O2:O2' with disordered site occupancies 0.47 (3):0.53 (3) are shown.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing one extended chain structure, linked by weak O—H···Br hydrogen bonds (dashed lines).
2-Hydroxy-3-octyloxy-N,N,N-trimethylpropan-1-aminium bromide top
Crystal data top
C14H32NO2+·BrF(000) = 348
Mr = 326.32Dx = 1.216 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 889 reflections
a = 5.9713 (11) Åθ = 3.1–28.4°
b = 7.4780 (12) ŵ = 2.30 mm1
c = 19.992 (2) ÅT = 298 K
β = 92.923 (1)°Block, colourless
V = 891.6 (2) Å30.42 × 0.30 × 0.04 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
2827 independent reflections
Radiation source: fine-focus sealed tube1168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.135
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SABABS; Sheldrick, 1996)
h = 77
Tmin = 0.445, Tmax = 0.914k = 78
4642 measured reflectionsl = 1923
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.0713P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2827 reflectionsΔρmax = 0.74 e Å3
211 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 1124 FRIEDEL PAIRS
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C14H32NO2+·BrV = 891.6 (2) Å3
Mr = 326.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9713 (11) ŵ = 2.30 mm1
b = 7.4780 (12) ÅT = 298 K
c = 19.992 (2) Å0.42 × 0.30 × 0.04 mm
β = 92.923 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2827 independent reflections
Absorption correction: multi-scan
(SABABS; Sheldrick, 1996)
1168 reflections with I > 2σ(I)
Tmin = 0.445, Tmax = 0.914Rint = 0.135
4642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.199Δρmax = 0.74 e Å3
S = 1.03Δρmin = 0.30 e Å3
2827 reflectionsAbsolute structure: Flack (1983), 1124 FRIEDEL PAIRS
211 parametersAbsolute structure parameter: 0.02 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.66822 (19)0.4416 (9)0.40071 (6)0.0909 (6)
N10.0535 (12)0.941 (5)0.3976 (4)0.070 (2)
O10.02 (4)0.902 (10)0.186 (9)0.09 (2)0.57 (3)
O20.389 (6)1.064 (4)0.3144 (15)0.077 (10)0.57 (3)
H20.39151.15800.33560.116*0.57 (3)
C10.039 (17)0.883 (12)0.330 (5)0.08 (2)0.57 (3)
H1A0.13820.78160.33460.099*0.57 (3)
H1B0.08320.84490.30280.099*0.57 (3)
C20.168 (12)1.034 (9)0.293 (3)0.079 (16)0.57 (3)
H2A0.08111.14520.29500.094*0.57 (3)
C30.205 (15)0.969 (10)0.221 (4)0.08 (3)0.57 (3)
H3A0.31760.87560.22110.100*0.57 (3)
H3B0.26991.06780.19520.100*0.57 (3)
O1'0.01 (5)0.970 (11)0.192 (12)0.09 (4)0.43 (3)
O2'0.364 (7)0.801 (5)0.3282 (19)0.077 (13)0.43 (3)
H2'0.36830.69490.33860.116*0.43 (3)
C1'0.02 (2)0.979 (13)0.326 (6)0.08 (3)0.43 (3)
H1'10.11200.99540.30080.097*0.43 (3)
H1'20.10251.09120.32480.097*0.43 (3)
C2'0.168 (16)0.834 (12)0.292 (4)0.08 (2)0.43 (3)
H2'10.08030.72370.29390.095*0.43 (3)
C3'0.22 (2)0.870 (17)0.218 (6)0.09 (3)0.43 (3)
H3'10.35630.94510.21170.104*0.43 (3)
H3'20.25040.75920.19340.104*0.43 (3)
C40.190 (5)1.104 (5)0.4099 (15)0.099 (11)
H4A0.29231.11760.37470.148*
H4B0.27271.09330.45210.148*
H4C0.09321.20640.41070.148*
C50.206 (4)0.784 (5)0.4109 (15)0.096 (10)
H5A0.31870.78220.37830.144*
H5B0.12020.67590.40790.144*
H5C0.27660.79470.45490.144*
C60.1293 (12)0.936 (4)0.4460 (4)0.078 (3)
H6A0.06590.95070.49070.116*
H6B0.20450.82220.44250.116*
H6C0.23471.02980.43580.116*
C70.0337 (12)0.978 (4)0.1194 (4)0.104 (8)
H7A0.03551.10790.12190.125*0.57 (3)
H7B0.16960.93870.09520.125*0.57 (3)
H7C0.07051.09970.10580.125*0.43 (3)
H7D0.15880.90230.10520.125*0.43 (3)
C80.169 (2)0.915 (5)0.0850 (6)0.103 (7)
H8A0.29190.99340.09920.123*
H8B0.20560.79730.10250.123*
C90.168 (2)0.903 (4)0.0123 (6)0.112 (9)
H9A0.04340.97360.00590.135*
H9B0.13800.77950.00010.135*
C100.375 (2)0.961 (5)0.0225 (6)0.109 (5)
H10A0.50570.90830.00060.131*
H10B0.38881.08950.01930.131*
C110.371 (3)0.907 (5)0.0954 (6)0.122 (10)
H11A0.33810.78040.09830.146*
H11B0.24890.97000.11880.146*
C120.581 (2)0.941 (7)0.1320 (6)0.117 (4)
H12A0.64941.04750.11210.141*
H12B0.68180.84270.12100.141*
C130.581 (3)0.964 (7)0.2030 (7)0.131 (8)
H13A0.54961.08950.21230.157*
H13B0.45620.89630.22260.157*
C140.781 (3)0.916 (7)0.2394 (8)0.151 (9)
H14A0.91200.96730.21710.227*
H14B0.76540.96090.28430.227*
H14C0.79590.78820.24040.227*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0819 (8)0.0684 (8)0.1204 (10)0.001 (2)0.0165 (6)0.005 (2)
N10.056 (4)0.076 (6)0.078 (6)0.00 (2)0.007 (5)0.011 (19)
O10.10 (4)0.10 (3)0.08 (4)0.00 (6)0.01 (3)0.01 (5)
O20.067 (18)0.078 (16)0.087 (17)0.005 (12)0.003 (12)0.006 (12)
C10.08 (4)0.09 (3)0.07 (5)0.00 (5)0.01 (3)0.01 (5)
C20.08 (4)0.08 (4)0.08 (4)0.00 (3)0.01 (4)0.01 (3)
C30.08 (4)0.09 (8)0.07 (4)0.00 (4)0.00 (3)0.01 (4)
O1'0.10 (6)0.10 (8)0.08 (5)0.00 (8)0.01 (4)0.01 (7)
O2'0.07 (2)0.08 (2)0.09 (2)0.005 (15)0.003 (17)0.006 (16)
C1'0.08 (5)0.09 (8)0.07 (6)0.00 (6)0.01 (4)0.01 (6)
C2'0.08 (5)0.09 (6)0.08 (6)0.00 (4)0.01 (5)0.01 (4)
C3'0.09 (5)0.10 (6)0.08 (5)0.00 (6)0.01 (4)0.01 (5)
C40.09 (2)0.10 (3)0.11 (3)0.015 (18)0.00 (2)0.022 (18)
C50.08 (2)0.09 (3)0.12 (3)0.026 (17)0.010 (19)0.003 (17)
C60.060 (6)0.103 (9)0.070 (6)0.007 (19)0.008 (5)0.020 (19)
C70.105 (10)0.12 (2)0.084 (10)0.003 (12)0.005 (8)0.007 (13)
C80.108 (10)0.12 (2)0.078 (9)0.000 (14)0.008 (7)0.011 (14)
C90.119 (11)0.14 (3)0.080 (10)0.000 (13)0.000 (8)0.006 (12)
C100.124 (10)0.128 (15)0.074 (9)0.01 (2)0.001 (7)0.016 (17)
C110.127 (12)0.15 (3)0.084 (10)0.008 (15)0.000 (9)0.004 (13)
C120.133 (11)0.134 (12)0.086 (10)0.00 (4)0.003 (8)0.01 (3)
C130.139 (13)0.16 (2)0.090 (11)0.00 (2)0.005 (9)0.01 (2)
C140.163 (15)0.19 (3)0.098 (11)0.03 (3)0.009 (11)0.01 (2)
Geometric parameters (Å, º) top
N1—C41.48 (4)C5—H5C0.9600
N1—C61.495 (10)C6—H6A0.9600
N1—C1'1.50 (14)C6—H6B0.9600
N1—C51.50 (4)C6—H6C0.9600
N1—C11.51 (11)C7—C81.50 (2)
O1—C31.4 (2)C7—H7A0.9700
O1—C71.44 (17)C7—H7B0.9700
O2—C21.42 (6)C7—H7C0.9703
O2—H20.8200C7—H7D0.9698
C1—C21.53 (12)C8—C91.456 (16)
C1—H1A0.9700C8—H8A0.9700
C1—H1B0.9700C8—H8B0.9700
C2—C31.53 (10)C9—C101.51 (2)
C2—H2A0.9800C9—H9A0.9700
C3—H3A0.9700C9—H9B0.9700
C3—H3B0.9700C10—C111.51 (2)
O1'—C3'1.6 (3)C10—H10A0.9700
O2'—C2'1.43 (7)C10—H10B0.9700
O2'—H2'0.8200C11—C121.501 (19)
C1'—C2'1.54 (16)C11—H11A0.9700
C1'—H1'10.9700C11—H11B0.9700
C1'—H1'20.9700C12—C131.431 (18)
C2'—C3'1.53 (13)C12—H12A0.9700
C2'—H2'10.9800C12—H12B0.9700
C3'—H3'10.9700C13—C141.47 (3)
C3'—H3'20.9700C13—H13A0.9700
C4—H4A0.9600C13—H13B0.9700
C4—H4B0.9600C14—H14A0.9600
C4—H4C0.9600C14—H14B0.9600
C5—H5A0.9600C14—H14C0.9600
C5—H5B0.9600
C4—N1—C6109 (3)H6A—C6—H6C109.5
C4—N1—C1'98 (5)H6B—C6—H6C109.5
C6—N1—C1'116 (5)O1'—C7—O121 (5)
C4—N1—C5106.9 (8)O1'—C7—C8114 (10)
C6—N1—C5109 (2)O1—C7—C8107 (8)
C1'—N1—C5118 (5)O1'—C7—H7A89.5
C4—N1—C1124 (4)O1—C7—H7A110.4
C6—N1—C1109 (4)C8—C7—H7A110.4
C1'—N1—C128 (3)O1'—C7—H7B121.5
C5—N1—C197 (4)O1—C7—H7B110.4
C3—O1—C7108 (10)C8—C7—H7B110.4
C2—O2—H2109.5H7A—C7—H7B108.6
N1—C1—C2112 (7)O1'—C7—H7C109.2
N1—C1—H1A109.3O1—C7—H7C129.1
C2—C1—H1A109.3C8—C7—H7C110.0
N1—C1—H1B109.3H7A—C7—H7C22.6
C2—C1—H1B109.3H7B—C7—H7C88.5
H1A—C1—H1B108.0O1'—C7—H7D107.7
O2—C2—C3104 (6)O1—C7—H7D92.8
O2—C2—C1115 (5)C8—C7—H7D108.0
C3—C2—C1105 (6)H7A—C7—H7D126.2
O2—C2—H2A110.7H7B—C7—H7D20.3
C3—C2—H2A110.7H7C—C7—H7D107.8
C1—C2—H2A110.8C9—C8—C7121.2 (14)
O1—C3—C2120 (9)C9—C8—H8A107.0
O1—C3—H3A107.4C7—C8—H8A107.0
C2—C3—H3A107.4C9—C8—H8B107.0
O1—C3—H3B107.4C7—C8—H8B107.0
C2—C3—H3B107.4H8A—C8—H8B106.8
H3A—C3—H3B106.9C8—C9—C10118.8 (16)
C7—O1'—C3'108 (10)C8—C9—H9A107.6
C2'—O2'—H2'109.5C10—C9—H9A107.6
N1—C1'—C2'115 (8)C8—C9—H9B107.6
N1—C1'—H1'1108.4C10—C9—H9B107.6
C2'—C1'—H1'1108.4H9A—C9—H9B107.0
N1—C1'—H1'2108.4C9—C10—C11113.5 (19)
C2'—C1'—H1'2108.4C9—C10—H10A108.9
H1'1—C1'—H1'2107.5C11—C10—H10A108.9
O2'—C2'—C3'113 (8)C9—C10—H10B108.9
O2'—C2'—C1'111 (7)C11—C10—H10B108.9
C3'—C2'—C1'114 (8)H10A—C10—H10B107.7
O2'—C2'—H2'1106.3C12—C11—C10117.1 (18)
C3'—C2'—H2'1106.3C12—C11—H11A108.0
C1'—C2'—H2'1106.3C10—C11—H11A108.0
C2'—C3'—O1'105 (10)C12—C11—H11B108.0
C2'—C3'—H3'1110.7C10—C11—H11B108.0
O1'—C3'—H3'1110.7H11A—C11—H11B107.3
C2'—C3'—H3'2110.7C13—C12—C11123.2 (13)
O1'—C3'—H3'2110.7C13—C12—H12A106.5
H3'1—C3'—H3'2108.8C11—C12—H12A106.5
N1—C4—H4A109.5C13—C12—H12B106.5
N1—C4—H4B109.5C11—C12—H12B106.5
H4A—C4—H4B109.5H12A—C12—H12B106.5
N1—C4—H4C109.5C12—C13—C14120 (2)
H4A—C4—H4C109.5C12—C13—H13A107.3
H4B—C4—H4C109.5C14—C13—H13A107.3
N1—C5—H5A109.5C12—C13—H13B107.3
N1—C5—H5B109.5C14—C13—H13B107.3
H5A—C5—H5B109.5H13A—C13—H13B106.9
N1—C5—H5C109.5C13—C14—H14A109.5
H5A—C5—H5C109.5C13—C14—H14B109.5
H5B—C5—H5C109.5H14A—C14—H14B109.5
N1—C6—H6A109.5C13—C14—H14C109.5
N1—C6—H6B109.5H14A—C14—H14C109.5
H6A—C6—H6B109.5H14B—C14—H14C109.5
N1—C6—H6C109.5
C4—N1—C1—C252 (8)N1—C1'—C2'—C3'175 (8)
C6—N1—C1—C280 (7)O2'—C2'—C3'—O1'160 (9)
C1'—N1—C1—C229 (12)C1'—C2'—C3'—O1'33 (14)
C5—N1—C1—C2168 (6)C7—O1'—C3'—C2'169 (9)
N1—C1—C2—O278 (9)C3'—O1'—C7—C8130 (11)
N1—C1—C2—C3168 (6)C3—O1—C7—C8177 (7)
C7—O1—C3—C2136 (8)O1'—C7—C8—C9176 (6)
O2—C2—C3—O1172 (8)O1—C7—C8—C9155 (6)
C1—C2—C3—O150 (11)C7—C8—C9—C10140 (3)
C4—N1—C1'—C2'179 (8)C8—C9—C10—C11168 (3)
C6—N1—C1'—C2'66 (10)C9—C10—C11—C12173 (3)
C5—N1—C1'—C2'65 (10)C10—C11—C12—C13155 (4)
C1—N1—C1'—C2'17 (11)C11—C12—C13—C14152 (4)
N1—C1'—C2'—O2'57 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Br1i0.822.503.32 (3)171
O2—H2···Br1ii0.822.273.05 (4)160
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H32NO2+·Br
Mr326.32
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)5.9713 (11), 7.4780 (12), 19.992 (2)
β (°) 92.923 (1)
V3)891.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.42 × 0.30 × 0.04
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SABABS; Sheldrick, 1996)
Tmin, Tmax0.445, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
4642, 2827, 1168
Rint0.135
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.199, 1.03
No. of reflections2827
No. of parameters211
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.30
Absolute structureFlack (1983), 1124 FRIEDEL PAIRS
Absolute structure parameter0.02 (7)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Br1i0.822.503.32 (3)170.6
O2'—H2'···Br1ii0.822.273.05 (4)160.4
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z.
 

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (20673050) and the Shandong Province Science Foundation (2006B05).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKoh, L. L., Xu, Y., Gan, L. M., Chew, C. H. & Lee, K. C. (1993). Acta Cryst. C49, 1032–1035.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, Q., Yang, K. & Li, P. J. (2010). J. Hazardous Mater. 182, 757–762.  Web of Science CrossRef CAS Google Scholar
First citationZhao, S. Y., Zhang, G. Y., Zheng, G. X. & Niu, C. Z. (1997). Chin. Surfactant Detergent Cosmetics, 5, 7–9.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds