metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aquacadmium(II)]bis­[μ-2-(pyridinium-1-yl)butanedioato]-κ2O1:O4;κ2O4:O1] tetrahydrate], a polymeric chain structure

aDepartment of Materials Science and Engineering, Tianjin Institute of Urban Construction, Tianjin 300384, People's Republic of China
*Correspondence e-mail: sdwfliu@yahoo.cn

(Received 8 August 2010; accepted 15 October 2010; online 23 October 2010)

In the title complex, {[Cd(C9H8NO4)2(H2O)2]·4H2O}n, the CdII atom (site symmetry 2) is coordinated by six O atoms from four crystallographically related 1-(1,2-dicarboxyl­ate)pyridin-1-ium ligands (L) and from two water molecules in a distorted octahedral geometry. Paired L ligands connect CdII atoms into a chain motif parallel to [001], which is further inter­linked by O—H⋯O hydrogen bonds into a three-dimensional supra­molecular net.

Related literature

For ligands including pyridyl and carboxyl­ate groups as building tectons of the supra­molecular lattice in inorganic–organic coordination chemistry, see: Batten (2001[Batten, S. R. (2001). CrystEngComm, 18, 1-7.]); Kitagawa & Matsuda (2007[Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2940-2509.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H8NO4)2(H2O)2]·4H2O

  • Mr = 608.82

  • Monoclinic, C 2/c

  • a = 17.612 (4) Å

  • b = 9.798 (2) Å

  • c = 14.076 (3) Å

  • β = 102.63 (3)°

  • V = 2370.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 294 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.768, Tmax = 0.826

  • 2598 measured reflections

  • 2086 independent reflections

  • 1854 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.14

  • 2086 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.271 (3)
Cd1—O1i 2.271 (3)
Cd1—O5i 2.284 (3)
Cd1—O5 2.284 (3)
Cd1—O3ii 2.298 (3)
Cd1—O3iii 2.298 (3)
Symmetry codes: (i) [-x+2, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4iii 0.85 1.83 2.649 (6) 162
O5—H5B⋯O7iv 0.85 1.91 2.680 (5) 150
O6—H6A⋯O7v 0.85 2.24 2.964 (6) 143
O6—H6B⋯O2vi 0.85 1.90 2.753 (5) 177
O7—H7A⋯O6vii 0.84 1.93 2.753 (6) 169
O7—H7B⋯O4viii 0.90 1.80 2.700 (5) 172
Symmetry codes: (iii) -x+2, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+1, y, -z+{\script{1\over 2}}]; (vi) x, y-1, z; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [x-1, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Versatile ligands involving pyridyl and carboxylate groups have been proven to be effective building tectons of supramolecular lattice in the field of inorganic-organic coordination chemistry (Batten, 2001; Kitagawa & Matsuda, 2007).

In this paper, 1-(1,2-dicarboxyethyl)pyridin-1-ium chloride was employed as a bridging ligand to assemble with CdII into a one-dimensional polymeric chain motif, in which the coordination geometry of CdII can be portrayed as a distorted octahedron (CdO6) (Fig. 1). With the aid of the two monodentate carboxylates of L, the adjacent CdII ions are further interlinked to afford a chain motif along the [001] direction (Fig. 2). Additionally, strong O—H···O bonds are found between the coordinated water ligands, carboxylates, and lattice water molecules, to generating a complicated three-dimensional supramoleculecular lattice (Fig. 3).

Related literature top

For ligands including pyridyl and carboxylate groups as building tectons of the supramolecular lattice in inorganic–organic coordination chemistry, see: Batten (2001); Kitagawa & Matsuda (2007). Scheme should show uncoordinated water. Coordinated waters should be linked through O atoms (not H as shown)

Experimental top

A water solution (8 ml) containing CdCl2(18.4 mg, 0.1 mmol) and 1-(1,2-dicarboxyethyl)pyridin-1-ium chloride (23.1 mg, 0.1 mmol) was heated to 373 K for 24 h and subsequently cooled to room temperature at a rate of 1 K/h. Colorless block shape crystals were obtained.

Refinement top

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distance of 0.93 Å, and Uiso(H) = 1.2Ueq(C). The O-bound hydrogen atoms were first located in difference Fourier maps, and then fixed in calculated sites, with d(O—H) = 0.84–0.90Å.

Structure description top

Versatile ligands involving pyridyl and carboxylate groups have been proven to be effective building tectons of supramolecular lattice in the field of inorganic-organic coordination chemistry (Batten, 2001; Kitagawa & Matsuda, 2007).

In this paper, 1-(1,2-dicarboxyethyl)pyridin-1-ium chloride was employed as a bridging ligand to assemble with CdII into a one-dimensional polymeric chain motif, in which the coordination geometry of CdII can be portrayed as a distorted octahedron (CdO6) (Fig. 1). With the aid of the two monodentate carboxylates of L, the adjacent CdII ions are further interlinked to afford a chain motif along the [001] direction (Fig. 2). Additionally, strong O—H···O bonds are found between the coordinated water ligands, carboxylates, and lattice water molecules, to generating a complicated three-dimensional supramoleculecular lattice (Fig. 3).

For ligands including pyridyl and carboxylate groups as building tectons of the supramolecular lattice in inorganic–organic coordination chemistry, see: Batten (2001); Kitagawa & Matsuda (2007). Scheme should show uncoordinated water. Coordinated waters should be linked through O atoms (not H as shown)

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with atom-labelling scheme and ellipsoids drawn at the 50% probability level. Symmetry operations: (i) -x+2, y, -z+1/2; (ii) x, -y+1, z-1/2; (iii) -x+2, -y+1, -z+1.
[Figure 2] Fig. 2. View of the one-dimensional polymeric chain along the [001] direction.
[Figure 3] Fig. 3. Part of the three-dimensional supramolecular net, showing the hydrogen bonds in red dashed lines. H atoms not involved in H-bonsing have been omitted for clarity.
catena-Poly[[[diaquacadmium(II)]bis[µ-2-(pyridinium-1- yl)butanedioato]-κ2O1:O4;κ2O4:O1] tetrahydrate] top
Crystal data top
[Cd(C9H8NO4)2(H2O)2]·4H2OF(000) = 1240
Mr = 608.82Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.612 (4) ÅCell parameters from 2290 reflections
b = 9.798 (2) Åθ = 2.5–22.0°
c = 14.076 (3) ŵ = 1.00 mm1
β = 102.63 (3)°T = 294 K
V = 2370.2 (8) Å3Block, colourless
Z = 40.28 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2086 independent reflections
Radiation source: fine-focus sealed tube1854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 120
Tmin = 0.768, Tmax = 0.826k = 111
2598 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0445P)2 + 4.7881P]
where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cd(C9H8NO4)2(H2O)2]·4H2OV = 2370.2 (8) Å3
Mr = 608.82Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.612 (4) ŵ = 1.00 mm1
b = 9.798 (2) ÅT = 294 K
c = 14.076 (3) Å0.28 × 0.22 × 0.20 mm
β = 102.63 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2086 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1854 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.826Rint = 0.026
2598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.14Δρmax = 0.75 e Å3
2086 reflectionsΔρmin = 0.53 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd11.00000.64349 (4)0.25000.02528 (15)
O10.9894 (2)0.8142 (3)0.3555 (2)0.0422 (8)
O20.9118 (2)0.9428 (3)0.4220 (2)0.0462 (8)
O31.00096 (16)0.5232 (3)0.6354 (2)0.0341 (7)
O41.12761 (18)0.5582 (4)0.6576 (3)0.0524 (9)
O50.8676 (2)0.6277 (4)0.2046 (3)0.0687 (12)
H5A0.86260.57920.25300.103*
H5B0.84320.70310.19690.103*
O60.7816 (2)0.0490 (4)0.4730 (3)0.0579 (10)
H6A0.75350.09870.42970.087*
H6B0.82190.01420.45900.087*
O70.2566 (2)0.3103 (4)0.1327 (3)0.0616 (11)
H7A0.26470.34310.08080.092*
H7B0.21220.34690.14360.092*
N10.91334 (18)0.7734 (3)0.5733 (2)0.0239 (7)
C10.9343 (2)0.8872 (4)0.6275 (3)0.0280 (9)
H10.97790.93670.62090.034*
C20.8904 (3)0.9292 (5)0.6926 (3)0.0365 (10)
H20.90511.00620.73080.044*
C30.8258 (3)0.8577 (6)0.7007 (3)0.0471 (12)
H30.79570.88650.74370.057*
C40.8052 (3)0.7424 (6)0.6447 (3)0.0466 (12)
H40.76120.69270.64970.056*
C50.8502 (3)0.7015 (5)0.5813 (3)0.0349 (10)
H50.83680.62340.54380.042*
C60.9595 (2)0.7326 (4)0.5014 (3)0.0255 (8)
H60.93770.64660.47180.031*
C70.9515 (2)0.8395 (4)0.4189 (3)0.0275 (9)
C81.0448 (2)0.7062 (4)0.5496 (3)0.0285 (9)
H8A1.07320.68940.49900.034*
H8B1.06610.78820.58400.034*
C91.0585 (2)0.5875 (4)0.6204 (3)0.0281 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0303 (2)0.0218 (2)0.0267 (2)0.0000.01280 (16)0.000
O10.079 (2)0.0277 (16)0.0296 (15)0.0071 (15)0.0322 (16)0.0015 (12)
O20.068 (2)0.0403 (19)0.0370 (17)0.0216 (17)0.0266 (16)0.0156 (15)
O30.0361 (16)0.0282 (16)0.0382 (16)0.0014 (13)0.0082 (13)0.0115 (13)
O40.0336 (18)0.053 (2)0.068 (2)0.0012 (16)0.0067 (16)0.0288 (19)
O50.0371 (19)0.071 (3)0.097 (3)0.0077 (19)0.0120 (19)0.046 (2)
O60.054 (2)0.063 (2)0.059 (2)0.0183 (19)0.0183 (17)0.0063 (19)
O70.052 (2)0.057 (2)0.083 (3)0.0200 (18)0.031 (2)0.030 (2)
N10.0297 (17)0.0241 (17)0.0187 (15)0.0018 (14)0.0069 (13)0.0010 (13)
C10.036 (2)0.025 (2)0.0237 (18)0.0027 (17)0.0075 (16)0.0009 (15)
C20.049 (3)0.039 (2)0.0236 (19)0.008 (2)0.0114 (18)0.0039 (19)
C30.046 (3)0.066 (3)0.037 (2)0.009 (3)0.025 (2)0.005 (3)
C40.040 (3)0.058 (3)0.046 (3)0.002 (2)0.019 (2)0.010 (2)
C50.040 (2)0.033 (2)0.031 (2)0.007 (2)0.0091 (18)0.0010 (18)
C60.036 (2)0.0190 (19)0.0241 (19)0.0006 (17)0.0128 (16)0.0013 (15)
C70.041 (2)0.022 (2)0.0219 (18)0.0005 (18)0.0113 (16)0.0026 (16)
C80.034 (2)0.024 (2)0.030 (2)0.0007 (18)0.0127 (17)0.0053 (17)
C90.038 (2)0.0198 (19)0.027 (2)0.0006 (18)0.0087 (17)0.0016 (16)
Geometric parameters (Å, º) top
Cd1—O12.271 (3)N1—C11.356 (5)
Cd1—O1i2.271 (3)N1—C61.485 (5)
Cd1—O5i2.284 (3)C1—C21.384 (5)
Cd1—O52.284 (3)C1—H10.9300
Cd1—O3ii2.298 (3)C2—C31.363 (7)
Cd1—O3iii2.298 (3)C2—H20.9300
O1—C71.250 (5)C3—C41.381 (7)
O2—C71.236 (5)C3—H30.9300
O3—C91.250 (5)C4—C51.376 (6)
O3—Cd1iii2.298 (3)C4—H40.9300
O4—C91.248 (5)C5—H50.9300
O5—H5A0.8501C6—C81.528 (5)
O5—H5B0.8500C6—C71.548 (5)
O6—H6A0.8500C6—H60.9800
O6—H6B0.8500C8—C91.517 (6)
O7—H7A0.8391C8—H8A0.9700
O7—H7B0.9029C8—H8B0.9700
N1—C51.341 (5)
O1—Cd1—O1i85.13 (14)C3—C2—H2120.0
O1—Cd1—O5i95.28 (13)C1—C2—H2120.0
O1i—Cd1—O5i90.45 (15)C2—C3—C4119.5 (4)
O1—Cd1—O590.45 (15)C2—C3—H3120.3
O1i—Cd1—O595.28 (13)C4—C3—H3120.3
O5i—Cd1—O5172.2 (2)C5—C4—C3119.5 (4)
O1—Cd1—O3ii175.18 (12)C5—C4—H4120.3
O1i—Cd1—O3ii92.87 (10)C3—C4—H4120.3
O5i—Cd1—O3ii89.11 (12)N1—C5—C4120.5 (4)
O5—Cd1—O3ii85.37 (14)N1—C5—H5119.7
O1—Cd1—O3iii92.87 (10)C4—C5—H5119.7
O1i—Cd1—O3iii175.18 (12)N1—C6—C8112.0 (3)
O5i—Cd1—O3iii85.37 (14)N1—C6—C7110.8 (3)
O5—Cd1—O3iii89.11 (12)C8—C6—C7111.5 (3)
O3ii—Cd1—O3iii89.46 (15)N1—C6—H6107.4
C7—O1—Cd1138.2 (3)C8—C6—H6107.4
C9—O3—Cd1iii127.4 (3)C7—C6—H6107.4
Cd1—O5—H5A95.3O2—C7—O1125.6 (4)
Cd1—O5—H5B115.7O2—C7—C6119.1 (3)
H5A—O5—H5B116.7O1—C7—C6115.2 (3)
H6A—O6—H6B116.6C9—C8—C6114.9 (3)
H7A—O7—H7B108.3C9—C8—H8A108.5
C5—N1—C1120.9 (3)C6—C8—H8A108.5
C5—N1—C6120.2 (3)C9—C8—H8B108.5
C1—N1—C6118.8 (3)C6—C8—H8B108.5
N1—C1—C2119.6 (4)H8A—C8—H8B107.5
N1—C1—H1120.2O4—C9—O3124.4 (4)
C2—C1—H1120.2O4—C9—C8116.9 (4)
C3—C2—C1120.0 (4)O3—C9—C8118.6 (4)
O1i—Cd1—O1—C7141.1 (5)C5—N1—C6—C7111.7 (4)
O5i—Cd1—O1—C7128.9 (4)C1—N1—C6—C765.7 (4)
O5—Cd1—O1—C745.9 (4)Cd1—O1—C7—O2126.2 (4)
O3iii—Cd1—O1—C743.3 (4)Cd1—O1—C7—C656.5 (6)
C5—N1—C1—C20.5 (6)N1—C6—C7—O21.7 (5)
C6—N1—C1—C2178.0 (3)C8—C6—C7—O2123.8 (4)
N1—C1—C2—C31.2 (6)N1—C6—C7—O1179.2 (3)
C1—C2—C3—C41.0 (7)C8—C6—C7—O153.6 (5)
C2—C3—C4—C50.1 (7)N1—C6—C8—C964.2 (4)
C1—N1—C5—C40.3 (6)C7—C6—C8—C9171.0 (3)
C6—N1—C5—C4177.1 (4)Cd1iii—O3—C9—O410.1 (6)
C3—C4—C5—N10.5 (7)Cd1iii—O3—C9—C8172.2 (3)
C5—N1—C6—C8123.1 (4)C6—C8—C9—O4176.5 (4)
C1—N1—C6—C859.5 (4)C6—C8—C9—O31.3 (5)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y+1, z1/2; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iii0.851.832.649 (6)162
O5—H5B···O7iv0.851.912.680 (5)150
O6—H6A···O7v0.852.242.964 (6)143
O6—H6B···O2vi0.851.902.753 (5)177
O7—H7A···O6vii0.841.932.753 (6)169
O7—H7B···O4viii0.901.802.700 (5)172
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+1/2; (vi) x, y1, z; (vii) x1/2, y+1/2, z1/2; (viii) x1, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cd(C9H8NO4)2(H2O)2]·4H2O
Mr608.82
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)17.612 (4), 9.798 (2), 14.076 (3)
β (°) 102.63 (3)
V3)2370.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
2598, 2086, 1854
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.092, 1.14
No. of reflections2086
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.53

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.271 (3)Cd1—O52.284 (3)
Cd1—O1i2.271 (3)Cd1—O3ii2.298 (3)
Cd1—O5i2.284 (3)Cd1—O3iii2.298 (3)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x, y+1, z1/2; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4iii0.851.832.649 (6)162
O5—H5B···O7iv0.851.912.680 (5)150
O6—H6A···O7v0.852.242.964 (6)143
O6—H6B···O2vi0.851.902.753 (5)177
O7—H7A···O6vii0.841.932.753 (6)169
O7—H7B···O4viii0.901.802.700 (5)172
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x+1/2, y+1/2, z; (v) x+1, y, z+1/2; (vi) x, y1, z; (vii) x1/2, y+1/2, z1/2; (viii) x1, y+1, z1/2.
 

References

First citationBatten, S. R. (2001). CrystEngComm, 18, 1–7.  Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2940–2509.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds