metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(nitrato-κ2O,O′)[2-(1H-1,2,4-triazol-1-yl-κN2)-1,10-phenanthroline-κ2N,N′]cadmium(II) nitrate

aBinzhou Key Laboratory of Material Chemistry, Department of Chemistry and Chemical Engineering, Binzhou University, Binzhou 256603, People's Republic of China
*Correspondence e-mail: zhangshiguo1970@yahoo.com.cn

(Received 27 September 2010; accepted 5 October 2010; online 13 October 2010)

In the title complex, [Cd(C14H9N5)(NO3)(H2O)2]NO3, the CdII ion is coordinated in a distorted penta­gonal-bipyramidal geometry. The equatorial sites are occupied by a 2-(1H-1,2,4-triazol-1-yl)-1,10-phenanthroline ligand in a tridentate coordination mode and a bis-chelating nitrate ligand. Two aqua ligands are coordinated at the axial sites. All non-H atoms in the equatorial plane are co-planar within 0.0673 Å. In the crystal, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds connect the components into a two-dimensional network parallel to (001). In addition, there is a ππ stacking inter­action between symmetry-related benzene rings, with a centroid–centroid distance of 3.598 (3) Å.

Related literature

For related structures, see: Li (2009[Li, H. L. (2009). Acta Cryst. E65, m1280.]); Xie et al. (2009[Xie, L. M., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1279.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C14H9N5)(NO3)(H2O)2]NO3

  • Mr = 519.71

  • Triclinic, [P \overline 1]

  • a = 8.9934 (18) Å

  • b = 9.1995 (19) Å

  • c = 11.460 (2) Å

  • α = 88.334 (3)°

  • β = 72.946 (3)°

  • γ = 83.375 (3)°

  • V = 900.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 298 K

  • 0.25 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.741, Tmax = 0.905

  • 4496 measured reflections

  • 3311 independent reflections

  • 2954 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 1.07

  • 3311 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H5⋯O5i 0.75 2.05 2.752 (6) 156
O8—H4⋯O2ii 0.86 2.03 2.865 (5) 163
O7—H7⋯O3iii 0.78 2.59 3.269 (6) 147
O7—H7⋯O1iii 0.78 2.22 2.966 (5) 160
O7—H6⋯N5iv 0.99 2.47 3.420 (6) 162
O7—H6⋯O6iv 0.99 2.45 3.227 (6) 135
O7—H6⋯O4iv 0.99 1.83 2.802 (6) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+2; (iii) -x, -y, -z+2; (iv) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and to our knowledge only two complexes with 2-(1H-1,2,4-triazol-1-yl)-1,10-phenanthroline as ligand have been published up to date (Li, 2009; Xie et al. 2009). Our interest in the correlation between the coordination geometry and the counter ion resulted in us synthesizing the title complex and herein we report its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The CdII ion is in a distorted pentagonal bipyramidal coordination environment, with two H2O ligands in the axial positions. Except for the two water molecules, all non-hydrogen atoms of the cation define a plane within 0.0673 Å with a maximum deviation of -0.1532 (39) Å for atom N5. In the crystal structure, hydrogen bonds involving coordinated water molecules, nitrato ligands and nitrate anions connect the components of the structure into a two-dimensional network parallel to (001). In addition, there is a ππ stacking interaction involving symmetry-related complexes, the relevant distances being Cg1···Cg1i = 3.598 (3) Å and Cg1···Cg1iperp = 3.428 Å [symmetry code: (i) 1 - x, -y, 1 - z; Cg1 is the centroid of C4—C9 ring].

Related literature top

For related structures, see: Li (2009); Xie et al. (2009).

Experimental top

A 5 ml water solution of Cd(NO3)24H2O (0.0742 g, 0.240 mmol) was added into a 15 ml methanol solution containing 2-(1H-1,2,4-triazol-1-yl)-1,10-phenanthroline (0.0598 g, 0.242 mmol) and the mixture was stirred for a few minutes. Colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

The water H atoms were located in a difference Fourier map and refined as riding in their 'as found' positions with Uiso = 1.5Ueq(O). Other H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å, Uiso = 1.2Ueq(C).

Structure description top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and to our knowledge only two complexes with 2-(1H-1,2,4-triazol-1-yl)-1,10-phenanthroline as ligand have been published up to date (Li, 2009; Xie et al. 2009). Our interest in the correlation between the coordination geometry and the counter ion resulted in us synthesizing the title complex and herein we report its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The CdII ion is in a distorted pentagonal bipyramidal coordination environment, with two H2O ligands in the axial positions. Except for the two water molecules, all non-hydrogen atoms of the cation define a plane within 0.0673 Å with a maximum deviation of -0.1532 (39) Å for atom N5. In the crystal structure, hydrogen bonds involving coordinated water molecules, nitrato ligands and nitrate anions connect the components of the structure into a two-dimensional network parallel to (001). In addition, there is a ππ stacking interaction involving symmetry-related complexes, the relevant distances being Cg1···Cg1i = 3.598 (3) Å and Cg1···Cg1iperp = 3.428 Å [symmetry code: (i) 1 - x, -y, 1 - z; Cg1 is the centroid of C4—C9 ring].

For related structures, see: Li (2009); Xie et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL Sheldrick, 2008); program(s) used to refine structure: SHELXTL Sheldrick, 2008); molecular graphics: SHELXTL Sheldrick, 2008); software used to prepare material for publication: SHELXTL Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids shown at the 30% probability level
Diaqua(nitrato-κ2O,O')[2-(1H-1,2,4-triazol-1-yl- κN2)-1,10-phenanthroline-κ2N,N']cadmium(II) nitrate top
Crystal data top
[Cd(C14H9N5)(NO3)(H2O)2]NO3Z = 2
Mr = 519.71F(000) = 516
Triclinic, P1Dx = 1.917 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9934 (18) ÅCell parameters from 1655 reflections
b = 9.1995 (19) Åθ = 2.6–24.8°
c = 11.460 (2) ŵ = 1.28 mm1
α = 88.334 (3)°T = 298 K
β = 72.946 (3)°Block, colorless
γ = 83.375 (3)°0.25 × 0.10 × 0.08 mm
V = 900.4 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3311 independent reflections
Radiation source: fine-focus sealed tube2954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 25.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.741, Tmax = 0.905k = 911
4496 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.1075P]
where P = (Fo2 + 2Fc2)/3
3311 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cd(C14H9N5)(NO3)(H2O)2]NO3γ = 83.375 (3)°
Mr = 519.71V = 900.4 (3) Å3
Triclinic, P1Z = 2
a = 8.9934 (18) ÅMo Kα radiation
b = 9.1995 (19) ŵ = 1.28 mm1
c = 11.460 (2) ÅT = 298 K
α = 88.334 (3)°0.25 × 0.10 × 0.08 mm
β = 72.946 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2954 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 0.905Rint = 0.020
4496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 0.78 e Å3
3311 reflectionsΔρmin = 0.56 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4138 (6)0.0355 (5)0.8867 (5)0.0444 (12)
H10.33740.04160.96110.053*
C20.5485 (7)0.1354 (6)0.8625 (5)0.0556 (14)
H20.56020.20680.91920.067*
C30.6599 (6)0.1269 (6)0.7571 (5)0.0528 (14)
H30.75170.19070.74140.063*
C40.6401 (5)0.0228 (5)0.6697 (4)0.0400 (11)
C50.5015 (5)0.0732 (5)0.7005 (4)0.0337 (10)
C60.4752 (5)0.1791 (5)0.6135 (4)0.0325 (10)
C70.5814 (5)0.1851 (5)0.4961 (4)0.0365 (10)
C80.7209 (5)0.0835 (6)0.4682 (5)0.0463 (13)
H80.79330.08480.39140.056*
C90.7484 (6)0.0130 (6)0.5511 (5)0.0506 (14)
H90.84110.07580.53080.061*
C100.5412 (6)0.2866 (6)0.4149 (4)0.0432 (12)
H100.60710.28990.33560.052*
C110.4082 (6)0.3809 (5)0.4486 (4)0.0404 (11)
H110.38220.44970.39460.048*
C120.3123 (5)0.3697 (5)0.5679 (4)0.0333 (10)
C130.1087 (6)0.5780 (5)0.5609 (5)0.0439 (12)
H130.15160.61050.48180.053*
C140.0353 (6)0.5529 (5)0.7377 (5)0.0457 (12)
H150.11960.56840.80780.055*
Cd10.17488 (4)0.24849 (4)0.84349 (3)0.03544 (14)
N10.3893 (4)0.0667 (4)0.8096 (3)0.0354 (9)
N20.3429 (4)0.2738 (4)0.6467 (3)0.0326 (8)
N30.1732 (4)0.4647 (4)0.6135 (3)0.0358 (9)
N40.0804 (4)0.4489 (4)0.7295 (3)0.0412 (9)
N50.3227 (5)0.6794 (5)0.2041 (4)0.0526 (11)
N60.0540 (5)0.2346 (5)1.0734 (4)0.0466 (11)
N70.0228 (5)0.6358 (5)0.6366 (4)0.0532 (11)
O10.0636 (4)0.1389 (4)1.0457 (3)0.0549 (9)
O20.0577 (4)0.3376 (4)1.0003 (3)0.0519 (9)
O30.1586 (5)0.2266 (5)1.1677 (4)0.0750 (13)
O40.2077 (5)0.7114 (5)0.2931 (4)0.0688 (12)
O50.4194 (5)0.5758 (6)0.2111 (4)0.0840 (15)
O60.3399 (6)0.7527 (6)0.1125 (4)0.0923 (16)
O70.0187 (4)0.1051 (4)0.7810 (3)0.0493 (9)
H60.07190.16400.76490.074*
H70.01630.03050.81490.074*
O80.2817 (4)0.4079 (4)0.9389 (3)0.0524 (9)
H40.23020.49220.96050.079*
H50.35530.43660.90160.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (3)0.039 (3)0.041 (3)0.007 (2)0.009 (2)0.005 (2)
C20.067 (4)0.044 (3)0.051 (3)0.016 (3)0.019 (3)0.009 (2)
C30.049 (3)0.046 (3)0.058 (3)0.016 (3)0.016 (3)0.002 (3)
C40.033 (2)0.037 (3)0.047 (3)0.005 (2)0.010 (2)0.009 (2)
C50.034 (2)0.029 (2)0.035 (2)0.0005 (19)0.0067 (19)0.0042 (18)
C60.028 (2)0.032 (2)0.034 (2)0.0007 (19)0.0043 (18)0.0033 (18)
C70.033 (2)0.037 (3)0.034 (2)0.006 (2)0.0010 (19)0.0066 (19)
C80.034 (3)0.050 (3)0.043 (3)0.003 (2)0.007 (2)0.016 (2)
C90.030 (3)0.054 (3)0.058 (3)0.009 (2)0.001 (2)0.019 (3)
C100.044 (3)0.049 (3)0.026 (2)0.006 (2)0.006 (2)0.002 (2)
C110.048 (3)0.040 (3)0.029 (2)0.008 (2)0.005 (2)0.0066 (19)
C120.035 (2)0.028 (2)0.033 (2)0.0020 (19)0.0048 (19)0.0012 (18)
C130.051 (3)0.034 (3)0.046 (3)0.003 (2)0.017 (2)0.011 (2)
C140.044 (3)0.037 (3)0.048 (3)0.011 (2)0.007 (2)0.004 (2)
Cd10.0326 (2)0.0334 (2)0.0298 (2)0.00505 (14)0.00361 (13)0.00419 (13)
N10.0320 (19)0.037 (2)0.032 (2)0.0049 (17)0.0044 (16)0.0055 (16)
N20.0308 (19)0.031 (2)0.030 (2)0.0008 (16)0.0023 (16)0.0008 (15)
N30.036 (2)0.031 (2)0.037 (2)0.0000 (17)0.0067 (17)0.0050 (16)
N40.042 (2)0.036 (2)0.035 (2)0.0051 (18)0.0005 (17)0.0052 (16)
N50.052 (3)0.055 (3)0.053 (3)0.013 (2)0.017 (2)0.017 (2)
N60.047 (2)0.046 (3)0.036 (2)0.014 (2)0.0107 (19)0.0077 (19)
N70.051 (3)0.044 (3)0.060 (3)0.011 (2)0.016 (2)0.006 (2)
O10.059 (2)0.046 (2)0.047 (2)0.0010 (19)0.0014 (18)0.0038 (16)
O20.050 (2)0.043 (2)0.049 (2)0.0030 (17)0.0043 (17)0.0016 (17)
O30.068 (3)0.078 (3)0.052 (3)0.016 (2)0.027 (2)0.000 (2)
O40.058 (2)0.088 (3)0.055 (2)0.015 (2)0.006 (2)0.010 (2)
O50.061 (3)0.088 (4)0.091 (3)0.010 (3)0.014 (2)0.034 (3)
O60.095 (4)0.106 (4)0.063 (3)0.003 (3)0.012 (3)0.041 (3)
O70.0464 (19)0.041 (2)0.057 (2)0.0010 (16)0.0103 (17)0.0037 (16)
O80.048 (2)0.045 (2)0.059 (2)0.0000 (17)0.0091 (18)0.0049 (17)
Geometric parameters (Å, º) top
C1—N11.316 (6)C13—N71.309 (7)
C1—C21.396 (7)C13—N31.347 (6)
C1—H10.9300C13—H130.9300
C2—C31.331 (7)C14—N41.313 (6)
C2—H20.9300C14—N71.352 (7)
C3—C41.401 (7)C14—H150.9300
C3—H30.9300Cd1—O72.301 (4)
C4—C51.401 (6)Cd1—O82.303 (4)
C4—C91.429 (7)Cd1—N22.340 (3)
C5—N11.362 (5)Cd1—N12.350 (4)
C5—C61.424 (6)Cd1—O22.400 (3)
C6—N21.353 (5)Cd1—N42.445 (4)
C6—C71.407 (6)Cd1—O12.475 (4)
C7—C101.392 (7)N3—N41.361 (5)
C7—C81.436 (6)N5—O61.212 (6)
C8—C91.337 (8)N5—O51.231 (6)
C8—H80.9300N5—O41.235 (6)
C9—H90.9300N6—O31.214 (5)
C10—C111.357 (7)N6—O21.251 (6)
C10—H100.9300N6—O11.265 (5)
C11—C121.395 (6)O7—H60.9858
C11—H110.9300O7—H70.7785
C12—N21.309 (6)O8—H40.8595
C12—N31.411 (6)O8—H50.7473
N1—C1—C2123.4 (5)O7—Cd1—N194.70 (13)
N1—C1—H1118.3O8—Cd1—N194.71 (13)
C2—C1—H1118.3N2—Cd1—N170.66 (12)
C3—C2—C1119.1 (5)O7—Cd1—O286.19 (13)
C3—C2—H2120.4O8—Cd1—O281.33 (13)
C1—C2—H2120.4N2—Cd1—O2148.68 (12)
C2—C3—C4120.5 (5)N1—Cd1—O2140.60 (13)
C2—C3—H3119.7O7—Cd1—N487.39 (14)
C4—C3—H3119.7O8—Cd1—N491.19 (14)
C5—C4—C3117.0 (5)N2—Cd1—N466.93 (12)
C5—C4—C9118.8 (4)N1—Cd1—N4137.57 (12)
C3—C4—C9124.2 (4)O2—Cd1—N481.82 (12)
N1—C5—C4122.4 (4)O7—Cd1—O184.17 (13)
N1—C5—C6118.8 (4)O8—Cd1—O187.88 (13)
C4—C5—C6118.9 (4)N2—Cd1—O1158.95 (13)
N2—C6—C7120.6 (4)N1—Cd1—O188.53 (12)
N2—C6—C5117.8 (4)O2—Cd1—O152.30 (12)
C7—C6—C5121.6 (4)N4—Cd1—O1133.72 (12)
C10—C7—C6117.4 (4)C1—N1—C5117.6 (4)
C10—C7—C8125.0 (4)C1—N1—Cd1126.6 (3)
C6—C7—C8117.5 (4)C5—N1—Cd1115.7 (3)
C9—C8—C7121.1 (4)C12—N2—C6119.6 (4)
C9—C8—H8119.5C12—N2—Cd1123.5 (3)
C7—C8—H8119.5C6—N2—Cd1116.9 (3)
C8—C9—C4122.1 (4)C13—N3—N4108.9 (4)
C8—C9—H9118.9C13—N3—C12130.9 (4)
C4—C9—H9118.9N4—N3—C12120.2 (4)
C11—C10—C7121.6 (4)C14—N4—N3102.6 (4)
C11—C10—H10119.2C14—N4—Cd1142.7 (3)
C7—C10—H10119.2N3—N4—Cd1114.7 (3)
C10—C11—C12116.8 (4)O6—N5—O5121.3 (5)
C10—C11—H11121.6O6—N5—O4119.3 (5)
C12—C11—H11121.6O5—N5—O4119.4 (5)
N2—C12—C11123.8 (4)O3—N6—O2121.5 (5)
N2—C12—N3114.6 (4)O3—N6—O1121.1 (5)
C11—C12—N3121.6 (4)O2—N6—O1117.4 (4)
N7—C13—N3110.5 (4)C13—N7—C14103.0 (4)
N7—C13—H13124.8N6—O1—Cd193.0 (3)
N3—C13—H13124.8N6—O2—Cd197.0 (3)
N4—C14—N7115.0 (5)Cd1—O7—H6111.8
N4—C14—H15122.5Cd1—O7—H7110.1
N7—C14—H15122.5H6—O7—H7125.4
O7—Cd1—O8167.51 (12)Cd1—O8—H4117.9
O7—Cd1—N294.13 (12)Cd1—O8—H5116.9
O8—Cd1—N296.72 (13)H4—O8—H595.7
N1—C1—C2—C30.9 (9)O8—Cd1—N2—C1291.5 (4)
C1—C2—C3—C42.3 (9)N1—Cd1—N2—C12175.9 (4)
C2—C3—C4—C52.1 (8)O2—Cd1—N2—C127.1 (5)
C2—C3—C4—C9175.3 (5)N4—Cd1—N2—C123.1 (3)
C3—C4—C5—N10.4 (7)O1—Cd1—N2—C12166.8 (4)
C9—C4—C5—N1177.1 (4)O7—Cd1—N2—C695.1 (3)
C3—C4—C5—C6178.9 (5)O8—Cd1—N2—C691.0 (3)
C9—C4—C5—C61.4 (7)N1—Cd1—N2—C61.6 (3)
N1—C5—C6—N23.6 (6)O2—Cd1—N2—C6175.4 (3)
C4—C5—C6—N2177.9 (4)N4—Cd1—N2—C6179.5 (3)
N1—C5—C6—C7175.7 (4)O1—Cd1—N2—C610.6 (6)
C4—C5—C6—C72.8 (7)N7—C13—N3—N40.7 (6)
N2—C6—C7—C103.0 (7)N7—C13—N3—C12179.5 (5)
C5—C6—C7—C10176.2 (5)N2—C12—N3—C13177.4 (5)
N2—C6—C7—C8178.6 (4)C11—C12—N3—C131.7 (8)
C5—C6—C7—C82.2 (7)N2—C12—N3—N42.3 (6)
C10—C7—C8—C9178.3 (5)C11—C12—N3—N4178.5 (4)
C6—C7—C8—C90.0 (7)N7—C14—N4—N31.0 (6)
C7—C8—C9—C41.5 (8)N7—C14—N4—Cd1179.5 (4)
C5—C4—C9—C80.8 (8)C13—N3—N4—C141.0 (5)
C3—C4—C9—C8176.5 (5)C12—N3—N4—C14179.2 (4)
C6—C7—C10—C112.8 (7)C13—N3—N4—Cd1180.0 (3)
C8—C7—C10—C11178.9 (5)C12—N3—N4—Cd10.2 (5)
C7—C10—C11—C121.0 (7)O7—Cd1—N4—C1484.3 (6)
C10—C11—C12—N20.8 (7)O8—Cd1—N4—C1483.3 (6)
C10—C11—C12—N3178.3 (4)N2—Cd1—N4—C14179.9 (6)
C2—C1—N1—C50.7 (8)N1—Cd1—N4—C14178.4 (5)
C2—C1—N1—Cd1176.5 (4)O2—Cd1—N4—C142.2 (6)
C4—C5—N1—C10.9 (7)O1—Cd1—N4—C144.9 (7)
C6—C5—N1—C1177.6 (4)O7—Cd1—N4—N394.1 (3)
C4—C5—N1—Cd1176.6 (3)O8—Cd1—N4—N398.3 (3)
C6—C5—N1—Cd15.0 (5)N2—Cd1—N4—N31.5 (3)
O7—Cd1—N1—C186.6 (4)N1—Cd1—N4—N30.0 (4)
O8—Cd1—N1—C185.1 (4)O2—Cd1—N4—N3179.4 (3)
N2—Cd1—N1—C1179.4 (4)O1—Cd1—N4—N3173.5 (3)
O2—Cd1—N1—C13.1 (5)N3—C13—N7—C140.1 (6)
N4—Cd1—N1—C1177.9 (4)N4—C14—N7—C130.6 (7)
O1—Cd1—N1—C12.6 (4)O3—N6—O1—Cd1175.4 (4)
O7—Cd1—N1—C596.1 (3)O2—N6—O1—Cd14.9 (4)
O8—Cd1—N1—C592.1 (3)O7—Cd1—O1—N686.8 (3)
N2—Cd1—N1—C53.4 (3)O8—Cd1—O1—N683.5 (3)
O2—Cd1—N1—C5174.1 (3)N2—Cd1—O1—N6173.2 (3)
N4—Cd1—N1—C54.9 (4)N1—Cd1—O1—N6178.3 (3)
O1—Cd1—N1—C5179.8 (3)O2—Cd1—O1—N62.8 (3)
C11—C12—N2—C60.5 (7)N4—Cd1—O1—N66.1 (4)
N3—C12—N2—C6178.6 (4)O3—N6—O2—Cd1175.2 (4)
C11—C12—N2—Cd1176.8 (3)O1—N6—O2—Cd15.1 (5)
N3—C12—N2—Cd14.0 (5)O7—Cd1—O2—N682.7 (3)
C7—C6—N2—C121.4 (6)O8—Cd1—O2—N696.9 (3)
C5—C6—N2—C12177.9 (4)N2—Cd1—O2—N6174.4 (3)
C7—C6—N2—Cd1179.0 (3)N1—Cd1—O2—N610.1 (4)
C5—C6—N2—Cd10.3 (5)N4—Cd1—O2—N6170.6 (3)
O7—Cd1—N2—C1282.3 (4)O1—Cd1—O2—N62.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H5···O5i0.752.052.752 (6)156
O8—H4···O2ii0.862.032.865 (5)163
O7—H7···O3iii0.782.593.269 (6)147
O7—H7···O1iii0.782.222.966 (5)160
O7—H6···N5iv0.992.473.420 (6)162
O7—H6···O6iv0.992.453.227 (6)135
O7—H6···O4iv0.991.832.802 (6)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2; (iii) x, y, z+2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C14H9N5)(NO3)(H2O)2]NO3
Mr519.71
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.9934 (18), 9.1995 (19), 11.460 (2)
α, β, γ (°)88.334 (3), 72.946 (3), 83.375 (3)
V3)900.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.25 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.741, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
4496, 3311, 2954
Rint0.020
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.07
No. of reflections3311
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.56

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H5···O5i0.752.052.752 (6)156.2
O8—H4···O2ii0.862.032.865 (5)162.9
O7—H7···O3iii0.782.593.269 (6)147.2
O7—H7···O1iii0.782.222.966 (5)160.0
O7—H6···N5iv0.992.473.420 (6)161.7
O7—H6···O6iv0.992.453.227 (6)135.0
O7—H6···O4iv0.991.832.802 (6)167.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2; (iii) x, y, z+2; (iv) x, y+1, z+1.
 

Acknowledgements

This project was supported by the Natural Science Foundation of Shandong Province of China (grant No. ZR2009BL002).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H. L. (2009). Acta Cryst. E65, m1280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, L. M., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1279.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds