metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­azido­(2,2′-bipyrid­yl)di­methanol­nickel(II)

aClinical College, Weifang Medical University, Weifang, Shandong 261042, People's Republic of China, and bDepartment of Preventative Medicine, Weifang Medical University, Weifang, Shandong 261042, People's Republic of China
*Correspondence e-mail: weifanglhg@126.com

(Received 18 September 2010; accepted 25 September 2010; online 2 October 2010)

The title complex, [Ni(N3)2(C10H8N2)(CH3OH)2], lies on a twofold roation axis which runs through the NiII ion and the mid-point of the bipyridine ligand. The NiII ion is coordinated in a distorted octa­hedral environment by two azide ligands in a trans configuration. The methanol ligands are in a cis configuration and their hy­droxy groups form intra­molecular O—H⋯(N,N) hydrogen bonds with the azide ligands.

Related literature

For related structures, see: Urtiaga et al. (1995[Urtiaga, M. K., Arriortua, M. I., De Muro, I. G. & Cortes, R. (1995). Acta Cryst. C51, 62-65.]); Phatchimkun et al. (2009[Phatchimkun, J., Kongsaeree, P., Suchaichit, N. & Chaichit, N. (2009). Acta Cryst. E65, m1020-m1021.]); Kou et al. (2008[Kou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396-2406.]); Hou (2008[Hou, J. (2008). Acta Cryst. E64, m1571.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(N3)2(C10H8N2)(CH4O)2]

  • Mr = 363.04

  • Monoclinic, C 2/c

  • a = 16.8173 (15) Å

  • b = 13.4470 (12) Å

  • c = 7.1848 (6) Å

  • β = 111.238 (1)°

  • V = 1514.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 293 K

  • 0.32 × 0.24 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.680, Tmax = 0.790

  • 3647 measured reflections

  • 1333 independent reflections

  • 1247 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.210

  • S = 1.02

  • 1333 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1a⋯N3 0.93 2.25 2.721 (4) 111
O1—H1a⋯N4 0.93 2.48 3.227 (5) 137

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As has been known for some time, 2,2'-bipyridine is a good bidentate chelating ligand and the azido group a good bridging ligand. Here, we present a new six-coordinate nickel(II) complex based on 2,2'-bipyridine azido ligands.

The molecular structure of the title compound is shown in Fig. 1. The coordination environment of the NiII ion distorted octahedral, in which two sites are occupied by the two N atoms of the chelating 2,2'-bipyridine ligand and the trans positions are occupied by two N atoms of two azido ligands. Two O atoms of two methanol ligands complete the coordination. The Ni—Nbipyridine and Ni—Nazido bond lengths are basically consistant with the corresponding distances found in other nickel bipyridine azido copmplexes (Urtiaga, et al., 1995; Phatchimkun, et al., 2009; Kou, et al., 2008; Hou, 2008.).

Related literature top

For related structures, see: Urtiaga et al. (1995); Phatchimkun et al. (2009); Kou et al. (2008); Hou (2008).

Experimental top

A mixture of 2,2'-bipyridine, NiCl2.6H2O (1:1, molar ratio), excessive NaN3 and methanol (20 ml) was sealed in a Teflon-lined autoclave (25 ml) and heated 353 K for 12 h. Upon cooling slowly and opening the bomb, green crystals suitable for X-ray diffraction were obtained with a yield about 55% (based on 2,2'-bipyridine).

Refinement top

The H atoms bonded to C atoms were placed using the HFIX commands in SHELXL-97 (Sheldrick, 2008a), with C—H distances of 0.93 and 0.96 Å, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C), respectively. The hydroxy H atom could not be found in a difference map but by including it using the HFIX 43 instruction in SHELXL-97 there are likely acceptors for hydrogen bonds [see Table 1].

Structure description top

As has been known for some time, 2,2'-bipyridine is a good bidentate chelating ligand and the azido group a good bridging ligand. Here, we present a new six-coordinate nickel(II) complex based on 2,2'-bipyridine azido ligands.

The molecular structure of the title compound is shown in Fig. 1. The coordination environment of the NiII ion distorted octahedral, in which two sites are occupied by the two N atoms of the chelating 2,2'-bipyridine ligand and the trans positions are occupied by two N atoms of two azido ligands. Two O atoms of two methanol ligands complete the coordination. The Ni—Nbipyridine and Ni—Nazido bond lengths are basically consistant with the corresponding distances found in other nickel bipyridine azido copmplexes (Urtiaga, et al., 1995; Phatchimkun, et al., 2009; Kou, et al., 2008; Hou, 2008.).

For related structures, see: Urtiaga et al. (1995); Phatchimkun et al. (2009); Kou et al. (2008); Hou (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. Unlabeled atoms are related by the symmetry operator -x+2, y, -z+1/2.
Diazido(2,2'-bipyridyl)dimethanolnickel(II) top
Crystal data top
[Ni(N3)2(C10H8N2)(CH4O)2]F(000) = 752
Mr = 363.04Dx = 1.592 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1564 reflections
a = 16.8173 (15) Åθ = 2.8–27.4°
b = 13.4470 (12) ŵ = 1.31 mm1
c = 7.1848 (6) ÅT = 293 K
β = 111.238 (1)°Block, green
V = 1514.4 (2) Å30.32 × 0.24 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1333 independent reflections
Radiation source: fine-focus sealed tube1247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1520
Tmin = 0.680, Tmax = 0.790k = 1511
3647 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1511P)2 + 7.4217P]
where P = (Fo2 + 2Fc2)/3
1333 reflections(Δ/σ)max = 0.011
106 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[Ni(N3)2(C10H8N2)(CH4O)2]V = 1514.4 (2) Å3
Mr = 363.04Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.8173 (15) ŵ = 1.31 mm1
b = 13.4470 (12) ÅT = 293 K
c = 7.1848 (6) Å0.32 × 0.24 × 0.19 mm
β = 111.238 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1333 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1247 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.790Rint = 0.012
3647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.210H-atom parameters constrained
S = 1.02Δρmax = 1.08 e Å3
1333 reflectionsΔρmin = 0.68 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.74532 (6)0.25000.0357 (4)
O10.9127 (2)0.6557 (3)0.1994 (5)0.0403 (8)
H1A0.86790.65890.07660.048*
N10.9185 (2)0.8653 (3)0.2091 (5)0.0267 (8)
N20.9797 (3)0.7545 (3)0.0390 (6)0.0331 (10)
N30.9118 (3)0.7278 (3)0.1552 (6)0.0393 (10)
N40.8473 (3)0.7061 (5)0.2714 (8)0.0713 (16)
C10.8326 (2)0.8578 (3)0.1560 (6)0.0347 (10)
H10.80830.79530.15140.042*
C20.7806 (3)0.9397 (4)0.1091 (7)0.0397 (11)
H20.72200.93270.07500.048*
C30.8157 (3)1.0328 (4)0.1126 (6)0.0374 (10)
H30.78111.08890.07820.045*
C40.9035 (3)1.0414 (3)0.1684 (6)0.0323 (9)
H40.92871.10330.17230.039*
C50.9526 (2)0.9565 (3)0.2179 (5)0.0244 (8)
C60.9097 (4)0.5858 (5)0.3297 (8)0.0599 (16)
H6A0.96630.56190.40210.090*
H6B0.87450.53170.25890.090*
H6C0.88630.61380.42150.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0333 (6)0.0382 (6)0.0347 (6)0.0000.0114 (4)0.000
O10.0367 (17)0.0404 (19)0.0380 (17)0.0107 (14)0.0068 (13)0.0056 (14)
N10.0201 (16)0.0322 (18)0.0275 (17)0.0002 (13)0.0083 (13)0.0000 (13)
N20.032 (2)0.043 (2)0.024 (2)0.0043 (14)0.0095 (18)0.0006 (13)
N30.048 (3)0.041 (2)0.031 (2)0.0041 (19)0.016 (2)0.0055 (17)
N40.057 (3)0.100 (4)0.042 (3)0.034 (3)0.000 (2)0.003 (3)
C10.0205 (19)0.043 (3)0.038 (2)0.0039 (17)0.0078 (16)0.0002 (18)
C20.024 (2)0.054 (3)0.041 (2)0.0030 (19)0.0108 (18)0.002 (2)
C30.029 (2)0.043 (3)0.037 (2)0.0113 (18)0.0087 (18)0.0006 (18)
C40.031 (2)0.033 (2)0.032 (2)0.0023 (17)0.0103 (17)0.0023 (17)
C50.021 (2)0.033 (2)0.0198 (17)0.0004 (15)0.0069 (14)0.0010 (15)
C60.052 (3)0.069 (4)0.049 (3)0.024 (3)0.008 (2)0.008 (3)
Geometric parameters (Å, º) top
Ni1—O11.831 (3)C1—C21.370 (7)
Ni1—O1i1.831 (3)C1—H10.9300
Ni1—N21.982 (4)C2—C31.380 (7)
Ni1—N2i1.982 (4)C2—H20.9300
Ni1—N1i2.068 (4)C3—C41.387 (6)
Ni1—N12.068 (4)C3—H30.9300
O1—C61.340 (6)C4—C51.379 (6)
O1—H1A0.9300C4—H40.9300
N1—C51.346 (5)C5—C5i1.490 (7)
N1—C11.358 (5)C6—H6A0.9600
N2—N31.199 (6)C6—H6B0.9600
N3—N41.142 (6)C6—H6C0.9600
O1—Ni1—O1i97.7 (2)N4—N3—N2176.8 (5)
O1—Ni1—N290.64 (15)N1—C1—C2121.9 (4)
O1i—Ni1—N294.04 (16)N1—C1—H1119.1
O1—Ni1—N2i94.04 (16)C2—C1—H1119.1
O1i—Ni1—N2i90.64 (15)C1—C2—C3119.6 (4)
N2—Ni1—N2i172.9 (2)C1—C2—H2120.2
O1—Ni1—N1i169.78 (14)C3—C2—H2120.2
O1i—Ni1—N1i92.41 (16)C2—C3—C4119.0 (4)
N2—Ni1—N1i87.38 (14)C2—C3—H3120.5
N2i—Ni1—N1i87.08 (15)C4—C3—H3120.5
O1—Ni1—N192.41 (16)C5—C4—C3118.8 (4)
O1i—Ni1—N1169.78 (14)C5—C4—H4120.6
N2—Ni1—N187.08 (15)C3—C4—H4120.6
N2i—Ni1—N187.38 (14)N1—C5—C4122.5 (3)
N1i—Ni1—N177.48 (19)N1—C5—C5i113.9 (2)
C6—O1—Ni1123.5 (3)C4—C5—C5i123.6 (2)
C6—O1—H1A118.2O1—C6—H6A109.5
Ni1—O1—H1A118.2O1—C6—H6B109.5
C5—N1—C1118.2 (3)H6A—C6—H6B109.5
C5—N1—Ni1117.0 (2)O1—C6—H6C109.5
C1—N1—Ni1124.4 (3)H6A—C6—H6C109.5
N3—N2—Ni1118.1 (3)H6B—C6—H6C109.5
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···N30.932.252.721 (4)111
O1—H1a···N40.932.483.227 (5)137

Experimental details

Crystal data
Chemical formula[Ni(N3)2(C10H8N2)(CH4O)2]
Mr363.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.8173 (15), 13.4470 (12), 7.1848 (6)
β (°) 111.238 (1)
V3)1514.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.32 × 0.24 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.680, 0.790
No. of measured, independent and
observed [I > 2σ(I)] reflections
3647, 1333, 1247
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.210, 1.02
No. of reflections1333
No. of parameters106
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.68

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1a···N30.932.252.721 (4)111
O1—H1a···N40.932.483.227 (5)137
 

Acknowledgements

The authors acknowledge the support of the Scientific and Technical Office of WeiFang (No. 200901036).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHou, J. (2008). Acta Cryst. E64, m1571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKou, H. Z., Hishiya, S. & Sato, O. (2008). Inorg. Chim. Acta, 361, 2396–2406.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhatchimkun, J., Kongsaeree, P., Suchaichit, N. & Chaichit, N. (2009). Acta Cryst. E65, m1020–m1021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUrtiaga, M. K., Arriortua, M. I., De Muro, I. G. & Cortes, R. (1995). Acta Cryst. C51, 62–65.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds