organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methyl­­idene­amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Basic Science, Tianjin Agricultural College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China, bService Center of Meteorological Science and Technology of Shanxi Province, Taiyuan Xinjian Road No. 152, Taiyuan, Shanxi 030002, People's Republic of China, cDepartment of Agricultural Science, Tianjin Agricultural College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China, and dDepartment of Food Science, Tianjin Agricultural College, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China
*Correspondence e-mail: zhuhualing2004@126.com

(Received 24 September 2010; accepted 29 September 2010; online 9 October 2010)

In the mol­ecule of the title compound, C22H20ClN5O, the atoms of the two pyrazole rings and the –C=N– group which joins them are essentially coplanar, with an r.m.s. deviation of 0.054 (2) Å. The phenyl rings form dihedral angles of 41.24 (5) and 55.53 (5)° with this plane. The crystal structure is stabilized by weak inter­molecular ππ inter­actions, with centroid-to-centroid distances of 3.6179 (13) Å between the imidazole rings.

Related literature

For our previous work in this area, see: Zhu et al. (2005[Zhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387-o2388.], 2010a[Zhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010b). Acta Cryst. E66, o1352.],b[Zhu, H., Shi, J., Wei, Z., Bai, Y. & Bu, L. (2010a). Acta Cryst. E66, o1583.],c[Zhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010c). Acta Cryst. E66, m904.]). For a related crystal structure, see: Shi et al. (2005[Shi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320-m2321.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20ClN5O

  • Mr = 405.88

  • Monoclinic, P 21 /n

  • a = 8.3982 (17) Å

  • b = 9.5204 (19) Å

  • c = 24.401 (5) Å

  • β = 97.24 (3)°

  • V = 1935.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.957, Tmax = 0.978

  • 15458 measured reflections

  • 3397 independent reflections

  • 2871 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.105

  • S = 1.08

  • 3397 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As part of our ongoing studies (Zhu et al., 2005, 2010a,b,c) of pyrazolone derivatives as potential ligands (Shi et al., 2005) we report the crystal structure of the title compound (I).

The molecular structure of the title compound is shown in Fig. 1. Atoms C11 and N3 and the two pyrazole rings are essentially coplplanar with the largest deviation being 0.0543 (18) Å for atom C13. The crystal structure is stabilized by weak intermolecular ππ interactions with ring centroid to ring centroid distances of 3.6179 (13) Å between the imidazole rings (see Fig. 2).

Related literature top

For our previous work in this area, see: Zhu et al. (2005, 2010a,b,c). For a related crystal structure, see: Shi et al. (2005).

Experimental top

The title compound was synthesized by refluxing a mixture of 4-formacyl-5-methyl-3-chloro-2-phenyl-2H-pyrazole (15m mol) and 4-antipyrine (15 mmol) in ethanol (100 ml) over a steam bath for about 4 h. The solution was then cooled to room temperature. After one day, pale-yellow blocks wre obtained and they were dried in air. Recrystallization of a solution of the title compound in ethanol afforded pale-yellow crystals suitable for X-ray analysis.

Refinement top

H atoms were placed in calculated positions with C—H = 0.95 and 0.98 Å and included in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

As part of our ongoing studies (Zhu et al., 2005, 2010a,b,c) of pyrazolone derivatives as potential ligands (Shi et al., 2005) we report the crystal structure of the title compound (I).

The molecular structure of the title compound is shown in Fig. 1. Atoms C11 and N3 and the two pyrazole rings are essentially coplplanar with the largest deviation being 0.0543 (18) Å for atom C13. The crystal structure is stabilized by weak intermolecular ππ interactions with ring centroid to ring centroid distances of 3.6179 (13) Å between the imidazole rings (see Fig. 2).

For our previous work in this area, see: Zhu et al. (2005, 2010a,b,c). For a related crystal structure, see: Shi et al. (2005).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular ππ interactions as dashed lines.
4-[(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylideneamino]- 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one top
Crystal data top
C22H20ClN5OF(000) = 848
Mr = 405.88Dx = 1.393 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4998 reflections
a = 8.3982 (17) Åθ = 1.7–27.9°
b = 9.5204 (19) ŵ = 0.22 mm1
c = 24.401 (5) ÅT = 113 K
β = 97.24 (3)°Block, pale yellow
V = 1935.4 (7) Å30.20 × 0.18 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
3397 independent reflections
Radiation source: rotating anode2871 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.046
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω and φ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1111
Tmin = 0.957, Tmax = 0.978l = 2929
15458 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.6515P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3397 reflectionsΔρmax = 0.41 e Å3
266 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0242 (16)
Crystal data top
C22H20ClN5OV = 1935.4 (7) Å3
Mr = 405.88Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3982 (17) ŵ = 0.22 mm1
b = 9.5204 (19) ÅT = 113 K
c = 24.401 (5) Å0.20 × 0.18 × 0.10 mm
β = 97.24 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3397 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2871 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.978Rint = 0.046
15458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
3397 reflectionsΔρmin = 0.25 e Å3
266 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.56582 (6)0.05661 (6)0.08916 (2)0.02960 (19)
O10.75786 (16)0.36105 (15)0.04914 (6)0.0251 (4)
N10.80398 (18)0.09683 (17)0.14372 (6)0.0175 (4)
N20.96786 (17)0.11576 (16)0.14899 (6)0.0172 (4)
N31.03166 (18)0.19175 (16)0.02437 (6)0.0181 (4)
N40.98109 (19)0.45266 (17)0.08446 (6)0.0196 (4)
N51.14617 (18)0.42156 (17)0.07913 (6)0.0201 (4)
C10.7142 (2)0.1746 (2)0.17966 (8)0.0181 (4)
C20.5695 (2)0.2379 (2)0.16005 (8)0.0206 (4)
H20.52470.22620.12260.025*
C30.4910 (2)0.3182 (2)0.19566 (9)0.0246 (5)
H30.39120.36100.18260.030*
C40.5566 (2)0.3368 (2)0.25005 (9)0.0263 (5)
H40.50260.39270.27420.032*
C50.7015 (2)0.2736 (2)0.26924 (8)0.0254 (5)
H50.74690.28670.30660.031*
C60.7808 (2)0.1913 (2)0.23432 (8)0.0213 (5)
H60.87940.14680.24770.026*
C70.7592 (2)0.0000 (2)0.10393 (8)0.0186 (4)
C80.8934 (2)0.04644 (19)0.08215 (8)0.0164 (4)
C91.0207 (2)0.0306 (2)0.11224 (7)0.0163 (4)
C101.1952 (2)0.0254 (2)0.10710 (8)0.0209 (4)
H10A1.25210.09460.13210.031*
H10B1.23660.06880.11680.031*
H10C1.21190.04700.06900.031*
C110.8978 (2)0.14939 (19)0.03858 (8)0.0174 (4)
H110.80010.18600.02030.021*
C121.0353 (2)0.2915 (2)0.01714 (8)0.0178 (4)
C131.1767 (2)0.3331 (2)0.03503 (7)0.0189 (4)
C141.3431 (2)0.2994 (2)0.01061 (8)0.0265 (5)
H14A1.40970.28330.04020.040*
H14B1.34250.21450.01210.040*
H14C1.38710.37790.01240.040*
C150.9051 (2)0.3662 (2)0.04929 (8)0.0191 (4)
C161.2558 (2)0.5346 (2)0.09045 (9)0.0277 (5)
H16A1.27030.59940.05900.042*
H16B1.21060.58560.12370.042*
H16C1.35980.49440.09620.042*
C170.9040 (2)0.5093 (2)0.13518 (8)0.0194 (4)
C180.9457 (2)0.4650 (2)0.18560 (8)0.0231 (5)
H181.02760.39680.18700.028*
C190.8665 (2)0.5215 (2)0.23385 (8)0.0257 (5)
H190.89600.49320.26850.031*
C200.7448 (2)0.6188 (2)0.23199 (8)0.0250 (5)
H200.68970.65600.26520.030*
C210.7038 (2)0.6615 (2)0.18128 (9)0.0256 (5)
H210.61980.72780.17990.031*
C220.7844 (2)0.6082 (2)0.13259 (8)0.0235 (5)
H220.75780.63930.09790.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0146 (3)0.0348 (3)0.0391 (3)0.0050 (2)0.0026 (2)0.0133 (2)
O10.0202 (8)0.0284 (8)0.0269 (8)0.0014 (6)0.0035 (6)0.0068 (6)
N10.0137 (8)0.0208 (9)0.0185 (8)0.0001 (7)0.0033 (6)0.0039 (7)
N20.0132 (8)0.0197 (9)0.0187 (8)0.0005 (7)0.0021 (6)0.0010 (7)
N30.0204 (9)0.0170 (9)0.0169 (8)0.0018 (7)0.0024 (7)0.0003 (6)
N40.0204 (8)0.0215 (9)0.0171 (8)0.0023 (7)0.0031 (7)0.0051 (7)
N50.0189 (9)0.0227 (9)0.0185 (8)0.0020 (7)0.0012 (7)0.0040 (7)
C10.0181 (10)0.0162 (10)0.0213 (10)0.0016 (8)0.0073 (8)0.0021 (8)
C20.0198 (10)0.0218 (11)0.0209 (10)0.0011 (8)0.0049 (8)0.0013 (8)
C30.0223 (11)0.0198 (11)0.0330 (12)0.0023 (8)0.0087 (9)0.0020 (9)
C40.0305 (12)0.0190 (11)0.0324 (12)0.0012 (9)0.0155 (10)0.0055 (9)
C50.0308 (12)0.0253 (12)0.0213 (10)0.0037 (9)0.0075 (9)0.0055 (9)
C60.0211 (10)0.0213 (11)0.0215 (10)0.0002 (8)0.0028 (8)0.0018 (8)
C70.0152 (10)0.0192 (11)0.0208 (10)0.0022 (8)0.0006 (8)0.0016 (8)
C80.0154 (9)0.0168 (10)0.0166 (9)0.0007 (8)0.0010 (8)0.0004 (8)
C90.0170 (9)0.0172 (10)0.0148 (9)0.0010 (8)0.0024 (8)0.0014 (8)
C100.0158 (10)0.0248 (11)0.0220 (10)0.0005 (8)0.0030 (8)0.0026 (8)
C110.0192 (10)0.0160 (10)0.0166 (10)0.0021 (8)0.0001 (8)0.0021 (8)
C120.0218 (10)0.0162 (10)0.0154 (9)0.0008 (8)0.0021 (8)0.0000 (8)
C130.0239 (10)0.0199 (11)0.0127 (9)0.0014 (8)0.0012 (8)0.0008 (8)
C140.0213 (11)0.0367 (13)0.0217 (11)0.0007 (9)0.0035 (9)0.0048 (9)
C150.0231 (11)0.0174 (11)0.0169 (10)0.0015 (8)0.0028 (8)0.0001 (8)
C160.0283 (12)0.0251 (12)0.0305 (12)0.0043 (9)0.0072 (9)0.0051 (9)
C170.0233 (10)0.0162 (10)0.0182 (10)0.0040 (8)0.0001 (8)0.0033 (8)
C180.0275 (11)0.0207 (11)0.0215 (10)0.0009 (9)0.0054 (9)0.0028 (8)
C190.0334 (12)0.0276 (12)0.0160 (10)0.0055 (10)0.0030 (9)0.0006 (9)
C200.0279 (11)0.0231 (12)0.0219 (10)0.0055 (9)0.0048 (9)0.0046 (9)
C210.0239 (11)0.0221 (11)0.0293 (12)0.0015 (9)0.0025 (9)0.0016 (9)
C220.0277 (11)0.0228 (11)0.0198 (10)0.0011 (9)0.0019 (9)0.0013 (8)
Geometric parameters (Å, º) top
Cl1—C71.7064 (19)C8—C111.450 (3)
O1—C151.238 (2)C9—C101.487 (3)
N1—C71.357 (2)C10—H10A0.9800
N1—N21.378 (2)C10—H10B0.9800
N1—C11.433 (2)C10—H10C0.9800
N2—C91.326 (2)C11—H110.9500
N3—C111.282 (2)C12—C131.374 (3)
N3—C121.392 (2)C12—C151.449 (3)
N4—C151.400 (2)C13—C141.484 (3)
N4—N51.408 (2)C14—H14A0.9800
N4—C171.428 (2)C14—H14B0.9800
N5—C131.365 (2)C14—H14C0.9800
N5—C161.465 (3)C16—H16A0.9800
C1—C21.386 (3)C16—H16B0.9800
C1—C61.389 (3)C16—H16C0.9800
C2—C31.385 (3)C17—C221.384 (3)
C2—H20.9500C17—C181.387 (3)
C3—C41.383 (3)C18—C191.385 (3)
C3—H30.9500C18—H180.9500
C4—C51.385 (3)C19—C201.385 (3)
C4—H40.9500C19—H190.9500
C5—C61.388 (3)C20—C211.387 (3)
C5—H50.9500C20—H200.9500
C6—H60.9500C21—C221.387 (3)
C7—C81.378 (3)C21—H210.9500
C8—C91.422 (3)C22—H220.9500
C7—N1—N2109.82 (14)H10B—C10—H10C109.5
C7—N1—C1132.03 (16)N3—C11—C8121.01 (17)
N2—N1—C1118.13 (15)N3—C11—H11119.5
C9—N2—N1105.80 (15)C8—C11—H11119.5
C11—N3—C12120.78 (16)C13—C12—N3121.80 (17)
C15—N4—N5109.84 (15)C13—C12—C15108.06 (17)
C15—N4—C17124.14 (16)N3—C12—C15130.13 (17)
N5—N4—C17119.57 (15)N5—C13—C12110.13 (17)
C13—N5—N4106.72 (14)N5—C13—C14121.60 (17)
C13—N5—C16122.81 (16)C12—C13—C14128.17 (18)
N4—N5—C16117.58 (15)C13—C14—H14A109.5
C2—C1—C6120.76 (18)C13—C14—H14B109.5
C2—C1—N1121.27 (17)H14A—C14—H14B109.5
C6—C1—N1117.88 (17)C13—C14—H14C109.5
C3—C2—C1119.28 (19)H14A—C14—H14C109.5
C3—C2—H2120.4H14B—C14—H14C109.5
C1—C2—H2120.4O1—C15—N4123.90 (17)
C4—C3—C2120.61 (19)O1—C15—C12131.67 (18)
C4—C3—H3119.7N4—C15—C12104.43 (16)
C2—C3—H3119.7N5—C16—H16A109.5
C3—C4—C5119.72 (19)N5—C16—H16B109.5
C3—C4—H4120.1H16A—C16—H16B109.5
C5—C4—H4120.1N5—C16—H16C109.5
C4—C5—C6120.45 (19)H16A—C16—H16C109.5
C4—C5—H5119.8H16B—C16—H16C109.5
C6—C5—H5119.8C22—C17—C18120.90 (18)
C5—C6—C1119.18 (18)C22—C17—N4118.02 (17)
C5—C6—H6120.4C18—C17—N4121.07 (18)
C1—C6—H6120.4C19—C18—C17119.21 (19)
N1—C7—C8109.14 (16)C19—C18—H18120.4
N1—C7—Cl1122.43 (14)C17—C18—H18120.4
C8—C7—Cl1128.31 (15)C20—C19—C18120.59 (19)
C7—C8—C9103.49 (16)C20—C19—H19119.7
C7—C8—C11126.70 (17)C18—C19—H19119.7
C9—C8—C11129.81 (17)C19—C20—C21119.54 (19)
N2—C9—C8111.75 (16)C19—C20—H20120.2
N2—C9—C10119.64 (17)C21—C20—H20120.2
C8—C9—C10128.61 (17)C20—C21—C22120.50 (19)
C9—C10—H10A109.5C20—C21—H21119.8
C9—C10—H10B109.5C22—C21—H21119.8
H10A—C10—H10B109.5C17—C22—C21119.24 (19)
C9—C10—H10C109.5C17—C22—H22120.4
H10A—C10—H10C109.5C21—C22—H22120.4
C7—N1—N2—C90.2 (2)C7—C8—C11—N3175.01 (19)
C1—N1—N2—C9178.74 (16)C9—C8—C11—N35.4 (3)
C15—N4—N5—C139.4 (2)C11—N3—C12—C13176.57 (18)
C17—N4—N5—C13162.32 (16)C11—N3—C12—C152.0 (3)
C15—N4—N5—C16152.04 (17)N4—N5—C13—C128.4 (2)
C17—N4—N5—C1655.0 (2)C16—N5—C13—C12148.65 (18)
C7—N1—C1—C244.7 (3)N4—N5—C13—C14168.34 (17)
N2—N1—C1—C2137.15 (18)C16—N5—C13—C1428.1 (3)
C7—N1—C1—C6138.7 (2)N3—C12—C13—N5174.47 (16)
N2—N1—C1—C639.5 (2)C15—C12—C13—N54.4 (2)
C6—C1—C2—C30.1 (3)N3—C12—C13—C149.1 (3)
N1—C1—C2—C3176.61 (17)C15—C12—C13—C14172.05 (19)
C1—C2—C3—C40.7 (3)N5—N4—C15—O1172.85 (17)
C2—C3—C4—C50.5 (3)C17—N4—C15—O121.4 (3)
C3—C4—C5—C60.3 (3)N5—N4—C15—C126.6 (2)
C4—C5—C6—C10.9 (3)C17—N4—C15—C12158.02 (17)
C2—C1—C6—C50.7 (3)C13—C12—C15—O1177.9 (2)
N1—C1—C6—C5175.93 (17)N3—C12—C15—O10.8 (4)
N2—N1—C7—C80.1 (2)C13—C12—C15—N41.4 (2)
C1—N1—C7—C8178.39 (18)N3—C12—C15—N4179.85 (18)
N2—N1—C7—Cl1176.18 (13)C15—N4—C17—C2267.4 (3)
C1—N1—C7—Cl12.1 (3)N5—N4—C17—C22143.73 (18)
N1—C7—C8—C90.0 (2)C15—N4—C17—C18111.6 (2)
Cl1—C7—C8—C9176.01 (15)N5—N4—C17—C1837.3 (3)
N1—C7—C8—C11179.71 (17)C22—C17—C18—C190.3 (3)
Cl1—C7—C8—C114.3 (3)N4—C17—C18—C19179.23 (18)
N1—N2—C9—C80.2 (2)C17—C18—C19—C201.4 (3)
N1—N2—C9—C10179.94 (16)C18—C19—C20—C211.0 (3)
C7—C8—C9—N20.1 (2)C19—C20—C21—C220.4 (3)
C11—C8—C9—N2179.82 (18)C18—C17—C22—C211.1 (3)
C7—C8—C9—C10179.97 (19)N4—C17—C22—C21177.85 (17)
C11—C8—C9—C100.3 (3)C20—C21—C22—C171.5 (3)
C12—N3—C11—C8179.42 (16)

Experimental details

Crystal data
Chemical formulaC22H20ClN5O
Mr405.88
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.3982 (17), 9.5204 (19), 24.401 (5)
β (°) 97.24 (3)
V3)1935.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.957, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
15458, 3397, 2871
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 1.08
No. of reflections3397
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Science Development Committee of Tianjin Agricultural College for partial funding (research grant No. 2007029)

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Zhang, F. X., Wu, C. J. & Liu, L. D. (2005). Acta Cryst. E61, m2320–m2321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Shi, J., Wei, Z., Bai, Y. & Bu, L. (2010a). Acta Cryst. E66, o1583.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Shi, J., Wei, Z., Dai, R. & Zhang, X. (2010b). Acta Cryst. E66, o1352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H., Wei, Z., Bu, L., Xu, X. & Shi, J. (2010c). Acta Cryst. E66, m904.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, H., Zhang, X., Song, Y., Xu, H. & Dong, M. (2005). Acta Cryst. E61, o2387–o2388.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds