metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline-κ2N,N′)copper(I)]-μ2-iodido]

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang University of Science and Technology, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: wxchai_cm@yahoo.com.cn

(Received 7 October 2010; accepted 23 October 2010; online 31 October 2010)

The solvothermal reaction of copper(I) iodide and 1,10-phenanthroline (phen) in ethanol yielded the title polymeric compound, [CuI(C12H8N2)]n. The asymmmetric unit comprises one Cu+ cation, one I anion and one phen ligand. Each Cu+ cation is in a distorted tetrahedral coordination by two iodide anions and two N atoms from a bidentate chelating phen ligand. The Cu+ cations are bridged through the iodide anions, leading to a zigzag chain structure extending parallel to [100]. There are ππ inter­actions among adjacent phen ligands of one chain [centroid–centroid distance = 3.693 (3) Å].

Related literature

For other copper(I)–iodide complexes with 1,10-phenanthroline as a co-ligand, see: Healy et al. (1985[Healy, P. C., Pakawatchai, C. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2531-2539.]); Yu et al. (2001[Yu, J. H., Shi, Z., Xu, J. Q., Chu, D. Q., Jin, W. J., Ding, H., Hua, J., Xu, J. N., Cui, X. B., Wang, T. G., Zhang, L. J., Li, C. B. & Zeng, Q. X. (2001). Pol. J. Chem. 75, 1785-1789.], 2002[Yu, J. H., Xu, J. Q., Han, L., Wang, T. G., Shi, Z., Jing, W. J., Ding, H., Xu, J. N., Jia, H. B. & Hua, J. (2002). Chin. J. Chem. 20, 851-857.], 2004[Yu, J. H., Lü, Z. L., Xu, J. Q., Bie, H. Y., Lu, J. & Zhang, X. (2004). New J. Chem. 28, 940-945.]); Zhou et al. (2005[Zhou, X.-P., Li, D. & Ng, S. W. (2005). Acta Cryst. E61, m654-m655.]); Zhang et al. (2008[Zhang, S., Cao, Y. N., Zhang, H. H., Chai, X. C., Chen, Y. P. & Sun, R. Q. (2008). J. Solid State Chem. 181, 3327-3336.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C12H8N2)]

  • Mr = 370.64

  • Orthorhombic, P 21 21 21

  • a = 4.1664 (5) Å

  • b = 10.4621 (11) Å

  • c = 25.518 (4) Å

  • V = 1112.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.71 mm−1

  • T = 293 K

  • 0.35 × 0.10 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.290, Tmax = 0.799

  • 8582 measured reflections

  • 2567 independent reflections

  • 2380 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.056

  • S = 1.12

  • 2567 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.54 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1018 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Selected bond lengths (Å)

I1—Cu1 2.5895 (6)
I1—Cu1i 2.6030 (6)
Cu1—N2 2.100 (3)
Cu1—N1 2.110 (3)
Symmetry code: (i) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, there have been a number of reports of copper(I)-iodide complexes with 1,10-phenanthroline (phen) as a coligand. Among them, almost all complexes are disctete molecules (Healy et al., 1985; Yu et al., 2001; Yu et al., 2002; Yu et al., 2004; Zhou et al., 2005; Zhang et al., 2008) except two complexes characterized as polymeric structure (Zhang et al., 2008). We have synthesised the polymeric title complex [Cu(phen)I]n (I) (Fig.1). It is worthy of note that compound I crystallizes in a noncentrosymmetric space group of P212121, while the other copper(I)-iodide complexes with phen all crystallise in centrosymmetric space groups. The asymmmetric unit contains one Cu+ cation, one I- anion and one phen ligand. Each Cu+ cation is tetrahedrally coordinated by two iodide anion and two nitrogen atoms from a bidentate chelating phen ligand. The Cu+ cations are bridged through the iodide anions, leading to a zigzag chain structure. The Cu—I bond lengths are 2.5895 (6) and 2.6030 (6) Å, which are similar to that found in other copper(I)-iodide complexes. There are π-π interactions between adjacent phen ligands of one chain. The phen skeletons are arranged in a perfect parallel fashion with centroid-centroid distance of 3.693 (3) Å (from two adjacent C4/C5/C6/C7/C8/C9 ring and C1A/C2A/C3A/C4A/C5A/N1A ring, symmetry code A: x - 1, y, z).

Related literature top

For other copper(I)–iodide complexes with 1,10-phenanthroline as a coligand, see: Healy et al. (1985); Yu et al. (2001, 2002, 2004); Zhou et al. (2005); Zhang et al. (2008).

Experimental top

All chemicals were obtained from commercial sources and were used as received. The title compound was handily synthesized by a solvothermal reaction from CuI and phen. A mixture of CuI (76 mg, 0.4 mmol) and phen.H2O (80 mg, 0.4 mmol) in 12 mL alcohol was put into a Parr Teflon-lined autoclave (23 mL) and heated at 393 K for 3 days. After cooling down to room temperature, yellow crystals of compound I were obtained.

Refinement top

The structure was solved using direct methods and refined by full-matrix least-squares techniques. All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. All hydrogen atoms were added at calculated positions and refined using a riding model. (Sheldrick, 2008).

Structure description top

Recently, there have been a number of reports of copper(I)-iodide complexes with 1,10-phenanthroline (phen) as a coligand. Among them, almost all complexes are disctete molecules (Healy et al., 1985; Yu et al., 2001; Yu et al., 2002; Yu et al., 2004; Zhou et al., 2005; Zhang et al., 2008) except two complexes characterized as polymeric structure (Zhang et al., 2008). We have synthesised the polymeric title complex [Cu(phen)I]n (I) (Fig.1). It is worthy of note that compound I crystallizes in a noncentrosymmetric space group of P212121, while the other copper(I)-iodide complexes with phen all crystallise in centrosymmetric space groups. The asymmmetric unit contains one Cu+ cation, one I- anion and one phen ligand. Each Cu+ cation is tetrahedrally coordinated by two iodide anion and two nitrogen atoms from a bidentate chelating phen ligand. The Cu+ cations are bridged through the iodide anions, leading to a zigzag chain structure. The Cu—I bond lengths are 2.5895 (6) and 2.6030 (6) Å, which are similar to that found in other copper(I)-iodide complexes. There are π-π interactions between adjacent phen ligands of one chain. The phen skeletons are arranged in a perfect parallel fashion with centroid-centroid distance of 3.693 (3) Å (from two adjacent C4/C5/C6/C7/C8/C9 ring and C1A/C2A/C3A/C4A/C5A/N1A ring, symmetry code A: x - 1, y, z).

For other copper(I)–iodide complexes with 1,10-phenanthroline as a coligand, see: Healy et al. (1985); Yu et al. (2001, 2002, 2004); Zhou et al. (2005); Zhang et al. (2008).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure and labelling of the title compound, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii. Symmetry code A: x - 1, y, z.
[Figure 2] Fig. 2. The chain structure constructed from Cu(phen)I unit.
[Figure 3] Fig. 3. The packing diagram viewed along the a-direction.
catena-Poly[[(1,10-phenanthroline-κ2N,N')copper(I)]- µ2-iodido] top
Crystal data top
[CuI(C12H8N2)]F(000) = 704
Mr = 370.64Dx = 2.213 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 2969 reflections
a = 4.1664 (5) Åθ = 2.1–27.5°
b = 10.4621 (11) ŵ = 4.71 mm1
c = 25.518 (4) ÅT = 293 K
V = 1112.3 (2) Å3Prism, yellow
Z = 40.35 × 0.10 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2567 independent reflections
Radiation source: fine-focus sealed tube2380 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.5°
CCD_Profile_fitting scansh = 55
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.290, Tmax = 0.799l = 3331
8582 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0192P)2 + 0.4704P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2567 reflectionsΔρmax = 0.94 e Å3
145 parametersΔρmin = 0.54 e Å3
0 restraintsAbsolute structure: Flack (1983), 1020 Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[CuI(C12H8N2)]V = 1112.3 (2) Å3
Mr = 370.64Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.1664 (5) ŵ = 4.71 mm1
b = 10.4621 (11) ÅT = 293 K
c = 25.518 (4) Å0.35 × 0.10 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2567 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2380 reflections with I > 2σ(I)
Tmin = 0.290, Tmax = 0.799Rint = 0.027
8582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.056Δρmax = 0.94 e Å3
S = 1.12Δρmin = 0.54 e Å3
2567 reflectionsAbsolute structure: Flack (1983), 1020 Friedel pairs?
145 parametersAbsolute structure parameter: 0.05 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.66039 (6)0.42090 (2)0.117804 (11)0.03947 (8)
Cu10.16241 (14)0.27290 (4)0.12007 (2)0.03758 (12)
N10.3102 (9)0.1092 (3)0.07823 (11)0.0338 (7)
N20.0053 (9)0.1283 (3)0.17018 (13)0.0341 (7)
C50.2334 (9)0.0008 (4)0.10317 (14)0.0315 (9)
C120.1751 (12)0.1378 (4)0.21386 (15)0.0436 (10)
H120.21740.21910.22690.052*
C90.0515 (10)0.0084 (4)0.15161 (15)0.0315 (9)
C40.3219 (12)0.1225 (4)0.08441 (16)0.0420 (10)
C10.4834 (11)0.1005 (5)0.03491 (16)0.0448 (11)
H10.53780.17520.01730.054*
C80.0525 (10)0.1027 (4)0.17715 (17)0.0419 (11)
C100.2305 (11)0.0865 (5)0.22338 (17)0.0536 (12)
H100.30480.15750.24170.064*
C60.2110 (14)0.2340 (4)0.1123 (2)0.0557 (14)
H60.26770.31460.10000.067*
C110.2940 (12)0.0332 (5)0.24137 (17)0.0532 (12)
H110.41500.04500.27160.064*
C30.5059 (13)0.1268 (5)0.03889 (19)0.0519 (13)
H30.57200.20500.02540.062*
C70.0286 (14)0.2250 (4)0.1555 (2)0.0546 (14)
H70.04620.29900.17150.065*
C20.5884 (12)0.0168 (5)0.01436 (18)0.0546 (14)
H20.71350.01890.01580.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02550 (13)0.02861 (12)0.06429 (16)0.00102 (12)0.00327 (14)0.00180 (12)
Cu10.0322 (3)0.0280 (2)0.0525 (3)0.0003 (2)0.0052 (3)0.0017 (2)
N10.0326 (18)0.0320 (17)0.0367 (15)0.0001 (16)0.0003 (16)0.0017 (12)
N20.0335 (18)0.0320 (16)0.0368 (18)0.0010 (16)0.0010 (16)0.0011 (14)
C50.026 (2)0.0296 (18)0.0385 (19)0.0005 (14)0.0077 (17)0.0004 (14)
C120.037 (2)0.052 (2)0.042 (2)0.001 (3)0.001 (2)0.0009 (18)
C90.024 (2)0.0300 (19)0.040 (2)0.0022 (15)0.0092 (18)0.0041 (16)
C40.036 (2)0.038 (2)0.052 (2)0.010 (2)0.015 (2)0.0114 (18)
C10.039 (2)0.055 (3)0.041 (2)0.003 (2)0.0016 (19)0.001 (2)
C80.036 (2)0.038 (2)0.052 (2)0.0063 (19)0.0157 (19)0.0050 (19)
C100.046 (3)0.059 (3)0.056 (3)0.012 (3)0.002 (2)0.022 (2)
C60.060 (3)0.027 (2)0.080 (3)0.009 (2)0.029 (3)0.012 (2)
C110.042 (3)0.073 (3)0.045 (2)0.005 (3)0.006 (2)0.012 (2)
C30.046 (3)0.052 (3)0.059 (3)0.014 (3)0.013 (3)0.023 (2)
C70.058 (3)0.029 (2)0.076 (3)0.005 (2)0.024 (3)0.009 (2)
C20.043 (3)0.077 (4)0.044 (2)0.013 (3)0.005 (2)0.020 (2)
Geometric parameters (Å, º) top
I1—Cu12.5895 (6)C4—C61.443 (6)
I1—Cu1i2.6030 (6)C1—C21.404 (6)
Cu1—N22.100 (3)C1—H10.9300
Cu1—N12.110 (3)C8—C101.404 (6)
Cu1—I1ii2.6030 (6)C8—C71.434 (6)
N1—C11.323 (5)C10—C111.360 (7)
N1—C51.354 (5)C10—H100.9300
N2—C121.324 (5)C6—C71.341 (7)
N2—C91.361 (5)C6—H60.9300
C5—C41.409 (5)C11—H110.9300
C5—C91.453 (5)C3—C21.355 (7)
C12—C111.391 (6)C3—H30.9300
C12—H120.9300C7—H70.9300
C9—C81.402 (5)C2—H20.9300
C4—C31.392 (7)
Cu1—I1—Cu1i106.715 (18)N1—C1—C2122.9 (4)
N2—Cu1—N179.66 (13)N1—C1—H1118.6
N2—Cu1—I1135.30 (10)C2—C1—H1118.6
N1—Cu1—I1103.90 (10)C9—C8—C10117.0 (4)
N2—Cu1—I1ii100.05 (10)C9—C8—C7119.2 (4)
N1—Cu1—I1ii134.92 (10)C10—C8—C7123.8 (4)
I1—Cu1—I1ii106.715 (18)C11—C10—C8119.8 (4)
C1—N1—C5117.6 (3)C11—C10—H10120.1
C1—N1—Cu1129.6 (3)C8—C10—H10120.1
C5—N1—Cu1112.6 (2)C7—C6—C4122.0 (4)
C12—N2—C9117.1 (3)C7—C6—H6119.0
C12—N2—Cu1129.5 (3)C4—C6—H6119.0
C9—N2—Cu1113.2 (3)C10—C11—C12119.0 (4)
N1—C5—C4123.2 (3)C10—C11—H11120.5
N1—C5—C9117.8 (3)C12—C11—H11120.5
C4—C5—C9119.1 (4)C2—C3—C4119.9 (4)
N2—C12—C11123.8 (4)C2—C3—H3120.1
N2—C12—H12118.1C4—C3—H3120.1
C11—C12—H12118.1C6—C7—C8120.9 (4)
N2—C9—C8123.3 (4)C6—C7—H7119.6
N2—C9—C5116.6 (3)C8—C7—H7119.6
C8—C9—C5120.1 (4)C3—C2—C1119.4 (4)
C3—C4—C5117.1 (4)C3—C2—H2120.3
C3—C4—C6124.2 (4)C1—C2—H2120.3
C5—C4—C6118.6 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[CuI(C12H8N2)]
Mr370.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.1664 (5), 10.4621 (11), 25.518 (4)
V3)1112.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.71
Crystal size (mm)0.35 × 0.10 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.290, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
8582, 2567, 2380
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.056, 1.12
No. of reflections2567
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.54
Absolute structureFlack (1983), 1020 Friedel pairs?
Absolute structure parameter0.05 (3)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
I1—Cu12.5895 (6)Cu1—N22.100 (3)
I1—Cu1i2.6030 (6)Cu1—N12.110 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (project No. 20803070) and the Natural Science Foundation of Zhejiang Province (project No. Y4100610).

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHealy, P. C., Pakawatchai, C. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2531–2539.  CSD CrossRef Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J. H., Lü, Z. L., Xu, J. Q., Bie, H. Y., Lu, J. & Zhang, X. (2004). New J. Chem. 28, 940–945.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, J. H., Shi, Z., Xu, J. Q., Chu, D. Q., Jin, W. J., Ding, H., Hua, J., Xu, J. N., Cui, X. B., Wang, T. G., Zhang, L. J., Li, C. B. & Zeng, Q. X. (2001). Pol. J. Chem. 75, 1785–1789.  CAS Google Scholar
First citationYu, J. H., Xu, J. Q., Han, L., Wang, T. G., Shi, Z., Jing, W. J., Ding, H., Xu, J. N., Jia, H. B. & Hua, J. (2002). Chin. J. Chem. 20, 851–857.  CrossRef CAS Google Scholar
First citationZhang, S., Cao, Y. N., Zhang, H. H., Chai, X. C., Chen, Y. P. & Sun, R. Q. (2008). J. Solid State Chem. 181, 3327–3336.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, X.-P., Li, D. & Ng, S. W. (2005). Acta Cryst. E61, m654–m655.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds