organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3-Di­chloro-1-(chloro­meth­yl)indolin-2-one

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: sl_cao@sohu.com

(Received 17 September 2010; accepted 11 October 2010; online 20 October 2010)

In the title compound, C9H6Cl3NO, the pyrrole ring is almost coplanar with the benzene ring [dihedral angle = 1.90 (9)°], while the Cl—C—N—C torsion angle is 98.78 (17)°. In the crystal, pairs of mol­ecules are inter­connected by pairs of Cl⋯Cl inter­actions [3.564 (5) Å], forming dimers, which are further peripherally connected through inter­molecular C—H⋯O=C and ππ inter­actions [centroid–centroid distances = 4.134 (7), 4.134 (6) and 4.238 (7) Å], forming a two-dimensional network.

Related literature

For the synthesis of the title compound, see: Höhme & Schwartz, (1974[Höhme, H. & Schwartz, H. (1974). Arch. Pharm. 307, 775-779.]). For the synthesis of 1-(chloro­meth­yl) indoline-2,3-dione, see: Höhme & Schwartz, (1973[Höhme, H. & Schwartz, H. (1973). Arch. Pharm. 306, 684-692.]). For Cl⋯Cl inter­actions, see: Reddy et al. (2006[Reddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222-2234.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6Cl3NO

  • Mr = 250.50

  • Monoclinic, P 21 /c

  • a = 8.6102 (1) Å

  • b = 14.5573 (2) Å

  • c = 8.2461 (1) Å

  • β = 93.381 (1)°

  • V = 1031.78 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • 13146 measured reflections

  • 2450 independent reflections

  • 2156 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.06

  • 2450 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.57 3.173 (2) 123
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Höhme and Schwartz reported that the reaction of 1-(hydroxymethyl) indoline-2,3-dione with SOCl2 gave 1-(chloromethyl) indoline-2,3-dione (Höhme & Schwartz, 1973), whereas the reaction in the presence of a small amount of pyridine gave the title compound (Höhme & Schwartz, 1974). However, our experimental results showed that the title compound could also be obtained from the reaction in the absence of pyridine. Here, we report the structure of the title compound.

X-ray crystal analysis shows that the pyrrole ring almost lies within the plane of the benzene ring, while the torsion angle Cl2—C9—N1—C8 equals 98.78 (17)°, as shown in Fig.1. Two molecules arrange in a face to face mode and thus interconnect through intermolecular Cl1···Cl2(-x + 1, -y + 1, -z + 2) interactions (Cl···Cl=3.564 (5) Å) (Reddy et al., 2006), forming a dimer. Each dimeric unit peripherically links to four neihgbouring ones through intermolecular C4—H4···O1=C8 interactions (Table 1), generating a two-dimensional network. ππ interactions (Table 2) between the approximate parallel benzene and/or parrole rings cooperate with those weak interactions to consolidate the supramolecular structure, as shown in Fig. 2.

Related literature top

For the synthesis of the title compound, see: Höhme & Schwartz, (1974). For the synthesis of 1-(chloromethyl) indoline-2,3-dione, see: Höhme & Schwartz, (1973). For Cl···Cl interactions, see: Reddy et al. (2006).

Experimental top

A mixture of indoline-2,3-dione (3.0 g, 0.02 mol) and formalin (5 ml) in 30 ml of water was refluxed for 1 h. After that, the reaction mixture was stirred at room temperature overnight. The resulting precipitate, 1-(hydroxymethyl)indoline-2,3-dione, was separated by filtration and purified by recrystallization from ethanol, which was heated with SOCl2 (25 ml) under reflux for 3.5 h. The reaction mixture was distilled in vacuum to remove excess SOCl2 and the residue was purified by column chromatography on silica gel using dichloromethane/methanol=98:2, v/v, as an eluent (Rf=0.33, dichloromethane/methanol=98:2, v/v; m.p. 141–143°C; yield 50.5% in two steps). The light yellow crystals of the title compound were obtained by slow evaporation from the solution of dichloromethane methanol 98:2 (v/v) at room temperature.

Refinement top

All the H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on the carrier atoms, with C—H=0.93 Å for aryl H atoms and Uiso(H)=1.2Ueq(C).

Structure description top

Höhme and Schwartz reported that the reaction of 1-(hydroxymethyl) indoline-2,3-dione with SOCl2 gave 1-(chloromethyl) indoline-2,3-dione (Höhme & Schwartz, 1973), whereas the reaction in the presence of a small amount of pyridine gave the title compound (Höhme & Schwartz, 1974). However, our experimental results showed that the title compound could also be obtained from the reaction in the absence of pyridine. Here, we report the structure of the title compound.

X-ray crystal analysis shows that the pyrrole ring almost lies within the plane of the benzene ring, while the torsion angle Cl2—C9—N1—C8 equals 98.78 (17)°, as shown in Fig.1. Two molecules arrange in a face to face mode and thus interconnect through intermolecular Cl1···Cl2(-x + 1, -y + 1, -z + 2) interactions (Cl···Cl=3.564 (5) Å) (Reddy et al., 2006), forming a dimer. Each dimeric unit peripherically links to four neihgbouring ones through intermolecular C4—H4···O1=C8 interactions (Table 1), generating a two-dimensional network. ππ interactions (Table 2) between the approximate parallel benzene and/or parrole rings cooperate with those weak interactions to consolidate the supramolecular structure, as shown in Fig. 2.

For the synthesis of the title compound, see: Höhme & Schwartz, (1974). For the synthesis of 1-(chloromethyl) indoline-2,3-dione, see: Höhme & Schwartz, (1973). For Cl···Cl interactions, see: Reddy et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic numbering scheme. The displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Cl···Cl and C-H···O=C interactions in the crystalline structure of the title compound. The blue dashed lines indicate Cl···Cl interaction, while the red dashed lines represent C—H···O=C interactions. All the ππ stacking interactions are omitted for clarity. Symmetry codes: iii-x + 1, -y + 1, -z + 2; iv-x + 1, y - 1/2, -z + 3/2.
3,3-Dichloro-1-(chloromethyl)indolin-2-one top
Crystal data top
C9H6Cl3NOF(000) = 504
Mr = 250.50Dx = 1.613 Mg m3
Dm = 1.613 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.6102 (1) ÅCell parameters from 7007 reflections
b = 14.5573 (2) Åθ = 2.5–27.8°
c = 8.2461 (1) ŵ = 0.85 mm1
β = 93.381 (1)°T = 296 K
V = 1031.78 (2) Å3Block, yellow
Z = 40.16 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2156 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.9°, θmin = 2.4°
phi and ω scansh = 1111
13146 measured reflectionsk = 1919
2450 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.4377P]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C9H6Cl3NOV = 1031.78 (2) Å3
Mr = 250.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6102 (1) ŵ = 0.85 mm1
b = 14.5573 (2) ÅT = 296 K
c = 8.2461 (1) Å0.16 × 0.12 × 0.10 mm
β = 93.381 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2156 reflections with I > 2σ(I)
13146 measured reflectionsRint = 0.016
2450 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
2450 reflectionsΔρmin = 0.49 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.4139 (2)0.66723 (13)0.5958 (2)0.0448 (4)
H9A0.37470.61710.52750.054*
H9B0.44040.71760.52550.054*
Cl10.72991 (7)0.48322 (4)0.99637 (6)0.06304 (17)
Cl30.87749 (7)0.48989 (4)0.69017 (7)0.06607 (17)
Cl20.26419 (5)0.70402 (4)0.72483 (7)0.06448 (17)
C10.9042 (2)0.68812 (13)0.9240 (2)0.0478 (4)
H10.98380.65410.97620.057*
C20.9062 (2)0.78348 (14)0.9279 (3)0.0533 (4)
H20.98820.81380.98360.064*
C30.7883 (2)0.83366 (12)0.8503 (2)0.0497 (4)
H30.79220.89750.85450.060*
C40.66346 (19)0.79124 (11)0.7659 (2)0.0415 (4)
H40.58370.82520.71390.050*
C50.66323 (17)0.69655 (10)0.76292 (19)0.0345 (3)
C60.78112 (18)0.64512 (11)0.84075 (19)0.0373 (3)
C70.74369 (19)0.54609 (11)0.8146 (2)0.0410 (3)
C80.58313 (19)0.54734 (11)0.7189 (2)0.0402 (3)
N10.54994 (15)0.63781 (9)0.68728 (17)0.0385 (3)
O10.50408 (18)0.48209 (9)0.68047 (17)0.0562 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.0434 (8)0.0522 (9)0.0379 (8)0.0048 (7)0.0044 (7)0.0021 (7)
Cl10.0768 (3)0.0574 (3)0.0547 (3)0.0061 (2)0.0024 (2)0.0214 (2)
Cl30.0658 (3)0.0575 (3)0.0769 (4)0.0237 (2)0.0207 (3)0.0084 (2)
Cl20.0411 (2)0.0907 (4)0.0615 (3)0.0133 (2)0.0021 (2)0.0031 (3)
C10.0344 (8)0.0575 (10)0.0512 (10)0.0034 (7)0.0008 (7)0.0031 (8)
C20.0421 (9)0.0578 (11)0.0595 (11)0.0122 (8)0.0006 (8)0.0053 (9)
C30.0509 (10)0.0381 (8)0.0609 (11)0.0072 (7)0.0093 (8)0.0033 (8)
C40.0415 (8)0.0350 (7)0.0482 (9)0.0034 (6)0.0053 (7)0.0020 (6)
C50.0332 (7)0.0345 (7)0.0361 (7)0.0023 (5)0.0045 (6)0.0008 (6)
C60.0358 (7)0.0380 (8)0.0386 (8)0.0064 (6)0.0062 (6)0.0018 (6)
C70.0452 (8)0.0369 (8)0.0416 (8)0.0106 (6)0.0072 (7)0.0039 (6)
C80.0473 (8)0.0355 (7)0.0383 (8)0.0015 (6)0.0075 (7)0.0014 (6)
N10.0379 (6)0.0344 (6)0.0428 (7)0.0032 (5)0.0013 (5)0.0021 (5)
O10.0701 (9)0.0399 (6)0.0583 (8)0.0114 (6)0.0012 (7)0.0040 (6)
Geometric parameters (Å, º) top
C9—N11.422 (2)C3—C41.390 (2)
C9—Cl21.8009 (18)C3—H30.9300
C9—H9A0.9700C4—C51.379 (2)
C9—H9B0.9700C4—H40.9300
Cl1—C71.7664 (17)C5—C61.388 (2)
Cl3—C71.7856 (16)C5—N11.414 (2)
C1—C61.378 (2)C6—C71.490 (2)
C1—C21.389 (3)C7—C81.551 (2)
C1—H10.9300C8—O11.200 (2)
C2—C31.378 (3)C8—N11.369 (2)
C2—H20.9300
N1—C9—Cl2111.84 (12)C4—C5—C6122.06 (15)
N1—C9—H9A109.2C4—C5—N1127.79 (14)
Cl2—C9—H9A109.2C6—C5—N1110.15 (13)
N1—C9—H9B109.2C1—C6—C5120.33 (15)
Cl2—C9—H9B109.2C1—C6—C7131.67 (15)
H9A—C9—H9B107.9C5—C6—C7107.99 (14)
C6—C1—C2118.30 (16)C6—C7—C8103.95 (12)
C6—C1—H1120.9C6—C7—Cl1113.78 (12)
C2—C1—H1120.9C8—C7—Cl1109.59 (12)
C3—C2—C1120.73 (17)C6—C7—Cl3112.65 (12)
C3—C2—H2119.6C8—C7—Cl3107.40 (11)
C1—C2—H2119.6Cl1—C7—Cl3109.15 (8)
C2—C3—C4121.61 (16)O1—C8—N1127.02 (16)
C2—C3—H3119.2O1—C8—C7126.84 (15)
C4—C3—H3119.2N1—C8—C7106.13 (13)
C5—C4—C3116.96 (16)C8—N1—C5111.52 (13)
C5—C4—H4121.5C8—N1—C9123.16 (14)
C3—C4—H4121.5C5—N1—C9125.26 (13)
C6—C1—C2—C30.1 (3)C6—C7—C8—O1175.08 (17)
C1—C2—C3—C40.1 (3)Cl1—C7—C8—O153.1 (2)
C2—C3—C4—C50.2 (3)Cl3—C7—C8—O165.3 (2)
C3—C4—C5—C60.3 (2)C6—C7—C8—N14.91 (17)
C3—C4—C5—N1179.42 (16)Cl1—C7—C8—N1126.87 (12)
C2—C1—C6—C50.2 (3)Cl3—C7—C8—N1114.67 (12)
C2—C1—C6—C7179.47 (18)O1—C8—N1—C5174.89 (17)
C4—C5—C6—C10.3 (2)C7—C8—N1—C55.10 (18)
N1—C5—C6—C1179.56 (15)O1—C8—N1—C92.4 (3)
C4—C5—C6—C7179.42 (15)C7—C8—N1—C9177.62 (14)
N1—C5—C6—C70.16 (18)C4—C5—N1—C8175.89 (16)
C1—C6—C7—C8176.63 (17)C6—C5—N1—C83.31 (19)
C5—C6—C7—C83.04 (17)C4—C5—N1—C91.3 (3)
C1—C6—C7—Cl157.5 (2)C6—C5—N1—C9179.48 (15)
C5—C6—C7—Cl1122.18 (13)Cl2—C9—N1—C898.78 (17)
C1—C6—C7—Cl367.4 (2)Cl2—C9—N1—C578.12 (19)
C5—C6—C7—Cl3112.91 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.573.173 (2)123
C9—H9A···O10.972.562.879 (2)100
C9—H9A···O1ii0.972.523.256 (2)133
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H6Cl3NO
Mr250.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.6102 (1), 14.5573 (2), 8.2461 (1)
β (°) 93.381 (1)
V3)1031.78 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13146, 2450, 2156
Rint0.016
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.06
No. of reflections2450
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.49

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.573.173 (2)123.
Symmetry code: (i) x+1, y+1/2, z+3/2.
ππ interactions top
Cg(A)Cg(B)Cg(A)···Cg(B) (Å)sym. code Cg(B)
Cg1Cg14.134 (7)x, -y +3/2, z-1/2
Cg1Cg14.134 (6)x, -y +3/2, z+1/2
Cg1Cg24.238 (7)x, -y +3/2, z-1/2
* Cg1, Cg2 are the centroids of C1-C2-C3-C4-C5-C6 (benzene) and C5-C6-C7-C8-N1 (pyrrole),respectively.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education (project No. KM200710028008).

References

First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHöhme, H. & Schwartz, H. (1973). Arch. Pharm. 306, 684–692.  Google Scholar
First citationHöhme, H. & Schwartz, H. (1974). Arch. Pharm. 307, 775–779.  Google Scholar
First citationReddy, C. M., Kirchner, M. T., Gundakaram, R. C., Padmanabhan, K. A. & Desiraju, G. R. (2006). Chem. Eur. J. 12, 2222–2234.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds