organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Morpholino-Δ8-di­hydro­abietamide

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

(Received 18 September 2010; accepted 30 September 2010; online 9 October 2010)

The title compound, C24H39NO2 (systematic name: 4-{[1,4a-dimethyl-7-(propan-2-yl)-1,2,3,4,4a,5,6,7,8,9,10,10a-dodeca­hydro­phenanthren-1-yl]carbon­yl}morpholine), has been synthesized from Δ8-dihydro­abietic acid. Two cyclo­hexene rings adopt half-chair conformations, whereas the cyclo­hexane and morpholine rings are each in the chair conformation. Two methyl groups are in an axial position with respect to the tricyclic hydro­phenanthrene nuclei.

Related literature

For literature on Δ8-dihydro­abietic acid, see: Rao et al. (2009[Rao, X.-P., Song, Z.-Q., Shang, S.-B. & Wu, Y. (2009). Acta Cryst. E65, o2804.]). For the biological activity of rosin acid derivatives, see Fonseca et al. (2004[Fonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & Clercq, E. C. (2004). Bioorg. Med. Chem. 12, 103-112.]); Sepulveda et al. (2005[Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429-437.]).

[Scheme 1]

Experimental

Crystal data
  • C24H39NO2

  • Mr = 373.56

  • Orthorhombic, P 21 21 21

  • a = 7.8683 (16) Å

  • b = 11.036 (2) Å

  • c = 24.726 (5) Å

  • V = 2147.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.42 × 0.34 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.352, Tmax = 0.497

  • 16937 measured reflections

  • 2186 independent reflections

  • 1957 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.117

  • S = 1.37

  • 2186 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Δ8-Dihydroabietic acid is one of the main component of hydrogenated rosin. It is more stable to air oxidation than abietic acid (Rao et al., 2009). Rosin acid derivatives exhibit wide range of biological activities, such as antifungal and antitumor (Fonseca et al., 2004), nitrogen derivatives of rosin acid have been studied as gastroprotective and cytotoxic reagents and they are found to have high activity in reducing blood serum cholesterol levels in animals (Sepulveda et al., 2005). In this work, we describe the crystal structure of the title compound.

Two cyclohexene rings adopt a half-chair conformations, and the cyclohexane and morpholine rings are in the chair conformation. Two methyl groups are in an axial position of the tricyclic hydrophenanthrene nuclei. The absolute configuration cannot be assigned on a basis of the value of the Flack parameter due to its high deviation. The Friedel opposite reflections were not measured.

Related literature top

For literature on Δ8-dihydroabietic acid, see: Rao et al. (2009). For the biological activities of rosin acid derivatives, see Fonseca et al. (2004); Sepulveda et al. (2005).

Experimental top

A mixture of Δ8-dihydroabietic acid (0.1 mol), trichloro phosphorous (6 ml) and chloroform (40 ml) was stirred at 333 K for 3 h, after distilled off the solvent, the residue was added to the morpholine (0.2 mol) in toluene (60 ml) solution, the mixture was reacted for 24 h at room temperature, then the solvent was distilled off, upon recrystallization from acetone, white crystals of the title compound were obtained (yield 40%, m.p.394 K). Single crystals were grown from acetone.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97–0.98Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Structure description top

Δ8-Dihydroabietic acid is one of the main component of hydrogenated rosin. It is more stable to air oxidation than abietic acid (Rao et al., 2009). Rosin acid derivatives exhibit wide range of biological activities, such as antifungal and antitumor (Fonseca et al., 2004), nitrogen derivatives of rosin acid have been studied as gastroprotective and cytotoxic reagents and they are found to have high activity in reducing blood serum cholesterol levels in animals (Sepulveda et al., 2005). In this work, we describe the crystal structure of the title compound.

Two cyclohexene rings adopt a half-chair conformations, and the cyclohexane and morpholine rings are in the chair conformation. Two methyl groups are in an axial position of the tricyclic hydrophenanthrene nuclei. The absolute configuration cannot be assigned on a basis of the value of the Flack parameter due to its high deviation. The Friedel opposite reflections were not measured.

For literature on Δ8-dihydroabietic acid, see: Rao et al. (2009). For the biological activities of rosin acid derivatives, see Fonseca et al. (2004); Sepulveda et al. (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 30% probability level.
4-{[1,4a-dimethyl-7-(propan-2-yl)-1,2,3,4,4a,5,6,7,8,9,10,10a- dodecahydrophenanthren-1-yl]carbonyl}morpholine top
Crystal data top
C24H39NO2F(000) = 824
Mr = 373.56Dx = 1.156 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 16603 reflections
a = 7.8683 (16) Åθ = 3.1–27.4°
b = 11.036 (2) ŵ = 0.07 mm1
c = 24.726 (5) ÅT = 293 K
V = 2147.1 (7) Å3Block, colorless
Z = 40.42 × 0.34 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2186 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.352, Tmax = 0.497l = 2929
16937 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0672P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.37(Δ/σ)max < 0.001
2186 reflectionsΔρmax = 0.23 e Å3
248 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), ??? Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (10)
Crystal data top
C24H39NO2V = 2147.1 (7) Å3
Mr = 373.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8683 (16) ŵ = 0.07 mm1
b = 11.036 (2) ÅT = 293 K
c = 24.726 (5) Å0.42 × 0.34 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2186 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1957 reflections with I > 2σ(I)
Tmin = 0.352, Tmax = 0.497Rint = 0.029
16937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.23 e Å3
S = 1.37Δρmin = 0.26 e Å3
2186 reflectionsAbsolute structure: Flack (1983), ??? Friedel pairs
248 parametersAbsolute structure parameter: 0 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1743 (3)0.85945 (18)0.01582 (7)0.0661 (6)
O20.9634 (2)0.83691 (14)0.19288 (7)0.0528 (5)
N11.0754 (3)0.75942 (19)0.11701 (8)0.0523 (6)
C11.1939 (4)0.8606 (3)0.11335 (10)0.0577 (7)
H1A1.30950.83010.11320.069*
H1B1.18050.91260.14470.069*
C21.1629 (4)0.9328 (3)0.06276 (10)0.0627 (8)
H2A1.05080.96930.06450.075*
H2B1.24580.99770.06050.075*
C31.0545 (4)0.7641 (3)0.01898 (10)0.0586 (7)
H3A1.06280.71470.01340.070*
H3B0.94090.79810.02030.070*
C41.0817 (4)0.6852 (2)0.06789 (9)0.0501 (6)
H4A0.99440.62330.06940.060*
H4B1.19130.64530.06540.060*
C50.9656 (3)0.75310 (19)0.16034 (9)0.0404 (5)
C60.9513 (3)0.52216 (19)0.16245 (10)0.0467 (6)
H6A1.05930.53900.14600.070*
H6B0.88980.46550.14040.070*
H6C0.96880.48820.19780.070*
C70.6449 (4)0.4303 (2)0.23662 (10)0.0492 (6)
H7A0.74480.41750.25820.074*
H7B0.66430.40040.20070.074*
H7C0.55080.38790.25250.074*
C80.8477 (3)0.64162 (18)0.16745 (8)0.0371 (5)
C90.7048 (3)0.6567 (2)0.12412 (9)0.0467 (6)
H9A0.66550.74000.12460.056*
H9B0.75260.64100.08860.056*
C100.5535 (3)0.5732 (2)0.13276 (10)0.0509 (6)
H10A0.46850.58950.10530.061*
H10B0.58990.48980.12870.061*
C110.4745 (3)0.5901 (2)0.18848 (9)0.0478 (6)
H11A0.38010.53430.19260.057*
H11B0.43020.67180.19150.057*
C120.6045 (3)0.56781 (19)0.23426 (9)0.0373 (5)
C130.7604 (3)0.65211 (18)0.22398 (8)0.0344 (5)
H13A0.71400.73450.22500.041*
C140.8810 (3)0.6454 (2)0.27262 (9)0.0391 (5)
H14A0.91050.56160.27990.047*
H14B0.98470.68950.26480.047*
C150.7940 (3)0.7000 (2)0.32151 (9)0.0448 (6)
H15A0.79830.78760.31870.054*
H15B0.85620.67680.35380.054*
C160.6101 (3)0.66108 (19)0.32775 (9)0.0376 (5)
C170.5253 (3)0.60145 (18)0.28917 (9)0.0381 (5)
C180.5310 (3)0.6973 (2)0.38098 (9)0.0456 (6)
H18A0.55290.78280.38690.055*
H18B0.58750.65300.40970.055*
C190.3437 (3)0.5623 (3)0.29822 (11)0.0539 (6)
H19A0.32750.48240.28260.065*
H19B0.26850.61790.27960.065*
C200.2957 (4)0.5583 (3)0.35748 (11)0.0563 (7)
H20A0.17460.54350.36080.068*
H20B0.35510.49190.37490.068*
C210.3398 (3)0.6757 (2)0.38580 (10)0.0458 (6)
H21A0.28470.74040.36510.055*
C220.2693 (4)0.6842 (2)0.44366 (10)0.0553 (7)
H22A0.14540.67850.44060.066*
C230.3069 (5)0.8059 (3)0.46971 (13)0.0773 (10)
H23A0.25790.80820.50520.116*
H23B0.25900.86950.44800.116*
H23C0.42770.81700.47230.116*
C240.3247 (5)0.5812 (3)0.48076 (12)0.0782 (9)
H24A0.44570.58420.48570.117*
H24B0.29380.50500.46480.117*
H24C0.26950.58940.51520.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0850 (15)0.0717 (11)0.0416 (9)0.0148 (11)0.0137 (10)0.0019 (9)
O20.0659 (12)0.0420 (8)0.0504 (9)0.0102 (8)0.0087 (9)0.0097 (8)
N10.0661 (14)0.0536 (11)0.0370 (10)0.0205 (11)0.0084 (10)0.0062 (9)
C10.0629 (17)0.0646 (15)0.0457 (13)0.0236 (14)0.0031 (13)0.0030 (13)
C20.078 (2)0.0529 (13)0.0566 (16)0.0142 (14)0.0135 (16)0.0022 (13)
C30.0667 (17)0.0687 (16)0.0403 (13)0.0044 (14)0.0025 (13)0.0082 (12)
C40.0550 (15)0.0503 (13)0.0448 (13)0.0032 (11)0.0071 (12)0.0088 (11)
C50.0461 (13)0.0393 (10)0.0357 (11)0.0004 (10)0.0029 (10)0.0020 (10)
C60.0499 (14)0.0411 (11)0.0490 (13)0.0025 (10)0.0043 (12)0.0013 (11)
C70.0593 (16)0.0358 (11)0.0525 (14)0.0042 (11)0.0030 (13)0.0037 (10)
C80.0419 (12)0.0346 (10)0.0348 (11)0.0007 (9)0.0026 (9)0.0002 (9)
C90.0538 (14)0.0511 (13)0.0352 (11)0.0002 (12)0.0066 (11)0.0010 (11)
C100.0480 (15)0.0608 (14)0.0440 (12)0.0039 (12)0.0159 (11)0.0033 (12)
C110.0412 (13)0.0555 (13)0.0466 (13)0.0047 (11)0.0083 (11)0.0049 (11)
C120.0360 (12)0.0359 (10)0.0400 (11)0.0019 (9)0.0018 (10)0.0025 (9)
C130.0349 (11)0.0329 (9)0.0355 (11)0.0024 (9)0.0037 (8)0.0009 (9)
C140.0330 (11)0.0451 (11)0.0392 (12)0.0017 (10)0.0043 (9)0.0036 (10)
C150.0401 (13)0.0548 (13)0.0396 (12)0.0050 (10)0.0048 (10)0.0014 (11)
C160.0381 (12)0.0364 (10)0.0385 (11)0.0008 (9)0.0006 (9)0.0001 (9)
C170.0358 (12)0.0379 (10)0.0406 (11)0.0020 (9)0.0004 (10)0.0000 (10)
C180.0514 (14)0.0454 (11)0.0401 (12)0.0020 (10)0.0006 (11)0.0022 (11)
C190.0433 (14)0.0643 (14)0.0541 (15)0.0108 (12)0.0053 (12)0.0092 (13)
C200.0472 (15)0.0633 (15)0.0585 (15)0.0120 (13)0.0121 (13)0.0016 (13)
C210.0469 (13)0.0437 (12)0.0469 (13)0.0016 (10)0.0056 (11)0.0054 (11)
C220.0543 (16)0.0597 (15)0.0520 (14)0.0023 (12)0.0118 (13)0.0056 (12)
C230.100 (3)0.0742 (19)0.0581 (17)0.0018 (18)0.0266 (19)0.0087 (15)
C240.095 (3)0.085 (2)0.0553 (17)0.0004 (19)0.0128 (17)0.0227 (16)
Geometric parameters (Å, º) top
O1—C31.415 (3)C11—H11B0.9700
O1—C21.418 (3)C12—C171.539 (3)
O2—C51.226 (3)C12—C131.561 (3)
N1—C51.378 (3)C13—C141.534 (3)
N1—C11.458 (3)C13—H13A0.9800
N1—C41.466 (3)C14—C151.514 (3)
C1—C21.503 (4)C14—H14A0.9700
C1—H1A0.9700C14—H14B0.9700
C1—H1B0.9700C15—C161.517 (3)
C2—H2A0.9700C15—H15A0.9700
C2—H2B0.9700C15—H15B0.9700
C3—C41.505 (3)C16—C171.337 (3)
C3—H3A0.9700C16—C181.510 (3)
C3—H3B0.9700C17—C191.509 (3)
C4—H4A0.9700C18—C211.528 (4)
C4—H4B0.9700C18—H18A0.9700
C5—C81.551 (3)C18—H18B0.9700
C6—C81.555 (3)C19—C201.514 (4)
C6—H6A0.9600C19—H19A0.9700
C6—H6B0.9600C19—H19B0.9700
C6—H6C0.9600C20—C211.513 (4)
C7—C121.552 (3)C20—H20A0.9700
C7—H7A0.9600C20—H20B0.9700
C7—H7B0.9600C21—C221.537 (3)
C7—H7C0.9600C21—H21A0.9800
C8—C91.562 (3)C22—C231.519 (4)
C8—C131.562 (3)C22—C241.524 (4)
C9—C101.520 (3)C22—H22A0.9800
C9—H9A0.9700C23—H23A0.9600
C9—H9B0.9700C23—H23B0.9600
C10—C111.523 (3)C23—H23C0.9600
C10—H10A0.9700C24—H24A0.9600
C10—H10B0.9700C24—H24B0.9600
C11—C121.545 (3)C24—H24C0.9600
C11—H11A0.9700
C3—O1—C2109.73 (19)C17—C12—C13108.54 (17)
C5—N1—C1119.21 (19)C11—C12—C13107.85 (17)
C5—N1—C4129.6 (2)C7—C12—C13115.32 (19)
C1—N1—C4110.79 (19)C14—C13—C12109.26 (17)
N1—C1—C2110.7 (2)C14—C13—C8115.23 (17)
N1—C1—H1A109.5C12—C13—C8116.57 (17)
C2—C1—H1A109.5C14—C13—H13A104.8
N1—C1—H1B109.5C12—C13—H13A104.8
C2—C1—H1B109.5C8—C13—H13A104.8
H1A—C1—H1B108.1C15—C14—C13109.08 (18)
O1—C2—C1111.6 (2)C15—C14—H14A109.9
O1—C2—H2A109.3C13—C14—H14A109.9
C1—C2—H2A109.3C15—C14—H14B109.9
O1—C2—H2B109.3C13—C14—H14B109.9
C1—C2—H2B109.3H14A—C14—H14B108.3
H2A—C2—H2B108.0C14—C15—C16113.57 (19)
O1—C3—C4112.3 (2)C14—C15—H15A108.9
O1—C3—H3A109.1C16—C15—H15A108.9
C4—C3—H3A109.1C14—C15—H15B108.9
O1—C3—H3B109.1C16—C15—H15B108.9
C4—C3—H3B109.1H15A—C15—H15B107.7
H3A—C3—H3B107.9C17—C16—C18123.2 (2)
N1—C4—C3109.75 (19)C17—C16—C15122.8 (2)
N1—C4—H4A109.7C18—C16—C15114.00 (19)
C3—C4—H4A109.7C16—C17—C19120.5 (2)
N1—C4—H4B109.7C16—C17—C12123.1 (2)
C3—C4—H4B109.7C19—C17—C12116.39 (19)
H4A—C4—H4B108.2C16—C18—C21115.6 (2)
O2—C5—N1118.7 (2)C16—C18—H18A108.4
O2—C5—C8121.0 (2)C21—C18—H18A108.4
N1—C5—C8120.22 (19)C16—C18—H18B108.4
C8—C6—H6A109.5C21—C18—H18B108.4
C8—C6—H6B109.5H18A—C18—H18B107.4
H6A—C6—H6B109.5C17—C19—C20112.8 (2)
C8—C6—H6C109.5C17—C19—H19A109.0
H6A—C6—H6C109.5C20—C19—H19A109.0
H6B—C6—H6C109.5C17—C19—H19B109.0
C12—C7—H7A109.5C20—C19—H19B109.0
C12—C7—H7B109.5H19A—C19—H19B107.8
H7A—C7—H7B109.5C21—C20—C19111.5 (2)
C12—C7—H7C109.5C21—C20—H20A109.3
H7A—C7—H7C109.5C19—C20—H20A109.3
H7B—C7—H7C109.5C21—C20—H20B109.3
C5—C8—C6110.49 (18)C19—C20—H20B109.3
C5—C8—C9105.57 (17)H20A—C20—H20B108.0
C6—C8—C9114.40 (18)C20—C21—C18108.9 (2)
C5—C8—C13107.80 (17)C20—C21—C22113.6 (2)
C6—C8—C13111.38 (17)C18—C21—C22114.7 (2)
C9—C8—C13106.83 (18)C20—C21—H21A106.3
C10—C9—C8113.76 (19)C18—C21—H21A106.3
C10—C9—H9A108.8C22—C21—H21A106.3
C8—C9—H9A108.8C23—C22—C24110.4 (2)
C10—C9—H9B108.8C23—C22—C21112.2 (2)
C8—C9—H9B108.8C24—C22—C21114.3 (2)
H9A—C9—H9B107.7C23—C22—H22A106.4
C11—C10—C9111.89 (19)C24—C22—H22A106.4
C11—C10—H10A109.2C21—C22—H22A106.4
C9—C10—H10A109.2C22—C23—H23A109.5
C11—C10—H10B109.2C22—C23—H23B109.5
C9—C10—H10B109.2H23A—C23—H23B109.5
H10A—C10—H10B107.9C22—C23—H23C109.5
C10—C11—C12111.9 (2)H23A—C23—H23C109.5
C10—C11—H11A109.2H23B—C23—H23C109.5
C12—C11—H11A109.2C22—C24—H24A109.5
C10—C11—H11B109.2C22—C24—H24B109.5
C12—C11—H11B109.2H24A—C24—H24B109.5
H11A—C11—H11B107.9C22—C24—H24C109.5
C17—C12—C11109.88 (19)H24A—C24—H24C109.5
C17—C12—C7106.60 (18)H24B—C24—H24C109.5
C11—C12—C7108.60 (19)

Experimental details

Crystal data
Chemical formulaC24H39NO2
Mr373.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.8683 (16), 11.036 (2), 24.726 (5)
V3)2147.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.42 × 0.34 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.352, 0.497
No. of measured, independent and
observed [I > 2σ(I)] reflections
16937, 2186, 1957
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.117, 1.37
No. of reflections2186
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26
Absolute structureFlack (1983), ??? Friedel pairs
Absolute structure parameter0 (10)

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

Acknowledgements

This work was supported by grants from the Fundamental Foundation (grant No. CAFYBB2008021) and the Natural Science Foundation of Jiangsu Province (grant No. BK2008088).

References

First citationFonseca, T., Gigante, B., Marques, M. M., Gilchrist, T. L. & Clercq, E. C. (2004). Bioorg. Med. Chem. 12, 103–112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRao, X.-P., Song, Z.-Q., Shang, S.-B. & Wu, Y. (2009). Acta Cryst. E65, o2804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429–437.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds