metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(hippurato)bis­­(1,10-phenanthroline)cobalt(II) nitrate monohydrate

aCollege of Chemistry & Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China, and bKey Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry & Bioengineering, Yichun University, Yichun, Jiangxi 336000, People's Republic of China
*Correspondence e-mail: djhycu_2006@yahoo.com.cn

(Received 9 September 2010; accepted 10 October 2010; online 20 October 2010)

In the title compound, [Co(C9H8NO3)(C12H8N2)2(H2O)]NO3·H2O, the CoII atom is six-coordinated by a carboxylate O atom of the hippurate (Hc) anion, a water O atom and four N atoms from two 1,10-phenanthroline ligands in a distorted octa­hedral geometry. The uncoordinated O atom of the hippuric acid anion is involved in an intra­molecular hydrogen bond to the coordinated water mol­ecule. The crystal packing is stabilized by inter­molecular O—H⋯O hydrogen bonds involving the Hc anions, the coordinated water mol­ecule, the nitrate anion and the uncoordinated water mol­ecule.

Related literature

For complexes based on hippuric acid, see: Antolini et al. (1982[Antolini, L., Battaglia, L. P., Bonamartini-Corradi, A., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Brown & Trefonas (1973[Brown, J. & Trefonas, L. M. (1973). Inorg. Chem. 12, 1730-1733.]); Grewe et al. (1982[Grewe, H., Udupa, M. R. & Krebs, B. (1982). Inorg. Chim. Acta, 63, 119-124.]); Guo, Chen et al. (2006[Guo, G.-Q., Chen, F.-P., Wang, X.-W., Hu, B. & Chen, J.-Z. (2006). Acta Cryst. E62, m2706-m2708.]); Guo, Wang et al. (2006[Guo, G.-Q., Wang, X.-W., Chen, F.-P., Chen, Y. & Chen, J.-Z. (2006). Acta Cryst. E62, m2796-m2798.]); Morelock et al. (1979[Morelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858-4866.], 1982[Morelock, M. M., Good, M. L., Trefonas, L. M., Majeste, R. & Karraker, D. G. (1982). Inorg. Chem. 21, 3044-3050.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H8NO3)(C12H8N2)2(H2O)]NO3·H2O

  • Mr = 695.54

  • Monoclinic, P 21 /c

  • a = 9.935 (2) Å

  • b = 13.991 (3) Å

  • c = 23.162 (5) Å

  • β = 91.37 (3)°

  • V = 3218.7 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.890, Tmax = 0.906

  • 9187 measured reflections

  • 5493 independent reflections

  • 3848 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.143

  • S = 1.09

  • 5493 reflections

  • 445 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O2 2.076 (3)
Co1—O4 2.106 (4)
Co1—N5 2.130 (3)
Co1—N2 2.133 (3)
Co1—N3 2.142 (3)
Co1—N4 2.173 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8E⋯O5 0.87 2.46 3.084 (7) 129
O8—H8E⋯O7 0.87 2.24 2.982 (7) 143
O4—H4F⋯O2 0.85 (7) 2.48 (7) 2.876 (5) 110 (5)
O4—H4F⋯O3 0.85 (7) 1.87 (7) 2.696 (5) 162 (7)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hippuric acid (Hc) is a naturally occurring carboxylic acid found in the urine of most mammals. Several decades ago, hippuric acid was testified as a good building units for metal complexes with desirable magnetic properties, due to the carboxylic group of hippuric acid can act as donor to link metal centers. To date, the synthesis, crystal structures, and related property studying of Ni(II), Fe(II), Zn(II), Cu(II) complexes based on hippuric acid have been reported (Antolini, et al., 1982; Brown, et al., 1973; Grewe, et al., 1982; Guo, Wang, Chen, et al., 2006; Guo, Chen, Wang, et al., 2006; Morelock, Good, Trefonas, Karraker et al., 1979; Morelock, Good, Trefonas, Majeste et al., 1982). Herein, we present the synthesis and crystal structure of its Co(II) complex.

The title compound, (I), is a mononuclear complex, consisting of one [Co(Hc)(phen)2(H2O)]+ unit, one NO3- anion, and one crystal H2O molecule (Fig. 1). The Co(II) ion is six-coordinated by O atoms from one Hc anion and one water molecule, four N atoms of two 1,10-phen ligands in a shape of distorted octahedron. The atoms N2, N3, N5, and O4 are located in the equatorial plane whereas O2 and N4 occupy the axial positions. The bond distances and angles around Co atom reveal a distorted octahedron (bite-chelating angles are 77.2 and 77.822 °). The Hc anion acts as a monodentate ligand, with one of the carboylic oxygen atoms coordinated to the Co(II) ions, while the amide O and imine N atoms remain uncoordinated.

The coordinated water molecule and the crystal water molecule donate H atom to the nitrate anion and to the Hc anion ligand to form O—H···O hydrogen bonds. In addition, the imine group of the Hc anion also donate H atom to the nitrate to form N—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For complexes based on hippuric acid, see: Antolini et al. (1982); Brown & Trefonas (1973); Grewe et al. (1982); Guo, Chen, Wang, Hu & Chen (2006); Guo, Wang, Chen, Chen & Chen (2006); Morelock et al. (1979, 1982).

Experimental top

Hippuric acid (1.0 mmol) , Co(NO3)2.6H2 (O1.0 mmol) and 1,10-phenanthroline (2.0 mmol) were dissolved in a water-ethanol mixture(v/v=1:4; 25 ml). The obtained solution was continously stirred, and its pH was adjusted to 6–7 by 1.0 mol L-1 NaOH aqueous solution. Then the mixture was further stirred for ca 2 h at room temperature and filtered. The resultant filtrate was left to stand for slow evaporation at room temperature. Dark-red single crystals of (I) suitable for X-ray diffraction analysis were obtained after two weeks (yield 66%).

Refinement top

Hydrogen atoms attached to carbon atoms and nitrogen atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C or N). The hydrogen atoms of the coordination water molecules and lattice water molecules were assigned in the difference Fourier maps and refined isotropically.

Structure description top

Hippuric acid (Hc) is a naturally occurring carboxylic acid found in the urine of most mammals. Several decades ago, hippuric acid was testified as a good building units for metal complexes with desirable magnetic properties, due to the carboxylic group of hippuric acid can act as donor to link metal centers. To date, the synthesis, crystal structures, and related property studying of Ni(II), Fe(II), Zn(II), Cu(II) complexes based on hippuric acid have been reported (Antolini, et al., 1982; Brown, et al., 1973; Grewe, et al., 1982; Guo, Wang, Chen, et al., 2006; Guo, Chen, Wang, et al., 2006; Morelock, Good, Trefonas, Karraker et al., 1979; Morelock, Good, Trefonas, Majeste et al., 1982). Herein, we present the synthesis and crystal structure of its Co(II) complex.

The title compound, (I), is a mononuclear complex, consisting of one [Co(Hc)(phen)2(H2O)]+ unit, one NO3- anion, and one crystal H2O molecule (Fig. 1). The Co(II) ion is six-coordinated by O atoms from one Hc anion and one water molecule, four N atoms of two 1,10-phen ligands in a shape of distorted octahedron. The atoms N2, N3, N5, and O4 are located in the equatorial plane whereas O2 and N4 occupy the axial positions. The bond distances and angles around Co atom reveal a distorted octahedron (bite-chelating angles are 77.2 and 77.822 °). The Hc anion acts as a monodentate ligand, with one of the carboylic oxygen atoms coordinated to the Co(II) ions, while the amide O and imine N atoms remain uncoordinated.

The coordinated water molecule and the crystal water molecule donate H atom to the nitrate anion and to the Hc anion ligand to form O—H···O hydrogen bonds. In addition, the imine group of the Hc anion also donate H atom to the nitrate to form N—H···O hydrogen bonds (Table 1, Fig. 2).

For complexes based on hippuric acid, see: Antolini et al. (1982); Brown & Trefonas (1973); Grewe et al. (1982); Guo, Chen, Wang, Hu & Chen (2006); Guo, Wang, Chen, Chen & Chen (2006); Morelock et al. (1979, 1982).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (hydrogen bonds are shown by dashed lines).
[Figure 2] Fig. 2. The crystal packing of (I) stabilised by intermolecular hydrogen bonds (dashed lines).
Aqua(hippurato)bis(1,10-phenanthroline)cobalt(II) nitrate monohydrate top
Crystal data top
[Co(C9H8NO3)(C12H8N2)2(H2O)]NO3·H2OF(000) = 1436
Mr = 695.54Dx = 1.435 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1226 reflections
a = 9.935 (2) Åθ = 1.7–25.5°
b = 13.991 (3) ŵ = 0.60 mm1
c = 23.162 (5) ÅT = 291 K
β = 91.37 (3)°Prismatic, dark-red
V = 3218.7 (11) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker P4
diffractometer
5493 independent reflections
Radiation source: fine-focus sealed tube3848 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 012
Tmin = 0.890, Tmax = 0.906k = 1616
9187 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0588P)2 + 1.9834P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5493 reflectionsΔρmax = 0.53 e Å3
445 parametersΔρmin = 0.30 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)
Crystal data top
[Co(C9H8NO3)(C12H8N2)2(H2O)]NO3·H2OV = 3218.7 (11) Å3
Mr = 695.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.935 (2) ŵ = 0.60 mm1
b = 13.991 (3) ÅT = 291 K
c = 23.162 (5) Å0.20 × 0.18 × 0.17 mm
β = 91.37 (3)°
Data collection top
Bruker P4
diffractometer
5493 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3848 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.906Rint = 0.043
9187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0663 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.53 e Å3
5493 reflectionsΔρmin = 0.30 e Å3
445 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.22952 (5)0.25150 (4)0.93865 (2)0.03887 (18)
N10.2492 (4)0.0562 (3)0.77418 (15)0.0519 (10)
N20.0799 (4)0.1728 (2)0.98300 (14)0.0457 (9)
N30.0537 (3)0.2743 (2)0.88506 (14)0.0427 (8)
N40.1985 (4)0.3762 (2)0.99264 (15)0.0474 (9)
N50.3523 (3)0.3570 (2)0.89962 (15)0.0461 (9)
N60.4811 (5)0.2629 (3)0.2140 (2)0.0739 (12)
O10.0673 (4)0.0126 (3)0.81183 (15)0.0887 (12)
O20.2726 (3)0.15136 (19)0.87560 (12)0.0500 (7)
O30.4124 (3)0.0438 (2)0.91520 (12)0.0532 (8)
O40.3952 (4)0.1959 (3)0.98609 (17)0.0594 (9)
O50.5553 (6)0.1969 (3)0.2076 (2)0.135 (2)
O60.4928 (5)0.3168 (3)0.25517 (19)0.1063 (15)
O70.3906 (5)0.2794 (3)0.1776 (2)0.1195 (16)
C10.1062 (7)0.0710 (5)0.7295 (3)0.098 (2)
H1A0.13830.02000.75100.118*
C20.1936 (10)0.1199 (8)0.6925 (4)0.143 (4)
H2A0.28330.10150.68900.171*
C30.1478 (13)0.1941 (9)0.6619 (4)0.162 (6)
H3A0.20680.22710.63740.194*
C40.0191 (11)0.2214 (6)0.6660 (3)0.128 (3)
H4A0.01000.27290.64420.153*
C50.0727 (7)0.1734 (5)0.7027 (2)0.0872 (18)
H5A0.16220.19270.70530.105*
C60.0286 (5)0.0969 (4)0.7350 (2)0.0635 (13)
C70.1167 (6)0.0431 (3)0.77715 (19)0.0585 (13)
C80.3383 (5)0.0180 (3)0.81921 (18)0.0573 (12)
H8A0.42890.01490.80460.069*
H8B0.31030.04670.82800.069*
C90.3408 (4)0.0765 (3)0.87478 (17)0.0416 (10)
C100.0916 (6)0.1286 (3)1.0340 (2)0.0655 (14)
H10A0.17440.12861.05360.079*
C110.0189 (8)0.0818 (4)1.0587 (2)0.0839 (19)
H11A0.00940.05341.09490.101*
C120.1382 (7)0.0784 (4)1.0298 (3)0.0837 (19)
H12A0.21120.04731.04580.100*
C130.1515 (5)0.1217 (3)0.9762 (3)0.0679 (15)
C140.0405 (4)0.1707 (3)0.9552 (2)0.0483 (11)
C200.2734 (6)0.1177 (4)0.9418 (4)0.095 (2)
H20A0.34720.08460.95550.114*
C150.0536 (4)0.2210 (3)0.90145 (19)0.0462 (11)
C160.1735 (5)0.2160 (3)0.8682 (3)0.0664 (14)
C170.1808 (7)0.2669 (4)0.8170 (2)0.0786 (18)
H17A0.25830.26420.79370.094*
C180.0740 (7)0.3207 (4)0.8007 (2)0.0808 (18)
H18A0.07850.35620.76670.097*
C190.0429 (5)0.3219 (3)0.83589 (19)0.0609 (13)
H19A0.11610.35790.82410.073*
C210.2826 (6)0.1609 (4)0.8902 (4)0.090 (2)
H21A0.36160.15510.86820.108*
C220.1209 (5)0.3858 (3)1.0377 (2)0.0638 (13)
H22A0.06960.33371.04880.077*
C230.1115 (6)0.4693 (4)1.0694 (2)0.0798 (17)
H23A0.05500.47281.10070.096*
C240.1866 (6)0.5465 (4)1.0538 (2)0.0757 (16)
H24A0.18210.60281.07500.091*
C250.2702 (5)0.5411 (3)1.0064 (2)0.0570 (12)
C260.2721 (4)0.4529 (3)0.97703 (18)0.0449 (10)
C270.3558 (4)0.4429 (3)0.92735 (18)0.0431 (10)
C280.4375 (5)0.5187 (3)0.9108 (2)0.0538 (12)
C290.5179 (5)0.5031 (4)0.8623 (2)0.0714 (15)
H29A0.57380.55150.84940.086*
C300.5141 (5)0.4184 (4)0.8347 (2)0.0706 (15)
H30A0.56770.40790.80290.085*
C310.4292 (5)0.3463 (3)0.8541 (2)0.0601 (13)
H31A0.42650.28850.83430.072*
C320.3542 (6)0.6170 (3)0.9870 (3)0.0743 (16)
H32A0.35320.67521.00640.089*
C330.4342 (6)0.6065 (3)0.9417 (3)0.0735 (16)
H33A0.48820.65720.93040.088*
O80.4361 (6)0.1252 (3)0.09134 (17)0.133 (2)
H8F0.48280.07450.08930.200*
H8E0.41210.14590.12490.200*
H1G0.289 (8)0.100 (5)0.754 (3)0.160*
H4F0.394 (7)0.141 (5)0.970 (3)0.14 (3)*
H4E0.395 (6)0.178 (4)1.022 (3)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0449 (3)0.0334 (3)0.0384 (3)0.0027 (3)0.0039 (2)0.0031 (3)
N10.069 (3)0.046 (2)0.041 (2)0.0013 (19)0.0017 (19)0.0084 (17)
N20.055 (2)0.0399 (18)0.042 (2)0.0044 (16)0.0069 (17)0.0000 (16)
N30.051 (2)0.0357 (18)0.0412 (19)0.0074 (15)0.0003 (16)0.0021 (15)
N40.055 (2)0.0408 (19)0.046 (2)0.0010 (17)0.0041 (17)0.0075 (16)
N50.047 (2)0.0363 (18)0.055 (2)0.0043 (16)0.0056 (18)0.0003 (16)
N60.085 (4)0.064 (3)0.073 (3)0.003 (3)0.010 (3)0.001 (3)
O10.107 (3)0.094 (3)0.065 (2)0.038 (2)0.010 (2)0.014 (2)
O20.063 (2)0.0417 (16)0.0450 (16)0.0120 (15)0.0001 (14)0.0061 (13)
O30.056 (2)0.0510 (17)0.0520 (18)0.0099 (15)0.0090 (15)0.0051 (15)
O40.067 (2)0.057 (2)0.053 (2)0.0065 (17)0.0120 (17)0.0105 (18)
O50.145 (5)0.098 (3)0.162 (5)0.057 (3)0.007 (4)0.042 (3)
O60.154 (4)0.086 (3)0.080 (3)0.009 (3)0.029 (3)0.020 (3)
O70.113 (4)0.108 (4)0.137 (4)0.013 (3)0.025 (3)0.016 (3)
C10.089 (5)0.108 (5)0.097 (5)0.002 (4)0.011 (4)0.047 (4)
C20.090 (6)0.198 (11)0.138 (9)0.035 (7)0.051 (7)0.090 (7)
C30.163 (12)0.230 (13)0.091 (7)0.116 (11)0.047 (7)0.060 (7)
C40.167 (8)0.162 (8)0.054 (4)0.085 (7)0.013 (5)0.024 (4)
C50.104 (5)0.107 (5)0.051 (3)0.029 (4)0.012 (3)0.014 (3)
C60.065 (4)0.079 (3)0.047 (3)0.005 (3)0.002 (2)0.024 (3)
C70.086 (4)0.051 (3)0.038 (2)0.011 (3)0.003 (3)0.011 (2)
C80.076 (3)0.048 (3)0.048 (3)0.010 (2)0.006 (2)0.007 (2)
C90.045 (3)0.035 (2)0.044 (2)0.0057 (19)0.003 (2)0.0005 (19)
C100.097 (4)0.056 (3)0.044 (3)0.005 (3)0.011 (3)0.005 (2)
C110.140 (6)0.052 (3)0.061 (3)0.009 (4)0.044 (4)0.008 (3)
C120.091 (5)0.060 (3)0.103 (5)0.017 (3)0.055 (4)0.005 (3)
C130.060 (4)0.049 (3)0.097 (4)0.007 (2)0.028 (3)0.011 (3)
C140.046 (3)0.035 (2)0.064 (3)0.0046 (19)0.011 (2)0.010 (2)
C200.054 (4)0.064 (4)0.168 (7)0.014 (3)0.031 (4)0.014 (4)
C150.043 (3)0.037 (2)0.059 (3)0.0030 (18)0.002 (2)0.0172 (19)
C160.053 (3)0.053 (3)0.092 (4)0.011 (2)0.016 (3)0.027 (3)
C170.084 (4)0.073 (4)0.077 (4)0.031 (3)0.035 (3)0.032 (3)
C180.119 (5)0.071 (4)0.052 (3)0.033 (4)0.018 (3)0.005 (3)
C190.080 (4)0.055 (3)0.047 (3)0.011 (3)0.004 (3)0.003 (2)
C210.043 (3)0.071 (4)0.155 (7)0.005 (3)0.009 (4)0.033 (4)
C220.080 (4)0.054 (3)0.058 (3)0.000 (3)0.013 (3)0.011 (2)
C230.106 (5)0.072 (4)0.062 (3)0.018 (3)0.017 (3)0.024 (3)
C240.103 (5)0.057 (3)0.067 (3)0.023 (3)0.013 (3)0.026 (3)
C250.069 (3)0.041 (2)0.059 (3)0.007 (2)0.020 (3)0.013 (2)
C260.050 (3)0.037 (2)0.046 (2)0.0065 (19)0.016 (2)0.0072 (19)
C270.040 (3)0.034 (2)0.055 (3)0.0003 (18)0.009 (2)0.0014 (19)
C280.049 (3)0.045 (3)0.067 (3)0.008 (2)0.013 (2)0.009 (2)
C290.059 (3)0.060 (3)0.095 (4)0.009 (3)0.003 (3)0.029 (3)
C300.060 (3)0.072 (3)0.080 (4)0.000 (3)0.027 (3)0.020 (3)
C310.067 (3)0.053 (3)0.062 (3)0.001 (2)0.021 (3)0.003 (2)
C320.091 (4)0.035 (2)0.095 (4)0.002 (3)0.033 (4)0.010 (3)
C330.080 (4)0.038 (3)0.101 (4)0.019 (3)0.021 (3)0.011 (3)
O80.228 (6)0.099 (3)0.070 (3)0.078 (3)0.047 (3)0.014 (2)
Geometric parameters (Å, º) top
Co1—O22.076 (3)C10—H10A0.9300
Co1—O42.106 (4)C11—C121.349 (8)
Co1—N52.130 (3)C11—H11A0.9300
Co1—N22.133 (3)C12—C131.386 (8)
Co1—N32.142 (3)C12—H12A0.9300
Co1—N42.173 (3)C13—C141.396 (6)
N1—C71.332 (6)C13—C201.434 (8)
N1—C81.453 (6)C14—C151.432 (6)
N1—H1G0.86 (7)C20—C211.340 (9)
N2—C101.335 (5)C20—H20A0.9300
N2—C141.345 (5)C15—C161.404 (6)
N3—C191.322 (5)C16—C171.385 (8)
N3—C151.363 (5)C16—C211.433 (8)
N4—C221.320 (5)C17—C181.362 (8)
N4—C261.352 (5)C17—H17A0.9300
N5—C311.324 (5)C18—C191.403 (7)
N5—C271.363 (5)C18—H18A0.9300
N6—O51.192 (6)C19—H19A0.9300
N6—O61.219 (5)C21—H21A0.9300
N6—O71.241 (6)C22—C231.383 (6)
O1—C71.230 (5)C22—H22A0.9300
O2—C91.248 (5)C23—C241.365 (7)
O3—C91.248 (5)C23—H23A0.9300
O4—H4F0.85 (7)C24—C251.395 (7)
O4—H4E0.87 (6)C24—H24A0.9300
C1—C21.386 (11)C25—C261.409 (6)
C1—C61.390 (8)C25—C321.430 (7)
C1—H1A0.9300C26—C271.442 (6)
C2—C31.342 (14)C27—C281.395 (6)
C2—H2A0.9300C28—C291.410 (7)
C3—C41.335 (13)C28—C331.423 (7)
C3—H3A0.9300C29—C301.348 (7)
C4—C51.403 (9)C29—H29A0.9300
C4—H4A0.9300C30—C311.396 (6)
C5—C61.384 (7)C30—H30A0.9300
C5—H5A0.9300C31—H31A0.9300
C6—C71.498 (7)C32—C331.339 (7)
C8—C91.524 (5)C32—H32A0.9300
C8—H8A0.9700C33—H33A0.9300
C8—H8B0.9700O8—H8F0.8504
C10—C111.412 (7)O8—H8E0.8689
O2—Co1—O486.91 (13)C12—C11—C10119.8 (5)
O2—Co1—N592.25 (12)C12—C11—H11A120.1
O4—Co1—N591.65 (14)C10—C11—H11A120.1
O2—Co1—N298.52 (12)C11—C12—C13119.6 (5)
O4—Co1—N295.91 (15)C11—C12—H12A120.2
N5—Co1—N2167.14 (13)C13—C12—H12A120.2
O2—Co1—N382.63 (12)C12—C13—C14117.9 (5)
O4—Co1—N3166.78 (13)C12—C13—C20122.8 (6)
N5—Co1—N396.80 (13)C14—C13—C20119.4 (6)
N2—Co1—N377.76 (13)N2—C14—C13123.0 (5)
O2—Co1—N4168.91 (12)N2—C14—C15117.9 (4)
O4—Co1—N496.67 (14)C13—C14—C15119.1 (5)
N5—Co1—N477.20 (13)C21—C20—C13121.0 (6)
N2—Co1—N491.57 (13)C21—C20—H20A119.5
N3—Co1—N495.12 (12)C13—C20—H20A119.5
C7—N1—C8119.9 (4)N3—C15—C16122.2 (4)
C7—N1—H1G126 (5)N3—C15—C14117.1 (4)
C8—N1—H1G111 (5)C16—C15—C14120.7 (4)
C10—N2—C14118.1 (4)C17—C16—C15118.1 (5)
C10—N2—Co1128.2 (3)C17—C16—C21123.8 (6)
C14—N2—Co1113.7 (3)C15—C16—C21118.1 (5)
C19—N3—C15117.9 (4)C18—C17—C16119.8 (5)
C19—N3—Co1128.5 (3)C18—C17—H17A120.1
C15—N3—Co1112.9 (3)C16—C17—H17A120.1
C22—N4—C26117.4 (4)C17—C18—C19119.0 (5)
C22—N4—Co1129.1 (3)C17—C18—H18A120.5
C26—N4—Co1113.5 (3)C19—C18—H18A120.5
C31—N5—C27117.8 (4)N3—C19—C18122.9 (5)
C31—N5—Co1127.3 (3)N3—C19—H19A118.5
C27—N5—Co1114.8 (3)C18—C19—H19A118.5
O5—N6—O6121.9 (6)C20—C21—C16121.6 (6)
O5—N6—O7120.0 (6)C20—C21—H21A119.2
O6—N6—O7118.0 (6)C16—C21—H21A119.2
C9—O2—Co1134.3 (3)N4—C22—C23123.6 (5)
Co1—O4—H4F96 (5)N4—C22—H22A118.2
Co1—O4—H4E126 (4)C23—C22—H22A118.2
H4F—O4—H4E99 (6)C24—C23—C22119.0 (5)
C2—C1—C6121.0 (8)C24—C23—H23A120.5
C2—C1—H1A119.5C22—C23—H23A120.5
C6—C1—H1A119.5C23—C24—C25120.2 (5)
C3—C2—C1119.6 (11)C23—C24—H24A119.9
C3—C2—H2A120.2C25—C24—H24A119.9
C1—C2—H2A120.2C24—C25—C26116.3 (5)
C4—C3—C2121.3 (11)C24—C25—C32124.7 (5)
C4—C3—H3A119.3C26—C25—C32119.0 (5)
C2—C3—H3A119.3N4—C26—C25123.5 (4)
C3—C4—C5120.9 (10)N4—C26—C27117.5 (4)
C3—C4—H4A119.5C25—C26—C27118.9 (4)
C5—C4—H4A119.5N5—C27—C28123.3 (4)
C6—C5—C4119.2 (7)N5—C27—C26116.9 (4)
C6—C5—H5A120.4C28—C27—C26119.8 (4)
C4—C5—H5A120.4C27—C28—C29116.5 (4)
C5—C6—C1118.0 (6)C27—C28—C33119.8 (5)
C5—C6—C7123.6 (5)C29—C28—C33123.7 (5)
C1—C6—C7118.4 (6)C30—C29—C28120.3 (5)
O1—C7—N1122.1 (5)C30—C29—H29A119.9
O1—C7—C6120.5 (5)C28—C29—H29A119.9
N1—C7—C6117.4 (4)C29—C30—C31119.5 (5)
N1—C8—C9114.0 (3)C29—C30—H30A120.2
N1—C8—H8A108.8C31—C30—H30A120.2
C9—C8—H8A108.8N5—C31—C30122.6 (5)
N1—C8—H8B108.8N5—C31—H31A118.7
C9—C8—H8B108.8C30—C31—H31A118.7
H8A—C8—H8B107.7C33—C32—C25121.7 (5)
O3—C9—O2126.5 (4)C33—C32—H32A119.1
O3—C9—C8115.8 (4)C25—C32—H32A119.1
O2—C9—C8117.7 (4)C32—C33—C28120.7 (5)
N2—C10—C11121.5 (5)C32—C33—H33A119.7
N2—C10—H10A119.3C28—C33—H33A119.7
C11—C10—H10A119.3H8F—O8—H8E119.3
O2—Co1—N2—C10105.1 (4)C11—C12—C13—C20177.3 (5)
O4—Co1—N2—C1017.4 (4)C10—N2—C14—C132.4 (6)
N5—Co1—N2—C10108.3 (7)Co1—N2—C14—C13178.8 (3)
N3—Co1—N2—C10174.4 (4)C10—N2—C14—C15178.0 (4)
N4—Co1—N2—C1079.5 (4)Co1—N2—C14—C150.8 (5)
O2—Co1—N2—C1476.3 (3)C12—C13—C14—N24.1 (7)
O4—Co1—N2—C14164.0 (3)C20—C13—C14—N2175.7 (4)
N5—Co1—N2—C1470.3 (7)C12—C13—C14—C15176.3 (4)
N3—Co1—N2—C144.2 (3)C20—C13—C14—C153.9 (6)
N4—Co1—N2—C1499.1 (3)C12—C13—C20—C21179.6 (5)
O2—Co1—N3—C1977.2 (3)C14—C13—C20—C210.6 (8)
O4—Co1—N3—C19115.2 (7)C19—N3—C15—C160.5 (6)
N5—Co1—N3—C1914.2 (4)Co1—N3—C15—C16172.1 (3)
N2—Co1—N3—C19177.6 (4)C19—N3—C15—C14179.3 (4)
N4—Co1—N3—C1991.9 (4)Co1—N3—C15—C149.1 (4)
O2—Co1—N3—C1593.3 (3)N2—C14—C15—N35.8 (5)
O4—Co1—N3—C1555.3 (7)C13—C14—C15—N3174.7 (4)
N5—Co1—N3—C15175.3 (3)N2—C14—C15—C16175.4 (4)
N2—Co1—N3—C157.1 (3)C13—C14—C15—C164.2 (6)
N4—Co1—N3—C1597.6 (3)N3—C15—C16—C170.6 (6)
O2—Co1—N4—C22160.5 (6)C14—C15—C16—C17179.4 (4)
O4—Co1—N4—C2291.2 (4)N3—C15—C16—C21177.6 (4)
N5—Co1—N4—C22178.6 (4)C14—C15—C16—C211.1 (6)
N2—Co1—N4—C224.9 (4)C15—C16—C17—C181.1 (7)
N3—Co1—N4—C2282.8 (4)C21—C16—C17—C18177.1 (5)
O2—Co1—N4—C2620.5 (8)C16—C17—C18—C191.4 (8)
O4—Co1—N4—C2687.8 (3)C15—N3—C19—C180.8 (6)
N5—Co1—N4—C262.3 (3)Co1—N3—C19—C18170.9 (3)
N2—Co1—N4—C26176.0 (3)C17—C18—C19—N31.3 (8)
N3—Co1—N4—C2698.2 (3)C13—C20—C21—C162.5 (9)
O2—Co1—N5—C314.4 (4)C17—C16—C21—C20175.9 (5)
O4—Co1—N5—C3182.6 (4)C15—C16—C21—C202.3 (8)
N2—Co1—N5—C31151.3 (6)C26—N4—C22—C230.2 (7)
N3—Co1—N5—C3187.2 (4)Co1—N4—C22—C23178.8 (4)
N4—Co1—N5—C31179.1 (4)N4—C22—C23—C240.3 (9)
O2—Co1—N5—C27179.4 (3)C22—C23—C24—C250.7 (8)
O4—Co1—N5—C2793.6 (3)C23—C24—C25—C260.5 (7)
N2—Co1—N5—C2732.5 (8)C23—C24—C25—C32179.1 (5)
N3—Co1—N5—C2796.6 (3)C22—N4—C26—C250.3 (6)
N4—Co1—N5—C272.8 (3)Co1—N4—C26—C25178.8 (3)
O4—Co1—O2—C917.3 (4)C22—N4—C26—C27179.3 (4)
N5—Co1—O2—C9108.9 (4)Co1—N4—C26—C271.6 (4)
N2—Co1—O2—C978.2 (4)C24—C25—C26—N40.0 (6)
N3—Co1—O2—C9154.6 (4)C32—C25—C26—N4178.6 (4)
N4—Co1—O2—C9126.5 (7)C24—C25—C26—C27179.6 (4)
C6—C1—C2—C30.6 (13)C32—C25—C26—C271.8 (6)
C1—C2—C3—C40.6 (16)C31—N5—C27—C281.2 (6)
C2—C3—C4—C50.2 (15)Co1—N5—C27—C28175.4 (3)
C3—C4—C5—C60.1 (11)C31—N5—C27—C26179.6 (4)
C4—C5—C6—C10.0 (8)Co1—N5—C27—C263.0 (5)
C4—C5—C6—C7177.6 (5)N4—C26—C27—N50.9 (5)
C2—C1—C6—C50.4 (8)C25—C26—C27—N5178.7 (4)
C2—C1—C6—C7178.1 (6)N4—C26—C27—C28177.5 (4)
C8—N1—C7—O111.4 (6)C25—C26—C27—C282.8 (6)
C8—N1—C7—C6170.5 (4)N5—C27—C28—C290.8 (6)
C5—C6—C7—O1167.1 (5)C26—C27—C28—C29179.1 (4)
C1—C6—C7—O110.5 (7)N5—C27—C28—C33179.4 (4)
C5—C6—C7—N114.8 (7)C26—C27—C28—C332.3 (6)
C1—C6—C7—N1167.6 (4)C27—C28—C29—C300.4 (7)
C7—N1—C8—C977.2 (5)C33—C28—C29—C30179.0 (5)
Co1—O2—C9—O34.7 (7)C28—C29—C30—C310.5 (8)
Co1—O2—C9—C8175.5 (3)C27—N5—C31—C301.3 (7)
N1—C8—C9—O3177.4 (4)Co1—N5—C31—C30174.9 (4)
N1—C8—C9—O22.8 (6)C29—C30—C31—N51.0 (8)
C14—N2—C10—C110.8 (6)C24—C25—C32—C33178.6 (5)
Co1—N2—C10—C11177.8 (3)C26—C25—C32—C330.1 (7)
N2—C10—C11—C122.3 (8)C25—C32—C33—C280.5 (8)
C10—C11—C12—C130.6 (8)C27—C28—C33—C320.6 (7)
C11—C12—C13—C142.4 (8)C29—C28—C33—C32179.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8E···O50.872.463.084 (7)129
O8—H8E···O70.872.242.982 (7)143
O4—H4F···O20.85 (7)2.48 (7)2.876 (5)110 (5)
O4—H4F···O30.85 (7)1.87 (7)2.696 (5)162 (7)

Experimental details

Crystal data
Chemical formula[Co(C9H8NO3)(C12H8N2)2(H2O)]NO3·H2O
Mr695.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.935 (2), 13.991 (3), 23.162 (5)
β (°) 91.37 (3)
V3)3218.7 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker P4
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.890, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
9187, 5493, 3848
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.143, 1.09
No. of reflections5493
No. of parameters445
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.30

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O22.076 (3)Co1—N22.133 (3)
Co1—O42.106 (4)Co1—N32.142 (3)
Co1—N52.130 (3)Co1—N42.173 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8E···O50.872.463.084 (7)128.9
O8—H8E···O70.872.242.982 (7)142.8
O4—H4F···O20.85 (7)2.48 (7)2.876 (5)110 (5)
O4—H4F···O30.85 (7)1.87 (7)2.696 (5)162 (7)
 

Acknowledgements

The authors thank the Youth Foundation of Jiangxi Provincial Office of Education (GJJ09605) and the Science Foundation of Jiangxi Provincial Office of Education (GJJ09637).

References

First citationAntolini, L., Battaglia, L. P., Bonamartini-Corradi, A., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrown, J. & Trefonas, L. M. (1973). Inorg. Chem. 12, 1730–1733.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrewe, H., Udupa, M. R. & Krebs, B. (1982). Inorg. Chim. Acta, 63, 119–124.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuo, G.-Q., Chen, F.-P., Wang, X.-W., Hu, B. & Chen, J.-Z. (2006). Acta Cryst. E62, m2706–m2708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuo, G.-Q., Wang, X.-W., Chen, F.-P., Chen, Y. & Chen, J.-Z. (2006). Acta Cryst. E62, m2796–m2798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorelock, M. M., Good, M. L., Trefonas, L. M., Karraker, D., Maleki, L., Eichelberger, H. R., Majeste, R. & Dodge, J. (1979). J. Am. Chem. Soc. 101, 4858–4866.  CSD CrossRef CAS Web of Science Google Scholar
First citationMorelock, M. M., Good, M. L., Trefonas, L. M., Majeste, R. & Karraker, D. G. (1982). Inorg. Chem. 21, 3044–3050.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds